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Introduction

“LDPC Codes” . . .

I stands for Low Density Parity Check Codes (LDPC codes are
also known as Gallager codes in honor of Rober G. Gallager),

I were invented by Gallager 1962 (and then forgotten for many
years),

I are linear codes with very sparse parity check matrices,

I typically use large block-lengths,

I can approach the channel capacity for many standard
channels (for large block lengths),

I can be efficiently decoded by iterative schemes.
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Applications

LDPC codes are used in applications. . .

I requiring reliable and efficient information transfer,

I or with constrained return-channel and data-corrupting noise.

Specifically,

I FEC scheme for DVB-S2 (digital television over satellite
transmission; block-lengths of 64.800 [normal] or 16.200 bits
[short]; code-rates from 1

4 to 9
10),

I 10GBase-T-Ethernet (10 gigabits per second over twisted-pair
cables; block-lengths of 2048 bits),

I . . .
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Channel Capcity C

I Tightest upper bound on the amount of information that can
be reliably transmitted over a communications channel.

I By the noisy-channel coding theorem it is the limiting rate
that can be achieved with arbitrarily small error probability.
This theorem also tells us, that we need long block-lengths for
capacity-approaching codes.

I Formally,
C = sup

pX

I(X;Y ),

where I(X;Y ) is the mutual information of the random
variables X and Y .

Transmitter
(noisy)
Channel

Receiver
X
pX

Y
pY
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Channel Capcity C, contd.

Examples (Capacity in bits per channel use)

I Binary symmetric channel (BSC):

CBSC = 1− h(ε),

where h(ε) is the binary entropy function.

I Binary erasure channel (BEC):

CBEC = 1− δ,

where δ is the probabilty of erasure.

I AWGN channel:

CAWGN =
1
2

log2 (1 + SNR)
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Channel Capcity C, contd.

Sebastian Tschiatschek Nov 29, 2010 page 7/48



TU Graz - Signal Processing and Speech Communication Laboratory

Capabilities of Coding

Rating of Codes [3]

I Very good codes: Achieve arbitrary small probability of error
at any communication rate up to the channel capacity (such
codes exist by the noisy-channel coding theorem).

I Good codes: Achieve arbitrary small probability of error at
nonzero communication rates up to some maximum rate (that
can be less than the channel capacity).

I Bad codes: Achieve arbitrary small probability of error only by
decreasing the information rate to zero.

I Practical codes: Can be encoded and decoded in time and
space polynomial in the blocklength.

Some codes are only good for some specific channel.
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History [3]

I Noisy-channel coding theorem (1948): doesn’t tell us how to
create capacity-approaching codes (only existence shown)

I 1948: very good cyclic codes exist (nonconstructively).

I 1982: explicit algebraic construction of very good codes for
certain channels

I But: no practical decoding algorithm is known for these codes
(the general linear decoding problem is NP-complete)

I today: practical, constructive codes are very good codes but
costly to decode (although the cost is adequate)
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LDPC Parity Check Matrices [2]

LDPC codes use very sparse parity check matrices simply to make
iterative message passing algorithms work well.

Figure: Sparse parity-check matrix with N = 20.000 columns of weight 3
and M = 10.000 rows of weight 6 [2].
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LDPC Parity Check Matrices, contd. [5]

regular LDPC codes: each row and each column has a fixed small
Hamming weight wrow and wcol, respectively.
irregular LDPC codes: wrow and wcol are defined to be the average
Hamming weight of rows and cols, respectively.

Note on the code rate
Counting the nonzero entries in the m× n parity check matrix
reveals, that

n · wcol = m · wrow.

Hence, the dimension k of the code is
dim(Fn)− dim(Ker Gt) ≥ n−m and thus the rate r satisfies

r =
k

n
≥ n−m

m
= 1− wcol

wrow
.
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Construction of LDPC Parity Check Matrices [5], [6]

Intuitive method (more sophisticated methods exist):

1. start with an empty parity check matrix,

2. place the nonzero entries at random (constraint to the
condition on the Hamming weights) and

3. modify the resulting matrix to obtain decoding graphs with
short cycles.

Matrices with a girth, i.e. the length of the shortest cycle in the
graph, of length 4 or 6 are usually discarded as they decrease the
performance of decoders for two reasons:

I they prevent the used sum-product algorithm from converging
and

I the independence of extrinsic information is affected.
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Construction of LDPC Parity Check Matrices, contd.

Choice of block-lengths and column weights [2]

I Long block-lengths lead to improved performance (clear by
Shannons prove).

I Using an optimal decoder, the best performance would be
obtained by using codes closest to random (i.e. large column
weight), but we end up with bad decoder performance (using
the sum-product algorithm).

I Selecting the optimal (small) column weight is still a heuristic
and a tradeoff between performance and decoding complexity.

I Too many columns of weight 2 result in poorer codes (the
minimum distance of codes of weight 2 grows logarithmically
with the block lengths while for codes with weights ≥ 3 it
grows linearly with the code length [4]).
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Revision: From Parity Check Matrix to Factor Graph [5]

Consider the (7, 4, 3) Hamming code defined by the parity check
matrix

H =

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1


(length of codeword n = 7 bits, length of symbols k = 4 bits,
minimum hamming weight between each pair of codewords d = 3).
Conversion to a factor graph:

1. there is a parity check node for every row of H,

2. there is an equality check node for every column of H,

3. paritiy check i is connected to equality node j iff Hij = 1.
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Revision: From Parity Check Matrix to FG, contd. [5]

⊕ ⊕ ⊕

= = = = = = =

X1 X2 X3 X4 X5 X6 X7
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Iterative Decoding [2]

Considering the construction of LDPC codes two main questions
arise:

Theoretical effectiveness
How well would LDPC codes work using the best possible
algorithm for decoding?
Details skipped because of time reasons. Short answer: LDPC
codes can be very good codes for appropriately chosen parity check
matrices and certain channels.

Practical effectiveness
How good can we decode LDPC codes using practical algorithms
and how much performance do we loose thereby?
Answered partially during the rest of this representation.
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Decoding Problem [2]

Let G be a generater matrix for the considered code consistent
with the parity check matrix H, i.e. HGt = 0.
Transmitting a message t encoded by the code and distorted by
noise n on the channel results in a received symbol

r = Gtt + n.

The problem is now to calculate the message t′ as

t′ = arg max
x

P (r|x),

i.e. the message that leads most likely to the received data.
⇒ This problem can be efficiently solved using the
Sum-Product-Algorithm.
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Decoding Problem, contd. [2]

There are two approaches to the decoding problem that both can
be viewed as factor graphs:

1. Codeword decoding viewpoint

2. Syndrome decoding viewpoint

Both viewpoints are essentially equivalent and give the same
results (up to introduced numerical errors).
We assume a memoryless channel and that the distribution of the
bit probabilities of an encoded symbol is separable.
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Decoding Problem, Codeword Decoding VP [2]

⊕ . . . ⊕

= . . . =

P (r1|t1) . . . P (tM |tM )

T1 TM

Random Connections
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Decoding Problem, Syndrome Decoding VP [2]

Assume now that we have a fixed noise model (given by the
channel model):

I the transmitted data is altered by an additive noise vector n,

I n is distributed according to P (n) (this distribution can be
derived from the channel properties).

Multiplication of the equation for the received signal with the
parity check matrix H from the left yields

Hr = Hn.

Hence, decoding resorts to finding the most probable noise vector
such that Hn equals the syndrome z = Hr.
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Decoding Problem, Syndrome Decoding VP contd. [2]

Z1 ZK

⊕ . . . ⊕

= . . . =

P (n1) . . . P (nM )

N1 NM

Random Connections
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Decoding with the Sum-Product-Algorithm [2]

We focus on the syndrome decoding viewpoint, i.e. we want to find
n such that

P (n|z)

is maximal.
Working out the sum-product algorithm for solving the above
problem results in a 3 step algorithm:

1. Initialization (only once)

2. Horizontal Step (repeated)

3. Vertical Step (repeated)

For simplicity we absorb some edges/nodes into the corresponding
factors.
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Decoding with the Sum-Product-Algorithm, contd. [2]

Finally considered factor graph:

⊕ . . . ⊕

= . . . =

N1 NM

Random Connections
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Reminder: Message Passing, Sum-Product Rule [5]

Y1

...
g X

Ym

Sum-Product Rule
The message out of some node g(x, y1, . . . , ym) along the edge X
is the function

~µX(x) :=
∑
y1

. . .
∑
ym

g(x, y1, . . . , ym)~µY1(y1) · · · ~µYm(ym),

where ~µYl
is the message that arrives at g() along the edge Yl.
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Reminder: Message Passing, Sum-Product Rule, contd. [5]

Further,

I the message out of a terminal node is the function itself.

I messages out of open half edges are carrying neutral messages.

I marginals can be computed by multiplying (the correct)
messages, i.e.

P (X = x) = −→µ X(x) · ←−µ X(x),

where X is the variable of an edge.

Note: Switch of notation on the slides (to follow MacKays’
book [2])
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Decoding with the SP-Algorithm, Quantities [2]

We need to define some quantities:

I N (i) := {j|Hij = 1}, i.e. N (i) is the set of bits that
participate in parity check i (ith row of H)

I M(j) := {i|Hij = 1}, i.e. M(j) is the set of checks in which
bit j participiates (jth column of H)

The algorithm will pass messages along the edges:

I qx
ij is the belief that bit j of n has the value x given the

information obtained by checks other than check i.

I rx
ij is the probability of check i being satisfied if bit j of n is

considered fixed at x and the other bits have a seperable
distribution given by the probabilites {qij′ |j′ ∈ N (i) \ j}
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Decoding with the SP-Algorithm, Initialization [2]

Let p0
j = P (nj = 0) be the prior probability that bit nj is zero,

then
p1

j = P (nj = 1) = 1− p0
j .

For a binary symmetric channel with bit error probability ε

p1
j = ε

and for a binary input Gaussian channel with real output p1
j will be

intialized to the normalized likelihood.
Then, set

q0ij = p0
j , q

1
ij = p1

j ∀i, j : Hij = 1.
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Decoding with the SP-Algorithm, Horizontal Step [2]

Horizontal refers to the parity check matrix H, i.e. a row of H.
Run through checks i and for all j ∈ N (i) the quantities r0ij and

r1ij are updated:

I

r0ij =
∑

{nj′ |j′∈N (i)\j}

P (zi|nj = 0, {nj′ |j′ ∈ N (i)\j})
∏

{j′∈N (i)\j}

q
nj′

ij′

I

r1ij =
∑

{nj′ |j′∈N (i)\j}

P (zi|nj = 1, {nj′ |j′ ∈ N (i)\j})
∏

{j′∈N (i)\j}

q
nj′

ij′

Conditional probabilities are either zero or one, depending on x
satisfying the considered parity check or not.
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Decoding with the SP-Algorithm, Vertical Step [2]

Using the quantities r0ij and r1ij update the belfies q0ij and q1ij :

I

q0ij = αijp
0
j

∏
i′∈M(j)\i

r0i′j

I

q1ij = αijp
1
j

∏
i′∈M(j)\i

r1i′j ,

where αmn is a scaling factor such that q0ij + q1ij = 1.
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Decoding with the SP-Algorithm, Vertical Step, contd. [2]

From the above beliefs we can compute the bit probabilities:

I

q0j = αnp
0
n

∏
i∈M(j)

r0ij

I

q1j = αnp
1
n

∏
i∈M(j)

r1ij .

These beliefs are then used in the final step (or to decide if another
iteration is required or not).

Sebastian Tschiatschek Nov 29, 2010 page 32/48



TU Graz - Signal Processing and Speech Communication Laboratory

Decoding with the SP-Algorithm, Final Step/Abort [2]

After every iteration, set n̂j to 1 if q1j > 0.5 and to zero otherwise.
Then check if

Hn̂ = z.

If this is true, accept n̂ as the found noise vector, otherwise
continue iterating until some maximum number of iterations is
reached. If no valid noise vector was found by then, mark the
block as a failure.
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Performance of LDPC Codes [2]

Figure: Error probability of an LDPC code for binary symmetric channel with error
probability of 7.5 % compared with algebraic codes. Squares: repetition codes and
Hamming (7,4) code; other points: Reed-Muller and BCH codes.

Sebastian Tschiatschek Nov 29, 2010 page 35/48



TU Graz - Signal Processing and Speech Communication Laboratory

Performance of LDPC Codes, contd. [2]

Figure: Performance of rate-1/2 Gallager codes on the Gaussian channel for different
configurations of the used LDPC code. The plots show the block error probability
versus the SNR Eb/N0. (a) Dependence on block-length N for codes with column
weight 3 and row weight 6. The dashed line is the frequency of undetected errors. (b)
Dependence on the column weight j for codes of fixed length N = 816.
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Example - Image Transmission, Encoding [2]

Figure: Encoding data using a rate-1/2 Gallager code with a 10.000× 20.000 parity
check-matrix with column weight 1. (a) Code generates vectors with 10.000 source
and 10.000 parity check bits. (b) Source sequence with altered first bit. (c) Modulo-2
difference of original vector and altered vector.
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Example - Image Transmission, Decoding [2]

Figure: Iterative probabilistic decoding after transmittion of the above image over a
BSC with error probability of 7.5 %. Image shows the best guess after the shown
number of decoding iterations. Final decoding is error free.
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Matlab Examples

Maybe in January – if I get an-
other timeslot and there is in-
terest.
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Current Research

I Scheduling: Serial versus parallel scheduling (up to two times
faster)

I Generation of LDPC parity check matrices (with long cycles;
allowing very good codes as block-lengths goes to infinity)

I Improving decoding speed

I Decoding error using fixed point architectures

I Memory efficient decoding

I Column-weight 2 LDPC codes (lower complexity of decoder,
potential on partial response channels)

I . . .
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Conclusions

LDPC codes . . .

I are based on sparse parity check matrices,

I use these sparse matrices to make decoding feasbile.

I are typically decoded using the sum-product algorithm.

I can approach the channel capacity when using long
block-lengths.

I are practical codes and can be good (or even very good)
codes though.

I are used for reliable forward error correction.

I still come with lots of technical difficulties and open research
questions.
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Thanks

Thank you for your attention!
Any questions?
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General Linear Decoding Problem [2]

Find the maximum-likelihood source vector s in the equation

Gts + n = r,

where G is the generator matrix, n is a noise vector and r is the
received vector.
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