Objectives for this lecture

- Goal of (digital) communication systems
 - data transmission from source to sink (A → B)
 - over a given communication channel
 - avoid transmission errors

- Objectives: Digital communication systems
 - typical blocks
 - mathematical modeling of these blocks and of the communication signals
 - goal: optimization of blocks (system optimization)

Outline: Introduction

- What is digital communications?
- Block diagram
- Why digital?
- Introductory example

Reference: [Sklar, Section 1.1; Proakis, Ch. 1]
 - for (most) figures see [Sklar]
This lecture: Digital modulation and channel

011011

bit stream

baseband
modulation

baseband signal (analog)

carrier mod
ulation

(bandpass)

RF-channel
digital modulation

transmission channel

This lecture: Digital Demodulator

(matched) carrier filter

baseband signal (analog)

digital demodulation

 carrier de-
modulation

010011

bit stream

sampling (detection)

baseband signal (analog)
Goals (refined)

- Derive:
 - Optimum signaling waveforms
 - Optimum receiving filter
 - Optimum detection methods
 For a variety of signaling (modulation) schemes and different channel conditions

- This implies/requires:
 - Derivation of mathematical models of digital communication systems
 - Analysis of performance metrics; e.g. the error rate performance

Outlook

- Mathematical background
 - Signal representations (time/frequency domain; signal space)
 - Linear systems
 - Stochastic processes and noise

- Modulation
 - Baseband and bandpass (passband; carrier modulated)

- Additive white Gaussian noise (AWGN) channel
 - and linear filter channel

- Optimum detection
 - Matched filter and sampling
 - Fundamentals of detection theory
 - Performance analysis (and limits): bit error rate (BER)
 - Equalization (linear filter channels), OFDM, and MIMO channels
Books – Digital Communications

- J. G. Proakis, *Digital Communications*, 3rd edition, McGraw-Hill, 1995 (Ch. 1, 2, 4, 5) (classical text)
- M. Werner, *Nachrichtentechnik*. 4. Auflage, Vieweg Verlag, 2003 (Kapitel 1-4) (very basic text; doesn’t cover all aspects of the course)

Block Diagram of a Typical DCS (extended)

- Block diagram of a typical digital communication system [for RF channels] [Sklar: Figure 1.2]
 - Signal processing steps (signal transformations)

- Essential blocks:
 - Formatting (source coding)
 - Modulation (generate waveforms compatible with channel)
 - Demodulation/detection
 - Synchronization

- Essential in practice:
 - Channel coding (for ARQ or FEC)

Other processing steps

- Encryption: provide privacy
- Multiplexing: combine several data streams
- Multiple access: allow several users on medium
- Frequency spreading:
 - Enhance robustness against interference (natural and man-made)
 - Code division multiple access
 - Reduction of fading

[Sklar] Figure 1.2 Block diagram of a typical digital communication system.