
SPARSE NONNEGATIVE MATRIX FACTORIZATION USING ℓ
0-CONSTRAINTS

Robert Peharz, Michael Stark, Franz Pernkopf

Signal Processing and Speech Communication Lab

University of Technology, Graz

ABSTRACT

Although nonnegative matrix factorization (NMF) favors a

part-based and sparse representation of its input, there is no

guarantee for this behavior. Several extensions to NMF have

been proposed in order to introduce sparseness via the ℓ1-

norm, while little work is done using the more natural sparse-

ness measure, the ℓ0-pseudo-norm. In this work we propose

two NMF algorithms with ℓ0-sparseness constraints on the

bases and the coefficient matrices, respectively. We show

that classic NMF [1] is a suited tool for ℓ0-sparse NMF al-

gorithms, due to a property we call sparseness maintenance.

We apply our algorithms to synthetic and real-world data and

compare our results to sparse NMF [2] and nonnegative K-

SVD [3].

1. INTRODUCTION

Nonnegative Matrix Factorization (NMF) aims to factorize a

nonnegative matrix X into a product of nonnegative matrices

W and H, i.e. X ≈WH. Therefore, the task is to find non-

negative matrices W and H such that an error measure, like

the Frobenius norm ‖X −WH‖2F or the Kullback-Leibler

divergence D(X||WH) is minimized. When we assume the

columns of X as multidimensional observations of some pro-

cess, the columns of W can be interpreted as basis vectors,

whereas the rows of H contain the corresponding coding co-

efficients. Application domains of NMF are manifold, such

as data compression and data analysis, feature extraction [4],

denoising [5], and others. Lee and Seung [4] noted that NMF

favors a sparse and localized representation of its input, in

contrast to other linear matrix decompositions such as princi-

pal component analysis and k-means clustering.

Other authors noted that nonnegativity constraints alone

do not guarantee a sparse representation of the input, and

further, that the degree of sparseness cannot be controlled.

Therefore, various extensions have been proposed in order

to incorporate sparseness constraints in NMF. Hoyer [6] pro-

posed an algorithm to minimize the objective ‖X−WH‖2F+
λ
∑

ij |H|ij , which penalizes the ℓ1-norm of the coefficients

matrix H. Eggert and Koerner [7] used the same objective,

Acknowledgement: This work was supported by the Austrian Science

Fund (Project numbers S10604-N13 and P22488-N23)

but proposed an alternative update which implicitly normal-

izes the columns of W to unit length. Further, Hoyer [2]

defined a sparseness function of an arbitrary vector via the ℓ1-

norm and presented an NMF algorithm which constrains the

columns of W or H to a given sparseness value. Two other

extensions of classic NMF which aim to achieve a part-based

and sparse representation are local NMF [8] and nonsmooth

NMF [9].

While most of these extensions of NMF introduce sparse-

ness via constraining or penalizing the ℓ1-norm, little to no

work is concerned about NMF with ℓ0-sparseness constraints.

Although the ℓ0-pseudo-norm is the most natural and intuitive

sparseness measure, there is a good reason to define sparse-

ness via the ℓ1-norm: In contrast to the ℓ0-norm, the ℓ1-norm

is convex, and it is known that a solution for a ℓ1-constrained

problem approximates the solution for the ℓ0-constrained

problem [10]. However, there are at least two reasons which

justify an ℓ0-constrained version of NMF. Firstly, such a

method, although approximate, is useful, since we are able to

constrain the bases or coefficient vectors to have exactly the

desired number of nonzero entries. Secondly, the joint opti-

mization of W and H is a non-convex problem per se, which

means that all NMF algorithms proposed so far converge to

a local minimum only. Therefore also ℓ1-constrained NMF

methods are only approximative solutions.

In this paper we present two NMF algorithms with ℓ0-

constrains on the columns of H and W, respectively. To con-

strain the coefficient matrix H we follow the framework of

nonnegative K-SVD [3], which itself can be seen as an NMF

algorithm with ℓ0-constraints on H. To constrain the bases

matrix W we proceed similar as in the work of Hoyer [2].

Generally, we show that the standard NMF update rules [1]

are suited for ℓ0-sparse NMF, due to a property which we call

sparseness maintenance. Throughout this paper, X denotes a

D × N data matrix, W denotes a D × K bases matrix (or

dictionary) and H denotes a K ×N coefficient matrix.

The paper is organized as follows: In Section 2 we review

NMF [1] and sparse NMF [2]. Further, after reviewing the

sparse coding problem, we discuss the K-SVD algorithm by

Aharon et al. [11] and its nonnegative variant [3]. In Sec-

tion 3 we introduce our algorithms for ℓ0-sparse NMF. We

report experimental results on synthetic and real-world data

in Section 4. Finally, Section 5 concludes this paper.



2. RELATED WORK

2.1. Nonnegative Matrix Factorization

Lee and Seung [1] showed that the multiplicative update rules

H← H⊗ (WT
X)

(WTWH)
, (1)

W←W ⊗ (XH
T )

(WHHT )
, (2)

converge to a local minimum of ‖X−WH‖2F , where ⊗
and ···

··· denote element-wise multiplication and division, re-

spectively. Nonnegativity of W and H is maintained, since

the updates consist of products of nonnegative factors only.

They also provided update rules for the Kullback-Leibler di-

vergence [1].

2.2. Sparse NMF

Hoyer [2] provided an NMF method with sparseness con-

straints on the columns of W, the columns of H, or both.

In this work, the sparseness of an arbitrary D-dimensional

vector x is defined as:

sparseness(x) =

√
D − L1(x)/L2(x)√

D − 1
, (3)

where L1(x) and L2(x) denote the ℓ1- and ℓ2-norms, respec-

tively: L1(x) =
∑D

i=1 |xi|, L2(x) =
√

∑D

i=1 x
2
i . Indeed,

sparseness(x) is 0 if all entries of x are nonzero and of the

same absolute value, and 1 for the sparsest possible vector, i.e.

when only one entry is nonzero. For all other x, the function

smoothly interpolates between these extreme cases.

The sparse NMF algorithm performs gradient descend on

the cost function ‖X −WH‖2F and projects the columns of

W or H (or both) onto the set of element-wise nonnegative

vectors with desired sparsity according to Eq. (3) after each

iteration. We refer to this algorithm as ℓ1-sparse NMF for the

remainder of this paper.

2.3. Sparse Coding

A sparse coder aims to approximate a vector x using a linear

combination of maximal L bases (which are called atoms in

this context): x ≈∑L

i=1 hzi wzi . Here z = (z1, . . . , zL)
T is

an index vector which holds the indices of the selected atoms,

wzi denotes the zi
th column of W, and (hz1 , . . . , hzL)

T are

the weighting coefficients. Usually we have L ≪ K, hence

the term sparse coding. We can define the sparse coding prob-

lem as minimization of ‖x−Wh‖2, s.t. L0(h) ≤ L, where

L0(·) denotes the ℓ0-pseudo-norm, i.e. the number of nonzero

entries. For all columns of X we can extend this as minimiza-

tion of

E = ‖X−WH‖2F , s.t. L0(hn) ≤ L, n = 1, . . . , N. (4)

Finding the optimal solution for the sparse coding problem is

NP-hard [12], where the challenge is to find the optimal atom-

to-data assignment, i.e. the locations of the non-zero entries

in H. Having this information, the corresponding coefficients

values are given by the least squares approximation of the

columns of X using the respective assigned atoms.

Many approximate sparse coding approaches have been

proposed (see e.g. [13, 14, 15]), where one of the most widely

known algorithms is orthogonal matching pursuit (OMP)

[16]. OMP is described in Algorithm 1 for a single vector

x. In order to find an approximate solution for Eq. (4), we

have to repeat this algorithm for each column in X. First,

Algorithm 1 Orthogonal Matching Pursuit (OMP)

1: r← x

2: z = [ ]
3: for l = 1 : L do

4: a = W
T
r

5: z∗ = argmax |a|
6: z← [z, z∗]
7: c = W

+
z
x

8: x̂ = Wz c

9: r← x− x̂

10: end for

we assign the data vector x to the residual r. In steps 4-6

we select the atom which approximates the residual r best,

where without loss of generality we assume that the atoms

are normalized to unit length. In steps 7-8, the least squares

approximation x̂ of the data x, using the atoms selected so far

is determined, where Wz is the sub dictionary with the atoms

depicted by z and + denotes the Moore-Penrose inverse. The

new residual is defined as x − x̂. These steps are repeated

for L iterations, yielding an index vector z and coefficients c.

The corresponding column in H is build by setting the entries

depicted by z to the values stored in c, and zeros elsewhere.

2.4. K-SVD

K-SVD [11] is an iterative two stage algorithm which adapts

the dictionary W to a given data set X. In the first stage, the

data X is sparsely coded with fixed dictionary W, i.e. Eq. (4)

is minimized with respect to H. This task can be achieved by

OMP or any other sparse coding algorithm.

In the second stage the dictionary W is updated, while

holding the atom to data assignment fixed, i.e. the locations

of the “nonzeros” in H. The atoms are updated in a random

sequence, where wk denotes the atom to be updated. The

objective can be reformulated as

E = ‖X−WH‖2F = ‖E(k)−wk h
k‖2F , (5)

where h
k is the kth row of H and E(k) = X−

∑

j 6=k wj h
j .

The task is to find vectors wk and h
k in order to minimize



Eq. (5). However, since we do not want to change the loca-

tions of the “nonzeros” in h
k, we restrict the problem to those

entries (columns) where h
k is nonzero:

Ẽ = ‖E(k)ω −wk h
k
ω‖2F , ω = {i|hk

i 6= 0}. (6)

When u1 and v1 are the first singular left and right vectors of

E(k)ω , respectively, and σ1 is the corresponding first singular

value, Eq. (6) becomes minimal when we replace wk with u1

and h
k
ω with v1 σ1. Since the K atoms are updated using a

singular value decomposition (SVD), the algorithm is called

K-SVD. This algorithm can be seen as a generalization of k-

means, since in k-means each data vector is represented by

a single cluster center (atom), while in K-SVD the data is

represented as a linear combination of up to L atoms.

2.5. Nonnegative K-SVD (NN K-SVD)

K-SVD can be seen as matrix factorization technique with

ℓ0-sparseness constraints on the columns of H, i.e. X ≈
WH, L0(hn) ≤ L, n = 1, . . . , N . A nonnegative version

of K-SVD can therefore be seen as an NMF algorithm with

ℓ0-sparseness constraints on H. Aharon et al. [3] introduced

nonnegativity constraints in K-SVD, which is achieved by in-

troducing nonnegativity in the sparse coding stage and the

dictionary update stage, respectively. For the sparse coding

stage they proposed a nonnegative variant of basis pursuit

[15], which replaces the ℓ0-norm with the ℓ1-norm. There-

fore they used several iterations of the sparse coding algo-

rithm proposed by Hoyer [6]. To obtain an ℓ0-sparse result,

they select the L atoms with largest coefficients from each

column of H. Using these atoms, the respective columns

of X are approximated using the nonnegative least squares

solver described in [17]. The obtained least squares coeffi-

cients replace the original coefficients of the selected atoms

in H, while all other coefficients are set to zero. We refer to

this algorithm as nonnegative basis pursuit (NN-BP).

The dictionary update resembles standard K-SVD. How-

ever, in order to minimize Eq. (6), the SVD is replaced with

an iterative SVD approximation, where negative values in wk

and h
k
ω are set to zero after each iteration.

3. NMF WITH ℓ0-CONSTRAINTS

In this section, we combine the central ideas of NMF, K-SVD

and ℓ1-sparse NMF to obtain two novel algorithms which

we call nonnegative matrix factorization with ℓ0-constraints

(NMFℓ0). Again, for a given nonnegative matrix X we aim

to find nonnegative matrices W and H, such that X ≈WH,

where L0(wk) ≤ L, k = 1, . . . ,K, or, L0(hn) ≤ L, n =
1, . . . , N . To the algorithm which constrains the bases ma-

trix W, we refer as NMFℓ0-W, while NMFℓ0-H denotes the

algorithm which constrains H.

Our key observation is that the standard NMF update rules

(see Eq. (1-2) and the rules for the Kullback-Leibler diver-

gence in [1]) are sparseness maintaining. An entry in W or

H which is zero before an NMF update, is also zero after-

wards, since the update rules consist of element-wise prod-

ucts. This means that NMF can always be used to further

enhance a sparse solution.

3.1. Sparseness constraints on H (NMFℓ0-H)

Similar as in the K-SVD framework our algorithm alternates

between a sparse coding stage and a dictionary update stage.

For sparse coding we can use any arbitrary nonnegative sparse

coder, e.g. NN-BP [3]. Alternatively, we can use a modi-

fied version of OMP with nonnegativity constraints. We call

this algorithm nonnegative matching pursuit (NMP), which is

shown in Algorithm 2. When we reinspect Algorithm 1, we

Algorithm 2 Nonnegative Matching Pursuit (NMP)

1: z = [ ]
2: c = [ ]
3: r← x

4: for l = 1 : L do

5: a = W
T
r

6: z∗ = argmax a

7: c∗ = max a

8: if c∗ ≤ 0 then

9: Terminate

10: end if

11: z← [z, z∗]
12: c← [c, c∗]
13: for j = 1 : J do

14: c← c⊗ (WT

z
x)

(WT
z
Wz c)

15: end for

16: r← x−Wzc

17: end for

see that OMP can violate nonnegativity at two points, namely

in step 5, where we select the atom which approximates the

residual best, and in step 7, where the data vector is projected

into the space spanned by the atoms selected so far. There-

fore we introduce z∗ = argmax a in step 6 of Algorithm 2,

i.e. we drop the absolute value of a. Thus we select an atom

whose scalar projection is most probably positive. However,

for the case that all entries in a are negative, the algorithm

has to terminate. Secondly, OMP generally violates nonneg-

ativity in the least squares approximation step: c = W
+
z
x.

The multiplication with the Moore-Penrose inverse W
+
z

usu-

ally yields positive and negative coefficients. Therefore, we

have to replace this step with a nonnegative least squares so-

lution, such as the already mentioned algorithm proposed in

[17]. However, for the sake of computational efficiency we

use several iterations of the NMF update rule for H (Eq. (1))

in steps 13-15.

Once a sparse matrix H is obtained by NMP, we can sim-

ply perform several iterations of the standard NMF update



rules for the Euclidean distance measure (Eq. (1-2)) in order

to update W and H. This fulfills exactly our requirements:

(i) the objective ‖X −WH‖2F is reduced, (ii) nonnegativity

is maintained, (iii) sparseness of H is maintained. Note that

we also update H in this step, since we want to adapt the coef-

ficient values (i.e. the atom weights) simultaneously with W.

However, the atom to data assignment is maintained, i.e. the

locations of the “nonzeros”. Further, we normalize the atoms

to unit length after each update of W. Since it can happen

that an atom is 0 after an update (e.g. when the atom is not

assigned to any data), we reinitialize such an atom uniformly

with the value
√
D. NMFℓ0-H is summarized in Algorithm 3,

where I and J denote the number of overall iterations and

NMF updates, respectively.

Algorithm 3 NMFℓ0-H

1: Initialize W randomly

2: for i = 1 : I do

3: H ← sparsely code X with W using NMP

4: for j = 1 : J do

5: W←W ⊗ (XH
T )

(WHHT )

6: wk ← wk

‖wk‖
, k = 1, . . . ,K

7: H← H⊗ (WT
X)

(WTWH)

8: end for

9: end for

3.2. Sparseness constraints on W (NMFℓ0-W)

In order to introduce sparseness constraints in W, we could

switch the roles of W and H and execute Algorithm 3

with transposed data matrix X
′. This would successfully

introduce sparseness in the rows of W, in the sense that

L0(w
d) ≤ L, d = 1, . . . , D, where w

d is the dth row vec-

tor of W. At the same time also the columns of W would

become sparser, since the average number of nonzero entries

per column would be maximal LD
K

. Although this technique

might be useful too, we want to constrain the columns of

W, similar as in [2]. This algorithm is presented in Al-

gorithm 4, where again I denotes the number of overall

iterations and J is the number of NMF updates. Since the

objective ‖X −WH‖2F is convex in W, steps 3-6 yield a

close to optimal (unconstrained) W for given H and X. Step

7 projects the columns of W onto the closest vectors whose

ℓ0-norm is less than or equal to L. In steps 8-11 we perform

standard NMF, in order to enhance the bases vectors W and

to adapt the coefficient matrix H, maintaining the sparseness

of W. In each iteration, the coefficient matrix H is enhanced

and new ℓ0-sparse bases W are found. Altogether, the bases

of W are guaranteed to be ℓ0-sparse and the algorithm con-

verges to a local minimum of ‖X −WH‖2F , given that J is

sufficiently large.

Algorithm 4 NMFℓ0-W

1: Initialize H randomly

2: for i = 1 : I do

3: Set all entries in W to 1

4: for j = 1 : J do

5: W←W ⊗ (XH
T )

(WHHT )

6: end for

7: Set D − L smallest values in wk to zero, k = 1 . . . K
8: for j = 1 : J do

9: W←W ⊗ (XH
T )

(WHHT )

10: H← H⊗ (WT
X)

(WTWH)

11: end for

12: end for

4. EXPERIMENTS

4.1. Nonnegative Sparse Coding

For our experiments, we generated sparse synthetic data as

follows: We created a random dictionary Wtrue with K =
300 atoms of dimensionality D = 250. Each atom was gen-

erated by adding 5-10 randomly spread impulses to unit vari-

ance Gaussian noise. We filtered the atoms with a low pass,

with a cutoff frequency equal to 1
8 of the sampling frequency.

Finally, we discarded the sign and normalized each atom to

unit length. Further, we generated a random coefficient ma-

trix Htrue with L = 10 nonzero coefficients at random po-

sitions in each column. The values of the coefficients were

the absolute value of Gaussian noise with variance 10. The

sparse synthetic data is given as X = Wtrue Htrue.

In this way we generated 100 random data sets and exe-

cuted NN-BP and NMP on each of them, where Wtrue was

provided to both methods and the allowed number of atoms

L was varied between 5 and 15. For NMP we used J = 30
NMF iterations to obtain the least-squares coefficients c. We

executed NN-BP using 25 (NN-BP25) and 1000 (NN-BP1000)

iterations of the nonnegative sparse coding algorithm [3, 6].

When 1000 iterations are used, the algorithm converges, but

it is approximately 40 times slower than NMP (for L = 15).

When 25 iterations are used, the execution time of NN-BP is

roughly the same as for NMP (for the specific values of D, N
and K). In Fig. 1 we see the root mean squared error (RMSE)

(top) and the number of correctly identified atoms (bottom)

as a function of L, averaged over the 100 data sets. The

RMSE was calculated according to RMSE =

√

‖X−WH‖2

F

DN
.

We see that NN-BP1000 achieves a lower reconstruction er-

ror than NMP and that for L < 11 more atoms are iden-

tified correctly. Interestingly, NMP identifies more “true”

atoms for L ≥ 11, while the error is still larger than for NN-

BP1000. It seems that NN-BP manages to identify “more rel-

evant” atoms, i.e. atoms with larger coefficients. On the other

hand, we see that the performance of NN-BP25 is suboptimal.



5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1
R

M
S

E

 

 NN−BP (1000)

NN−BP (25)

NMP

5 6 7 8 9 10 11 12 13 14 15
4

6

8

10

L

Id
e
n
ti
fi
e
d
 a

to
m

s

Fig. 1. Performance of sparse coders on synthetic data. Top: Aver-

age achieved RMSE. Bottom: Average number of correctly identi-

fied atoms. The standard deviation is negligible small.

Fig. 2. Average performance of NN K-SVD and NMFℓ0-H on syn-

thetic data. Shaded bars correspond to standard deviation.

Therefore we can state that NMP exhibits a good trade-off

between performance and time consumption.

4.2. NMF with sparseness constraints on H

We applied nonnegative K-SVD and NMFℓ0-H to the syn-

thetic data sets described in Section 4.1. Both algorithms

were provided with the true dictionary size K = 300 and

sparseness factor L = 10. Further, both methods used NMP

in the sparse coding step and for both 30 dictionary update

steps were performed, i.e. iterative SVD approximations and

NMF updates, respectively. Fig. 2 shows the achieved error

(averaged over the 100 data sets) as a function of iterations.

We see that NMFℓ0-H converges faster than nonnegative K-

SVD and that a slightly better minimum is reached. Next,

we conducted an experiment on real-world data, namely on

the magnitude spectrogram of 2 minutes of speech from

the data base by Cooke et al. [18]. The data matrix X had

the dimensions 513 × 5656 and we executed nonnegative

K-SVD and NMFℓ0-H for 25 iterations. Both algorithms

were started with all parameter combinations out of K =
(100, 200, 300, 400, 500), L = (5, 10, 15, 20). Since the

different parameter settings yield a strongly varying perfor-

mance for both algorithms, we determined the relative RMSE

according to RMSErel(K,L, i) = RMSENNK−SVD(K,L,i)
RMSE

NMFℓ0−H
(K,L,i) ,

where i denotes the iteration count. In Fig. 3 the relative

Fig. 3. Average relative RMSE of NN K-SVD compared to NMFℓ0-

H when executed on spectrogram data. Shaded bars correspond to

standard deviation.

RMSE is shown, averaged over all parameter settings. We

see that NMFℓ0-H converges faster than nonnegative K-SVD,

and that a slightly better minimum is reached (≈ 1%).

4.3. NMF with sparseness constraints on W

Hoyer [2] noted, that NMF does not return a part-based repre-

sentation when applied to the ORL face database [19], since

the face images are not aligned. In order to enforce a part-

based representation, he constrained the bases vectors to be

sparse. We applied NMFℓ0-W to the ORL database [19],

where we used sparseness factors L corresponding to 33%,

25% and 10% of the total pixel number per image (denoted as

sparseness classes a, b, c, respectively). We trained 25 bases

vectors as in [2], where we executed NMFℓ0-W for I = 20
overall iterations using J = 30 NMF updates. Fig. 4 (a, b, c)

shows the resulting bases, where dark pixels indicate high val-

ues and white pixels indicate low values. In each sparseness

class all bases have exactly the same number of nonzero pixels

(33%, 25% and 10% of total pixels). The average sparseness

according to Eq. (3) is 0.54 (a), 0.60 (b) and 0.73 (c). Next,

we executed the ℓ1-sparse NMF algorithm [2] where we con-

strained the bases to have the same average sparseness as the

ℓ0-sparse bases (0.54, 0.60, 0.73). To achieve satisfying re-

sults, at least 2000 iterations were necessary. The resulting

bases images are shown in Fig. 4 (d, e, f).

The results for ℓ1-sparse NMF and NMFℓ0-W are quali-

tatively similar, and the representation switches from a global

to a local one, when sparseness is increased. We repeated the

training 10 times, where neither ℓ1-sparse NMF nor NMFℓ0-

W seemed to be sensitive to initialization. The average

signal-to-reconstruction error ratio is 14.73 dB (a), 14.57 dB

(b), 13.89 dB (c) for the ℓ0-sparse bases, and 15.07 dB (d),

14.95 dB (e), 14.28 dB (f) for the ℓ1-sparse bases, i.e. ℓ1-

sparse NMF achieves a slightly better reconstruction quality.

However, the average percentage of nonzero pixels per ℓ1-

sparse base is 52.35% (d), 43.35% (e) and 19.28% (f), i.e.

the ℓ1-sparse bases contain a significantly larger number of

nonzero entries. Further, in a run-time comparison, NMFℓ0-

W was executed about 7 times faster than ℓ1-sparse NMF.



Fig. 4. Top: Bases trained by NMFℓ0-W. Sparseness factors: (a)

33%, (b) 25%, (c) 10% of total number of pixels per image.

Bottom: Bases trained by ℓ
1-sparse NMF [2]. Sparseness factors

according to Eq. (3): (d) 0.54, (e) 0.60, (f) 0.73.

5. CONCLUSION

In this paper we presented two novel algorithms for nonneg-

ative matrix factorization which constrain the columns of the

bases matrix and the coefficient matrix, respectively, to have

a number of non-zero entries less than or equal to a desired

value L. Among other application domains, these techniques

are very useful for feature extraction, since the number of fea-

tures per observation can be limited when we constrain the

coefficient matrix. Alternatively, we can also constrain the

features to contain nonzero values in no more than L dimen-

sions, which can be interpreted as limited patch size in the

case of image data. The key observation for these algorithms

is that the classic NMF update rules proposed by Lee and Se-

ung [1] maintain the sparseness of the matrices under opti-

mization. Further, we proposed a nonnegative version of or-

thogonal matching pursuit, which we call nonnegative match-

ing pursuit (NMP).

In experiments with synthetic sparse data, the nonnegative

basis pursuit algorithm proposed in [3] performs slightly bet-

ter than NMP in terms of reconstruction error. However, NMP

offers a good trade-off between execution time and perfor-

mance, which is essentially important when the sparse coder

is required frequently. Experiments on synthetic data and

speech spectrograms indicate, that NMFℓ0-H converges faster

than nonnegative K-SVD, and that a slightly better optimum

is achieved. Applying NMFℓ0-W to facial image data shows

that a part-based representation is obtained, similar to the

results by Hoyer [2]. NMFℓ0-W achieves almost the same

reconstruction quality as ℓ1-sparse NMF, while using a far

smaller number of nonzero entries in the bases.

6. REFERENCES

[1] D. D. Lee and H. S. Seung, “Algorithms for non-negative ma-

trix factorization,” Advances in neural information processing

systems, vol. 13, pp. 556–562, 2001.
[2] P. O. Hoyer, “Non-negative matrix factorization with sparse-

ness constraints,” Journal of Machine Learning Research, vol.

5, pp. 1457–1469, 2004.
[3] M. Aharon, M. Elad, and A.M. Bruckstein, “K-SVD and its

non-negative variant for dictionary design,” in Proceedings of

the SPIE conference, Curvelet, Directional, and Sparse Repre-

sentations II, 2005, vol. 5914, pp. 11.1–11.13.
[4] D. D. Lee and H. S. Seung, “Learning the parts of objects by

nonnegative matrix factorization,” Nature, vol. 401, pp. 788–

791, 1999.
[5] K.W. Wilson, B. Raj, P. Smaragdis, and A. Divakaran, “Speech

denoising using nonnegative matrix factorization with priors,”

in Proceedings of ICASSP, 2008.
[6] P. O. Hoyer, “Non-negative sparse coding,” in Proceedings of

Neural Networks for Signal Processing, 2002.
[7] J. Eggert and E. Koerner, “Sparse coding and nmf,” in Inter-

national Joint Conference on Neural Networks, 2004.
[8] S.Z. Li, X.W. Hou, H.J. Zhang, and Q.S. Cheng, “Learning

spatially localized, parts-based representation,” in Proceedings

of CVPR, 2001.
[9] A. Pascual-Montano, J.M. Carazo, K. Kochi, D. Lehmann, and

R.D. Pascual-Marqui, “Nonsmooth nonnegative matrix factor-

ization (nsNMF),” in IEEE Trans. Pattern Analysis Machine

Intelligence, 2006, vol. 87, pp. 1904–1916.
[10] J. A. Tropp, “Just relax: Convex programming methods for

identifying sparse signals,” IEEE Trans. Information Theory,

vol. 52, no. 3, pp. 10301051, 2006.
[11] M. Aharon, M. Elad, and A.M. Bruckstein, “K-SVD: An algo-

rithm for designing overcomplete dictionaries for sparse repre-

sentation,” in IEEE Trans. Signal Processing, 2006, vol. 54,

pp. 4311–4322.
[12] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy

approximations,” Journal of Constructive Approximation, vol.

13, pp. 57–98, 1997.
[13] B.D. Rao and K. Kreutz-Delgado, “An affine scaling methodol-

ogy for best basis selection,” in IEEE Trans. Signal Processing,

1999, vol. 47, pp. 187–200.
[14] S.G. Mallat and Z. Zhang, “Matching pursuits with time-

frequency dictionaries,” IEEE Trans. Signal Processing, vol.

41, no. 12, pp. 3397–3415, 1993.
[15] S.S. Chen, D.L. Donoho, and M.A. Saunders, “Atomic decom-

position by basis pursuit,” SIAM Journal on Scientific Comput-

ing, vol. 20, no. 1, pp. 33–61, 1998.
[16] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogo-

nal matching pursuit: recursive function approximation with

applications to wavelet decomposition,” in Proceedings of

27th Asilomar Conference on Signals, Systems and Comput-

ers, 1993.
[17] C.L Lawson and R.J. Hanson, Solving Least Squares Problems,

Prentice-Hall, 1974.
[18] M. P. Cooke, J. Barker, S. P. Cunningham, and X. Shao,

“An audio-visual corpus for speech perception and automatic

speech recognition,” JASA, vol. 120, pp. 2421–2424, 2006.
[19] F. S. Samaria and A. Harter, “Parameterisation of a stochastic

model for human face identification,” in Proceedings of the 2nd

IEEE Workshop on Applications of Computer Vision, 1994.


