Signal Processing and Speech Communication Laboratory

Welcome!

In 2000, the Signal Processing and Speech Communication Laboratory (SPSC Lab) of Graz University of Technology (TU Graz) was founded as a research and education center in nonlinear signal processing and computational intelligence, algorithm engineering, as well as circuits & systems modeling and design. It covers applications in wireless communications, speech/audio communication, and telecommunications.

If you want to learn more about Signal Processing, click: What is Signal Processing?

The Research of SPSC Lab addresses fundamental and applied research problems in five scientific areas:

Result of the Month

XL-MIMO Channel Modeling and Prediction for Wireless Power Transfer [link]

Massive antenna arrays form physically large apertures with a beam-focusing capability, leading to outstanding wireless power transfer (WPT) efficiency paired with low radiation levels outside the focusing region. However, leveraging these features requires accurate knowledge of the multipath propagation channel and overcoming the (Rayleigh) fading channel present in typical application scenarios. For that, reciprocity-based beamforming is an optimal solution that estimates the actual channel gains from pilot transmissions on the uplink. But this solution is unsuitable for passive backscatter nodes that are not capable of sending any pilots in the initial access phase. Using measured channel data from an extremely large-scale MIMO (XL-MIMO) testbed, we compare geometry-based planar wavefront and spherical wavefront beamformers with a reciprocity-based beamformer, to address this initial access problem. We also show that we can predict specular multipath components (SMCs) based only on geometric environment information. We demonstrate that a transmit power of 1W is sufficient to transfer more than 1mW of power to a device located at a distance of 12.3m when using a (40x25) array at 3.8GHz. The geometry-based beamformer exploiting predicted SMCs suffers a loss of only 2dB compared with perfect channel state information.

Contact: Benjamin Deutschmann