Mobile Radio Systems –
Small-Scale Channel Modeling

Klaus Witrisal
witrisal@tugraz.at

Signal Processing and Speech Communication Laboratory
www.spsc.tugraz.at
Graz University of Technology

October 28, 2015

Outline

■ 3-1 Introduction – Mathematical models for communications channels [Molisch 6.2.2; Proakis 1-3]
■ 3-2 Stochastic Modeling of Fading Multipath Channels
 ◆ Multipath channel [Proakis 14-1]
 ◆ Fading amplitude distribution (Rayleigh, Rice) [Molisch 5.4, 5.5]
 ◆ Time-selective fading [Molisch 5.6]
 ◆ Frequency-selective fading
 ◆ WSSUS stochastic channel description [Molisch 6.3-6.5, Proakis 14]
■ 3-3 Classification of Small-Scale Fading [Molisch 6.5]
References

- A. F. Molisch: *Wireless Communications*, 2005, Wiley
- M. Pätzold: *Mobile Fading Channels*, 2002, Wiley

Figures (partly) extracted from these references

Signal Models

- “Signal processing” channel models can be described for different interfaces
- Application/design objective determines choice of appropriate model
Additive Noise Channel

Channel’s frequency response is **flat** over signal bandwidth

- Simplest model – transmitted (TX) signal corrupted by additive noise
 \[r(t) = \alpha s(t) + n'(t) \]

- \(s(t) \) ... TX signal
 - is a **bandpass signal** \(s(t) = \sqrt{2} \Re \{ s_i(t) e^{j2\pi f_c t} \} \)

- \(r(t) \) ... received (RX) signal

- for (lowpass equivalent) baseband signals (i.e. complex envelopes of \(s(t), r(t), n'(t) \))
 \[r_l(t) = h s_l(t) + n'_l(t), \quad \text{with } h \in \mathbb{C} \]

Additive Noise Channel (cont’d)

- Noise is usually modeled as white, Gaussian (additive white Gaussian noise – AWGN)
 \[\phi_{n'}(\tau) = \mathbb{E}\{n'(t)n'(t+\tau)\} = \frac{N_0}{2} \delta(\tau) \quad \xrightarrow{\mathcal{F}} \quad S_{n'}(f) = \frac{N_0}{2} \]
Additive Noise Channel (cont’d)

- Sampled AWGN model (lowpass equivalent model)
 \[r[k] = h s[k] + n[k] \] (all are \(\in \mathbb{C} \))

- Noise characterization
 \[\mathbb{E}\{n[k]n^*[l]\} = \sigma_n^2 \delta[k-l] \]

 - \(n[k] \) is zero-mean circularly symmetric complex Gaussian (ZMCSCG)
 - Real and imaginary components are i.i.d.
 (independent, identically distributed)
 - \(\sigma_n^2 \) depends on (matched) filter at receiver
 front-end
 - Real and imaginary components have \(\sigma_n^2/2 \)

Linear filter channel

Channel’s frequency response is frequency-selective (i.e. non-flat), leading to (linear) signal distortions

- For time-invariant channels
 \[r(t) = s(t) * c(t) + n(t) \]
 \[= \int_{-\infty}^{\infty} c(\tau)s(t-\tau)d\tau + n(t) \]

- \(c(t) \) ... impulse response of linear filter
Linear filter channel (cont’d)

- Sampled case (lowpass equivalent model)

\[r[k] = \sum_{l=0}^{L-1} h[l] s[k - l] + n[k] \]

- \(h[k] \) incorporates
 - TX pulse shape
 - RX (matched) filter; ADC filter
 - (thus bandwidth corresponds to signal bandwidth)
 - physical channel

- \(n[k] \) ... AWGN (ZMCSCG)

This is actually an equivalent, whitened matched filter (WMF) channel model [Barry/Lee/Messerschmitt]

Linear time-variant filter channel

- Characterized by time-variant channel impulse response (CIR) \(c(\tau; t) \)
 - response of channel at time \(t \)
 - to an impulse transmitted at time \(t - \tau \)

- \(\tau \) ... “elapsed time”, “age” variable

\[
\begin{align*}
 r(t) &= s(t) * c(\tau; t) + n(t) \\
 &= \int_{-\infty}^{\infty} c(\tau; t)s(t - \tau)d\tau + n(t)
\end{align*}
\]

- model for multipath propagation

\[
c(\tau; t) = \alpha_i(t) \delta(\tau - \tau_i(t)) \quad (1)
\]
Stochastic modeling of fading multipath channels

- Motivated by their **randomly time-variant** nature and **large number** of multipath components

- Derivation of **lowpass equivalent** CIR from (1)

\[
c_l(\tau; t) = \sum_{i=0}^{\infty} \alpha_i(t)e^{-j2\pi f_c \tau_i(t)} \delta(\tau - \tau_i(t))
\]

\[
= \sum_{i=0}^{\infty} \alpha_i(t)e^{j\varphi_i(t)} \delta(\tau - \tau_i(t))
\]

(2)

considering discrete multipath components

- phase term \(\varphi_i(t) = -2\pi f_c \tau_i(t) \) **varies** dramatically
Fading of an unmodulated carrier

- TX signal is unmodulated carrier (CW) $s_l(t) = 1$
- RX signal w/o noise: $y_l(t) = c_l(\tau; t) \ast 1 = c_l(t) \cdot 1$

$$c_l(t) = \sum_{i=0}^{\infty} \alpha_i(t) e^{j\varphi_i(t)} = \sum_{i=0}^{\infty} \alpha_i(t) e^{-j2\pi f_c \tau_i(t)}$$

sum of vectors (phasors)
- amplitudes $\alpha_i(t)$ change slowly
- phases $\varphi_i(t)$ change by 2π if:
 - $\tau_i(t)$ changes by $1/f_c$
 - i.e.: path length changes by wavelength λ
- large number of multipath components

→ model $c_l(t)$ as a random process!

Fading of an unmodulated carrier (cont’d)

Modeling $c_l(t)$ as a random process:
- large number of multipath components are added
- by central limit theorem (CLT):
 - $c_l(t)$ is complex Gaussian
 - (CIR $c_l(\tau; t)$ is complex Gaussian)
- $c_l(t)$ has random phase and amplitude

- in **absence** of dominant component:
 - $c_l(t)$ is zero-mean complex Gaussian

→ its envelope $|c_l(t)|$ is Rayleigh distributed
- Rayleigh fading channel
Fading of an unmodulated carrier (cont’d)

Rayleigh distribution:

\[f_R(r) = \frac{r}{\sigma^2} e^{-r^2/(2\sigma^2)} \text{ for } r \geq 0 \]

characterized by \(\sigma^2 \): variance of underlying Gaussian processes \(X_1, X_2 \sim \mathcal{N}(0, \sigma^2) \), where \(X_1 = \Re\{c(t)\} \) and \(X_2 = \Im\{c(t)\} \)

derivation of Rayleigh distribution ...

- \(Y = X_1^2 + X_2^2 \) ... has \(\chi^2 \)-PDF of 2 degrees of freedom
- \(R = \sqrt{X_1^2 + X_2^2} \) ... amplitude \(|c(t)| \) has Rayleigh PDF
Fading of an unmodulated carrier (cont’d)

- in presence of a dominant component:
 \(c_l(t) \) is non-zero-mean complex Gaussian

→ its envelope \(|c_l(t)|\) is Ricean distributed

- Ricean fading channel

- Ricean distribution:
 \[
 f_R(r) = \frac{r}{\sigma^2} e^{-\frac{r^2+s^2}{2\sigma^2}} I_0 \left(\frac{rs}{\sigma^2} \right) \quad \text{for } r \geq 0
 \]

 \(I_0(x) \) ... zero-order modified Bessel function of first kind

- characterized by
 \(\sigma^2 \) ... variance of underlying Gaussian processes and
 \(s^2 = m_1^2 + m_2^2 \) ... power of mean (i.e. \(s^2 = |E\{c_l(t)\}|^2 \))
Fading of an unmodulated carrier (cont’d)

- Shape of Ricean distribution defined by

\[K = \frac{s^2}{2\sigma^2} \]

\[K \ [dB] = 10 \log \frac{s^2}{2\sigma^2} \]

Ricean \(K \)-factor

- Ratio of deterministic signal power (mean) and variance of multipath (scattered components)
- For \(K = 0 = -\infty \) dB:
 Ricean distribution equivalent to Rayleigh

Ricean (and Rayleigh) PDFs
Ricean (and Rayleigh) CDFs
Time-selective fading

- Characterization of the time variability

\[s_l(t) = 1 \quad \rightarrow \quad y_l(t) = c_l(\tau; t) \ast 1 = c_l(t) = \sum_{i=0}^{\infty} \alpha_i(t)e^{j\varphi_i(t)} \]

- Characterize autocorrelation function of \(c_l(t) \)
 - assume \(c_l(t) \) is complex Gaussian
 - assume \(c_l(t) \) is wide-sense stationary (WSS)

- Define: spaced-time correlation function

\[\phi_c(\Delta t) = E\{c_l^*(t)c_l(t+\Delta t)\} \quad \leftrightarrow \quad S_c(\nu) \]

- Doppler power spectrum \(S_c(\nu) = \int_{-\infty}^{\infty} \phi_c(\Delta t)e^{-j2\pi\nu\Delta t}d\Delta t \)

Doppler power spectrum: average power output of channel as a function of Doppler frequency
Time-selective fading (cont’d)

Jakes model for Doppler power spectrum

- assumes mobile moving at const. velocity v
- uniformly distributed scattering around mobile
- Jakes Doppler spectrum:

$$S_c(\nu) = \frac{1}{\pi} \frac{1}{\sqrt{\nu_{\text{max}}^2 - \nu^2}}$$

(for normalized power)
Time-selective fading (cont’d)

Characterization of time-selective fading by parameters

- RMS Doppler spread
 \[\nu_{\text{rms}} = \sqrt{\nu^2 - \bar{\nu}^2} \]
 second centralized moment of normalized Doppler PSD

- mean and mean squared Doppler spread
 \[
 \begin{align*}
 \bar{\nu} &= \frac{\int \nu S_c(\nu) d\nu}{\int S_c(\nu) d\nu} \\
 \bar{\nu}^2 &= \frac{\int \nu^2 S_c(\nu) d\nu}{\int S_c(\nu) d\nu}
 \end{align*}
 \]

- Coherence time
 \[T_c \approx \frac{1}{\nu_{\text{rms}}} \]

Frequency-selective fading

for a (time-invariant) multipath channel

- Characterization of the time dispersion: CIR \(c_l(\tau) \)
 \[
 s_l(t) = \delta(t) \quad \rightarrow \quad y_l(t) = c_l(\tau; t) \ast \delta(t) = \sum_{i=0}^{\infty} \alpha_i(t) e^{j\varphi_i(t)} \delta(t - \tau_i(t))
 \]
 \[
 c_l(\tau) = \sum_{i=0}^{\infty} \alpha_i e^{j\varphi_i} \delta(\tau - \tau_i)
 \]

- ACF: Uncorrelated scattering assumption:
 \[
 E\{c_l^*(\tau_1)c_l(\tau_2)\} = S_c(\tau_1)\delta(\tau_1 - \tau_2)
 \]

\(S_c(\tau) \ldots \text{multipath intensity profile} (= \text{delay power spectrum}; = \text{average power delay profile}) \)
Frequency-selective fading (cont’d)

- Time-dispersion implies frequency-selectivity
 - Equivalent channel characterization by **channel transfer function** (TF) $C_l(f)$
 \[
 c_l(\tau) \overset{F}{\leftrightarrow} C_l(f) = \int_{-\infty}^{\infty} c_l(\tau) e^{-j2\pi f \tau} d\tau
 \]

- ACF of channel TF
 \[
 S_c(\tau) \overset{F}{\leftrightarrow} \phi_C(\Delta f) = E\{C_l^*(f)C_l(f + \Delta f)\}
 \]
 $\phi_C(\Delta f)$... spaced-frequency correlation function
 - TF $C_l(f)$ is **wide-sense stationary** (WSS in f) if CIR $c_l(\tau)$ fulfills “uncorrelated scattering” (US in τ)

Channel IR vs. channel frequency response

IDFT of transfer function after correction for linear phase shift

Amplitude transfer function

Phase transfer function (corrected for linear phase shift)
Frequency-selective fading (cont’d)

Multipath intensity profile: average power output of channel as a function of delay

Characterization by parameters

- RMS delay spread
 \[\tau_{rms} = \sqrt{\tau^2 - \bar{\tau}^2} \]
 second centralized moment of normalized multipath intensity profile

- mean and mean squared delay spread
 \[\bar{\tau} = \frac{\int \tau S_c(\tau) d\tau}{\int S_c(\tau) d\tau} \quad \bar{\tau}^2 = \frac{\int \tau^2 S_c(\tau) d\tau}{\int S_c(\tau) d\tau} \]

- Coherence bandwidth
 \[B_c \approx \frac{1}{\tau_{rms}} \]
Frequency-selective fading (cont’d)

Characterization of multipath intensity profile (simplified; suitable for indoor channels)

- Exponentially decaying part
- Line-of-sight (LOS) component
- Defined by channel parameters

Channel parameters:
- total power P_0
- K-factor (rel. strength of LOS)
- RMS delay spread (duration)

The WSSUS channel

- joint modeling of
 - time dispersion (= frequency selectivity)
 - and time variability (= Doppler spread)
- Define: ACF of time-variant CIR $c_l(\tau; t)$

$$E\{c_l^*(\tau_1; t)c_l(\tau_2; t + \Delta t)\} = \phi_c(\tau_1; \Delta t)\delta(\tau_1 - \tau_2)$$

assumes:
- time-variations are wide-sense stationary (WSS)
- attenuation and phase shifts are independent at τ_1 and τ_2: uncorrelated scattering (US)

- for $\Delta t = 0$: $\phi_c(\tau; \Delta t) = S_c(\tau)$ multipath intensity profile
- $\phi_c(\tau; \Delta t)$... lagged-time correlation function
The WSSUS channel (cont’d)

An equivalent representation of the t-var. CIR \(c_l(\tau; t) \):

- **Time-variant channel transfer function (TF)** \(C_l(f; t) \)

\[
c_l(\tau; t) \xrightarrow{\mathcal{F}_\tau} C_l(f; t) = \int_{-\infty}^{\infty} c_l(\tau; t) e^{-j2\pi f \tau} d\tau
\]

♦ from US property follows WSS in \(f \)-domain

- **equivalent characterization (ACF)**

\[
\phi_C(\Delta f; \Delta t) = \mathbb{E}\{C_l^*(f; t)C_l(f + \Delta f; t + \Delta t)\}
\]

spaced-frequency spaced-time correlation function (WSSWSS!)

The WSSUS channel (cont’d)

- **time- and frequency-selective transfer function**
The WSSUS channel (cont’d)

- **Equivalent representations**: time-variant system functions – Bello functions [Bello63]
 - $c_l(\tau; t)$ and $C_l(f; t)$ and **two more** Fourier transformed functions w.r.t. $t \leftrightarrow \nu$ and $f \leftrightarrow \tau$

- **Equivalent (2-nd order) characterizations**: correlation functions of Bello functions
 - $\phi_c(\tau; \Delta t)$ and $\phi_C(\Delta f; \Delta t)$ and **two more** Fourier transformed functions w.r.t. $\Delta t \leftrightarrow \nu$ and $\Delta f \leftrightarrow \tau$

Overview shown on next slide
The WSSUS channel (cont’d)

- Doppler-delay scattering function

![Doppler-delay scattering function graph](image)

[Paulraj; fig 2-9]

Channel as a space-time random field

- **Homogenous (HO) channel** is (locally) stationary in space
 - characterization:
 \[
 E\{c_l^*(\tau; t; d) c_l(\tau; t; d + \Delta d)\} = \phi_d(\tau; t; \Delta d)
 \]
 - agrees with discrete scattering model: each scatterer has discrete ToA \(\tau_i\) and AoA \(\theta_i\)

- space-angle transform: assume \(d\) lies on \(x\)-axis; parameterized by \(x\) (and dropping \(t\))
 \[
 c_l(\tau; x) = \int_{-\infty}^{\infty} c_l(\tau; \theta) e^{-j2\pi \sin(\theta) \frac{x}{\lambda}} d\theta
 \]

- we may define the **angle-delay scattering function** \(S_c(\tau; \theta)\)
Channel as a space-time random field (cont’d)

- Angle-delay scattering function

![Angle-delay scattering function]

Figure 2.10: The angle-delay scattering function represents the average power in the angle-delay dimensions.

[Paulraj; fig 2-10]

- **Characterization by parameters:**
 - **RMS angle spread:** \(\theta_{rms} = \sqrt{\theta^2 - \bar{\theta}^2} \)
 - second centralized moment of normalized angle power spectrum
 - **Mean and mean squared angle spread**
 - \(\bar{\theta} = \frac{\int \theta S_c(\theta) d\theta}{\int S_c(\theta) d\theta} \)
 - \(\bar{\theta}^2 = \frac{\int \theta^2 S_c(\theta) d\theta}{\int S_c(\theta) d\theta} \)
 - **Coherence distance** \(D_c \propto \frac{1}{\theta_{rms}} \)
3-3 Classification of Small-Scale Fading

- Compares system and channel parameters

<table>
<thead>
<tr>
<th>Classification</th>
<th>w.r.t. symbol period T_s</th>
<th>w.r.t. bandwidth $B_s \propto 1/T_s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dispersiveness</td>
<td>flat fading $T_s \gg \tau_{rms}$</td>
<td>$B_s \ll B_c$</td>
</tr>
<tr>
<td>frequency selective</td>
<td>$T_s \ll \tau_{rms}$</td>
<td>$B_s > B_c$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>time variations</th>
<th>slow fading $T_s \ll T_c$</th>
<th>$B_s \gg \nu_{rms}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>fast fading</td>
<td>$T_s > T_c$</td>
<td>$B_s < \nu_{rms}$</td>
</tr>
</tbody>
</table>

Classification example – GSM

- Key air-interface parameters:
 - Carrier frequency ... 900 MHz, 1.8 GHz
 - Bandwidth ... 200 kHz
 - Frame; slot length ... ~ 4.6 ms; ~ 0.6 ms

- Time dispersiveness
 - τ_{rms} (typical urban and suburban) ... 100–800 ns
 - corresponds to $B_c \approx 1.2–10$ MHz
 - flat fading

- Time variability
 - assume $v = 50$ m/s at $f_c = 1$ GHz $\Rightarrow \nu_{\text{max}} = 167$ Hz
 - corresponds to $T_c \approx 6$ ms
 - Time-invariant during slot
Classification example – WLAN

- **Key air-interface parameters:**
 - Carrier frequency ... 2.4; 5 GHz
 - Bandwidth ... 17 MHz (sampling f: \(f_s = 20 \) MHz)
 - OFDM symbol length ... 4 \(\mu s \)

- **Time dispersiveness**
 - \(\tau_{rms} \) (indoor) ... 10–300 ns
 - corresponds to \(B_c \approx 3–100 \text{ MHz} \)
 - frequency selective

- **Time variability**
 - assume \(v = 2 \text{ m/s} \) at \(f_c = 5 \text{ GHz} \) \(\rightarrow \nu_{\text{max}} = 33 \text{ Hz} \)
 - corresponds to \(T_c \approx 30 \text{ ms} \); several 1000 symbols
 - Time-invariant during packet