SumProductLab
Reference

R3.00

This manual describes the usage of each factor node in the suite

Henry Leung
1/22/2010

SumProductLab Reference

Table of Contents

1
2
3

4

5
6
7
8

1o To [0 Tox 1 o] o PO 5
The Forney Factor Graph, FEGi.......cooo e 5
(@] oT=T =1 1T To I 0 T o[- PP PPPERP 5
3.1 Non-loopy Mode (Aefault)........oee i 5
2 W To] o)V 14T Lo = PP P P PPPPP TP 5
LTS T = Vo [SRR 5
o B B 1Yol £ (=0 0 g =TT ST= o = USSR 5
4.2 GaussSian CONLINUOUS MESSAJE .. eeueeiuurrrreeeeeiiiirieeeasaatieeeeeeeaassneeeeeesaaanbereeeeeaannnneeeeas 6
4.3 NEUTAl MESSAQE. ... eeeeeiie ettt ettt e e e e e e e e e e e e nnne e e as 6
(@7 a1 0= o1 1o o 1SR 6
D=1 o101 To 1o o [PPSR 6
Hierarchy of factor NOTESoiii e 6
Description of faCtOr NOGEScoii i 7
8.1 L= (1 (o) g a [0 o /=TSP 7
8.1.1 SUPEICIASS ...ttt et e e e e e e e e e e e e 7
B.1.2 PrOPEITIES e a e e e e 7
B.1.3 MEINOGS ... e 7
T2 Y o o [4 (o Lo [T 8
8.2.1 SPECIAI FEATUMNES ... e e e 8
8.2.2 MeSSaQe UPAALE TUIEoiiiiiiiiie i 9
S B o7 o N (o o [PSPPSR 9
8.3.1 SPECIAI FEATUMNES ... et 9
8.3.2 Order Of lINKIIST ...t e e e e e e e 9
SR G B 1Y/ o T= 1= 3o o7 o AP TR 10
S o7 o Y2 o T [PP 10
8.4.1 SPECIAI FEATUMNES ... 10
8.4.2 MeSSage UPAALe FUIEeeiiiiiiiiiieee ettt 10
SR T o o 1 T 4 0 To [PP O PP PPP P PTPPPPPRP 11
8.5.1 SPECIAI FEATUMNES ... e e e 11
8.5.2 MeSSage UPAALe FUIEeieiiieiiiieeee ettt 11
S S o [V g To o = PO PPPP 12

8.6.1 SPECIAI FEATUMNES ... e e e 12

SumProductLab Reference

8.6.2 MeSSage UPAALe FUIEeeiiiiiiiiie e 12
8.7 €VEN_PANLY _NOUEeeiiiiiiiiieii ettt e e e e e e e e 13
8.7.1 SPECIAI FEATUMNES ... e e e e 13
8.7.2 MeSSage UPAALe FUIEeeiiiiiiiiieee et 13
R T =1 T [=Y o Vo Yo [T USURPPRPt 14
8.8.1 SPECIAI FEATUMNES ... e e e 14
8.8.2 METNOUS e 14
RS T o (o 1=V o o To [0SSR 14
8.9.1 SPECIAI FEATUMES ... 14
8.9.2 MeSSAQE UPUALE FUIEoeiiiieiiie e 15
70 O o Vo) 2 o (o Lo [TP 15
8.10.1 SPECIal FEALUIES ..o 15
8.10.2 MeSSaQe UPUALE FUIEooiiiiiiiii e 16
< 70 I B o] g T Yo [PO 16
8.11.1 SPECIal FEALUIES ... 16
8.11.2 MeSSaQe UPAALE FUIEooiiiiiiie e 17
ST 2 <To | S g oo [SRS UPPPPPt 17
8.12.1 SPECIAl FEALUIES ..ot e e et e e 17
8.12.2 Message update rule for 4X4 SUAOKU.ccceiiiuiiiiieiiiiiieie e 18
8.12.3 Message update rule for 9X9 SUAOKU.coiiiiiiiriiiiiiiee e 18
T G T (- To o [o (o o [T PO 18
8.13.1 SPECIAl FEALUIES ..ot e e e 19
S B T2 o (o] o= o SO SPPPPPRPPPN 19
8.13.3 Method setup_operation(operation_array)cccoeeeeeeeeerieiiineieeaee e 19
8.13.4 MesSSage UPAAte FUIEeeiiiiiieiiee ettt 19
S T I [~ =Y [T T Yo [S 20
8.14.1 SPECIal FEALUIES ..o 20
8.14.2 MeSSAQe UPAALE FUIEoeiiiiiiii e 20
o T S T (= o = V1 P2 o oY [SR 21
8.16 SPECIAl fEAIUIES 21
S A 1Y = 1 o Yo PP 21
8.17.1 SELUP_GAIN(GAIN) ...ttt ettt ettt e e et e e e e e e e e e e e e eeeaa e e e nnnnneanees 21

8.18 MeSSage UPAALe FUIEt e e e e e e e e e e e e e e 21

SumProductLab Reference | 2010

LS B TU o] o Yo T 4 11 o3 (o] o TS PR 22
9.1 CONNECHION(M,N) <. e et e e e e s annnn e e e eeas 22
9.2 MArgiNal(M,N) .o et e e e e e e e e e e e e e e e 22
9.3 15 Marginal(IM,N) ..o et a e e e e e e e 22

10 DESIGN FIOWS ...t e et e e e e e e e aas 22
10.1 Factor graph WithOUT CYCIEooiiiiiiiiee e 22
10.2 Factor graph With CYCIEScoi i 22

11 Create your OWN faCtOr NOGEueeiieieieiiiie et e e e e e e e e nnne s 22
11.1 Modify the tempPlate.m.. ... 23
11.2 Add code 10 faCTOr fUN...ciuieeice e e e e e e e e e e e e e e 23

11.2.1 The truth table of a 3-port even-parity Node ... 23
11.2.2 Code return message from inCOMING MESSAJESuvvreeeerruirirrieeeaiiiieee e 23
11.2.3 Determine the order of messages for directional nodescccccoeeiiiieiiiiinininnen. 23

11.2.4 Simplify the calculationcoooiiiiiiii e 23

SumProductLab Reference

1

Introduction

The SumProductLab provides a set of basic factor nodes for building up a factor graph.
One can try out ideas by instantiating the necessary constraint nodes, connecting them up,
and giving some evidence. The sum-product (or belief propagation) algorithm will compute
the message to each node in the entire network. Finally, marginal probability of any
variable in the graph can then be calculated.

Factor graphs can be used to model a wide range of systems. That means the same
algorithm can be used to solve problems of different natures. For more information on
factor graphs, please refer to:

An Introduction to Factor Graphs by Hans-Andrea Loeliger; IEEE Signal Processing
Magazine, January 2004

The Forney Factor Graph, FFG

The FFG is made up of nodes and edges. Each edge represents a variable, while every
factor node represents the constraints applied to the edges connected to the node. In FFG,
only the constraint nodes are involved in the sum-product algorithm while the edges
(variables) are not. Therefore, only factor nodes are implemented.

Operating modes

After the factor nodes are created, connected, and necessary evidence is supplied, the
sum-product algorithm will update messages throughout the entire network without
intervention from a supervisory program.

When the global variable (loopy) is set to one, the factor nodes will work in loopy mode.
In this mode, the factor nodes are created, connected, and necessary evidence is
supplied but messages will not be updated until the update node() method is called.
Therefore, a supervisory program must be there to schedule the update of nodes. For
factors graphs involve linear-scalar messages, set the global variable (linear_scalar) to
one.

Message

Each message is implemented by a row vector in which each element represents the
probability in each case, and the sum of the vector is 1. In a bi-value message, there are
two elements in the vector. The first and second elements represent the probability of
False and True respectively.

SumProductLab Reference

For linear and scalar graphs, the message is represented by a row vector with two
elements. The first element is the mean (real or complex) and the second element is the
variance (real).

Neutral message is loaded to an evident node when it does not carry any evidence. For
discrete message, it is a vector with all 1’s with magnitude normalized to unity. For
Gaussian continuous message, it is zero mean and infinite variance.

Connection

The connections of the graph are defined by the linklist in the nodes. The linklist of a node
is a 1xN cell array specifying the other nodes connected. The order is critical for nodes with
directional connection like the cp_node (conditional probability), or_node, and and_node, in
which some of the connections are directed to the parents and one of the connections is
directed to the child. In these cases, the convention is to put the child on the right end of
the linklist.

Debugging

Information such as in-bound messages and out-bound messages are available in the node
for debugging purpose. The in-bound and out-bound messages are stored in the
inbound_msg and outbound_msg respectively. Both of them are in Nx1 cell array. A
unique integer is given as ID when instantiating a node. When an in-bound message is
received, the ID of the sending node is saved in the from_id array. When an out-bound
message is sent, the ID of the destination node is saved in the to_id array.

Hierarchy of factor nodes
The dependency of the classes in the suite is shown in the following chart:

SumProductLab Reference | 2010

handle
(Matlab)

mother of all nodes:
factor_node

conditional signal expansion:

probability: logical: linear scalar:
cp_node not2 node equ_node Is_add node
and node Is_equ_node

I or_node Is_gain2_node

cp2_node even_parity node

cp3_node
noisy_or_node

J

8 Description of factor nodes

8.1 factor_node

This is the mother of all factor nodes. It provides all the necessary setup utilities as well
as the sum-product algorithm. The factor_fun provides a place holder for specific
constraints of derived nodes.

8.1.1 Superclass
handle class from Matlab.

8.1.2 Properties

id % 1d of the object
linklist % linklist, 1xn cell array
link_id % link_id, 1xn array

state % state of the node

o\

inbound_msg
from_node

inbound message, nxl cell array
from node, 1lxn cell array

o\

from_id % from id, 1xn array

outbound_msg % outbound message nxl cell array
to_node % to node, nxl cell array

to_1id % to id, 1lxn array

oe

missing_node missing node, 1xn cell array

8.1.3 Methods

8.1.3.1 factor_node(id)
Constructor

SumProductLab Reference | 2010

8.1.3.2 reset()
Resets the node

8.1.3.3 setup_link(linklist)
Specifies connectivity from the perspective of its node. Linklist is a row of cell array of
nodes.

8.1.3.4 append_link(linklist)
Appends the linklist to the original linklist

8.1.3.5 prepend_link(linklist)
Prepends the linklist to the original linklist

8.1.3.6 update_node(default_msg)
Used in loopy mode, calculates outbound_msg using the sum-product algorithm. The
default_msg, in the form of a row vector, substitutes into any missing inbound_msg for
calculation.

8.1.3.7 rx_msg(from_node,msg)
Used in non-loopy mode, receives a message (msg) from the from_node; performs sum-
product algorithm and dispatches updated message to other node.

8.1.3.8 factor_fun(in_msg, from_id, to_id)
An abstract function to be defined in derived nodes. In each derived class, the
factor_fun specifies the message update rules.

8.2 and_node

It constraints the child and parent connections to behave as an and-gate such that the
child message is False when any of the parent messages is False.

The child must appear at the right end in the linklist.

8.2.1 Special features

Bi-value Yes
Directional connection Yes
Number of connections >3

SumProductLab Reference | 2010

8.2.2 Message update rule

Par_ent

=<
~
AN
AN
\

- [
\

X, Vv

—EWll—E
T X,

Child

Returns msg. The calculations are different for message to child and to parent.

8.2.2.1 Message to the child
msg@ = | [x@
i

msg(1) = 1 —msg(2)
8.2.2.2 Message to parent k

msg(@) = X.(0+|| [X2

Vitk

msg(1) = X.(1)

[Xe(2) = Xc(D)]

8.3 cp_node
This is the superclass of all the conditional probability nodes. It defines the conditional
probability table, cpt, property.

8.3.1 Special features

Bi-value Not necessary
Directional connection Yes
Number of connections >2

8.3.2 Order of linklist
Since it is a directional node, the order of linklist is critical. See Connection.

SumProductLab Reference | 2010

8.3.3 Types of cpt
8.3.3.1 Multidimensional matrix

8.3.3.1.1 Convention
The order of index in the cpt is the same order of the linklist.

8.3.3.1.2 cpt table entries
For example, there are two parents (X, X,) connections and one child connection (Y).
The value of the table entry is:

cpt(Q,R,S) =P(Y =5|X; =Q, X, =T)

8.3.3.2 Single row array
The cpt is implemented in a row vector in which each element refers to the conditional
probability of the child with respect to each parent. The order of parents is in the same
order as the linklist. This type of cpt is used in noisy_or node.

8.4 cp2_node
This node constraints the parent/child messages according to the cpt.

8.4.1 Special features

Bi-value Not necessary
Directional connection Yes
Number of connections 2

cpt type Multidimensional

8.4.2 Message update rule

As(r) T l m,(r)

cp2

A(s) T l m(s)

Child
S

SumProductLab Reference | 2010

Let node R and S be the parent and child node respectively and let messages from
parent and child be m;(r) and A(s) respectively.

8.4.2.1 The message to parent
msg = A (r) = Z A(s) P(s|r)
N

8.4.2.2 The message to child
msg =m(s) =) P(s|r)m(r)
T

Where P(s|r) = cpt(r,s)

8.5 cp3_node
This node constraints the parents/child messages according to the cpt.

8.5.1 Special features

Bi-value Not necessary
Directional connection Yes
Number of connections 3 (2 parents, 1 child)
cpt type Multidimensional

8.5.2 Message update rule

Parent
M

. (m) ()

Parent
N

(m) Ar(n)

A(r) T l n(r)

Child
R

Let node M, N, R be the parent, parent, child node respectively.

Let messages from parent M and N be r,.(m) and m,.(n) respectively and message from
child R be A(r).

SumProductLab Reference | 2010

8.56.2.1 Message to parent
The message to parent, M is:

msg = 4.(m) = Y () Y P(rlm,n)m(n)
The message to parent, N is:
msg = 4.(n) = » AGr)) P(rlm,m) m,(m)

8.5.2.2 Message to child
The message to child R is:

msg =n(r) = Z P(rim,n) m,.(n)m, (m)

Where P(r|m,n) = cpt(m,n,r) or cpt(n, m,r) depending on the linklist setup.

8.6 equ_node
It constraints the message from all the connections to be equal.

8.6.1 Special features

Bi-value Not necessary
Directional connection No
Number of connections =2

8.6.2 Message update rule

L

X

SumProductLab Reference | 2010

Returns message (msg) to Ny, as an elementwise product of all X;:

msg = nXi

8.7 even_parity_node
It constraints the message from all the connections to be even-parity checked.

8.7.1 Special features

Bi-value Yes
Directional connection No
Number of connections =2

8.7.2 Message update rule

X, X,

even_parity

W

N,

Returns msg such that:

First set
msg = X,

To find message to N, apply the following operation for all X;, where i # k
msg(1) = msg(1)X;(1) + msg(2)X;(2)

msg(2) = msg(1)X;(2) + msg(2)X;(1)

SumProductLab Reference | 2010

8.8 evident_node
Provides a message of observed event to a connected node.

8.8.1 Special features

Bi-value Not necessary
Directional connection No
Number of connections 1

8.8.2 Methods

8.8.2.1 evident_node(id)
Constructor

8.8.2.2 setup_init_msg(msg)
Dispatches msg to the connected node.

8.8.2.3 setup_link(linklist)
Setups linklist from input.

8.8.2.4 rx_msg(from_node,msg).
Stores inbound_msg and from_id

8.8.2.5 factor_fun(in_msg, from_id, to_id)
Return msg:
msg = in_msg{1}

8.9 noisy_or_node
It constraints the parents/child in disjunctive interaction.

8.9.1 Special features

Bi-value Yes
Directional connection Yes
Number of connections >3
cpt type Single row array

SumProductLab Reference | 2010

8.9.2 Message update rule

paqent 0 parent

child

Let g; be the probability of True in the message from parent i.
8.9.2.1 Message to child
msg() = | [= epta
i

msg(2) =1 —-msg(1)

8.9.2.2 Message to parent k
Let 1 be message from child.

tmp = 1_[(1 — cpt(i)q;)
ik
msg(1) = A(2) — (A(2) — A(1))tmp
msg(2) = A(2) — ept(k)(A(2) — (1)) tmp

8.10 not2_node
It constraints the connections to be inversions of each other.

8.10.1 Special features

Bi-value Yes
Directional connection No
Number of connections 2

SumProductLab Reference | 2010

X

8.10.2 Message update rule

Return msg such that:

msg(1) = X;(2)

msg(2) = X,(1)
8.11 or_node

It constraints the parents/child connections to behave as an or-gate such that the child is
True when any parent is True.

8.11.1 Special features

Bi-value Yes
Directional connection Yes
Number of connections >3

SumProductLab Reference | 2010

8.11.2 Message update rule

Par_ent

Returns msg. The calculations are different for message to child and messages to
parents.

8.11.2.1 Message to the child
msg() = | [x.@
i

msg(2) = 1—-msg(1)
8.11.2.2 Message to parent k

msg(l) = X(2) + [Xc(l) - Xc(z)]

[[x®

Vizk

msg(2) = X:(2)

8.12 sdk_node

It is created for solving Sudoku problems with singleton. The valid configurations
constrained by the sdk_node are all permutations of numbers 1 to 4 or 9 (for 4x4 or 9x9

Sudoku).
8.12.1 Special features
Bi-value No
Directional connection No
Number of connections 4 for 4x4 Sudoku
9 for 9x9 Sudoku

SumProductLab Reference | 2010

8.12.2 Message update rule for 4x4 Sudoku

sdk

Message to node 4:

msg() = Y X@X@X0)
(p,q,r)EPerm(2,3,4)

msg@ = Y K@@
(p.q,r)Eperm(1,3,4)

msg@ = Y XEX@X0)
(p,q,r)EPerm(1,2,4)

msg@® = Y XEXN@X0)
(p,q,r)EPerm(1,2,3)

There are 3! terms in each equation and 4 values in a message.

8.12.3 Message update rule for 9x9 Sudoku
The message update rule is the same as 4x4 Sudoku except there are more terms to
sum (8! terms) and more values in a message (9 values). Therefore, it requires a lot of
effort to reduce the number of permutations in the terms in order to improve the speed of
the algorithm.

8.13 Is_add_node
This node constraints that the child connection is the sum (or difference) of the two parent
connections.

SumProductLab Reference | 2010

8.13.1 Special features

Linear Yes
Message Scalar
Directional connection Yes
Number of connections >3
Distribution Any distribution

8.13.2 Property
operation - a 1xn array with values specifying the operation corresponding to each input.
A ‘1’ means addition and a ‘-1’ means subtraction. The order must be the same as the
linklist. For example, [1 -1] specified that the output mean is calculated by subtracting
the mean of the second input from the mean of the first input.

8.13.3 Method setup_operation(operation_array)
This is the function for setting the operation array.

8.13.4 Message update rule

Parent

2

l X, OP,

Xc
4—
Child

mean = X1(1)0P1 + X2(1)0P2

X, 0P,
—>

Parent
1

Message to Child:

variance = X,(2) + X,(2)
Message to Parentt:
mean = OP;(X.(1) — OP,X,(1))
variance = X.(2) + X,(2)

Where OP; and OP, are the first and second element in the operation array.

SumProductLab Reference | 2010

In both cases:
msg = [means variance]

8.14 Is_equ_node
This node constraints that the child connection is the sum of the two parent connections.

8.14.1 Special features

Linear Yes
Message Scalar
Directional connection No
Number of connections >2
Distribution Gaussian

8.14.2 Message update rule

X1
M
Message to N3:
variance = M
X;:(2) + X,(2)
mean

X2 x:(2)

msg = [means variance]

SumProductLab Reference | 2010

8.151s_gain2_node

This node constraints the child connection is the product of the gain and the parent
connection.

8.16 Special features

Linear Yes

Message Scalar

Directional connection Yes

Number of connections 2

Distribution Gaussian
8.17 Method

8.17.1 setup_gain(gain)
Setup the gain factor property.

8.18 Message update rule

ls_gain2 N2

Message to child N2:
variance = gain® X;(2)
mean = gain X;(1)
Message to parent N1:

variance = X,(2)/gain®

SumProductLab Reference | 2010

mean = X,(1)/gain
In both cases:

msg = [means variance]

9 Support functions

9.1 connection(M,N)

9.2

9.3

This function connects factor node M to factor node N such that N is append to linklist of
M and M is prepend to linklist of N.

marginal(M,N)
This function calculates the marginal probability of an edge (variable) between two factor
nodes (M & N) after the whole network is updated.

Is_marginal(M,N)
This function calculates the marginal probability of an edge (variable) between two
linear/scalar factor nodes (M & N) after the whole network is updated.

10 Design flows

10.1 Factor graph without cycle

Instantiate nodes with unique integer for each node id

Define connections by setup_link() or connect() functions

Initialize parameters like cpt for cpt_node and gain for Is_gain2_node
Give evident by setup_init_msg() function

Get marginal values by marginal() or Is_marginal() functions

10.2 Factor graph with cycles

Initialize global variable loopy and set it to 1.

Initialize linear_scalarto 1 for linear scalar graphs

Instantiate nodes with unique integer for each node id

Define connections by setup_link() or connect() functions

Initialize parameters if any

Give evident by setup_init_msg() function

Update each node by update _node() function in an iterative update schedule
Terminate update at termination condition or after a pre-defined iterations

11 Create your own factor node

You can create your own custom factor node in the following procedures:

SumProductLab Reference | 2010

11.1 Modify the template.m
Change the file name and the words “template” in the file to the name of the node.

11.2 Add code to factor_fun
Add code to factor_fun that constraints the valid configurations of all the messages.
Below is an example to create a 3-port even-parity node:

11.2.1 The truth table of a 3-port even-parity node

X1 X5 X3
0 0 0
0 1 1
1 0 1
1 1 0

11.2.2 Code return message from incoming messages
Now assume incoming messages in_msg{1} and in_msg{2} come from X; and X, and
return message (msg) goes to X;.

X5 is zero when both X; and X, are the same. Then
X3(0) = X1(0)X,(0) + X7 (1)X,(1)
msg(1) = in_msg{1}(1) X in_msg{2}(1) + in_msg{1}(2) X in_msg{2}(2)
X; is one when X; and X, are opposite. Then
X3(1) = X,(0)X,(1) + X1 (1)X,(0)
msg(2) = in_msg{1}(1) x in_msg{2}(2) + in_msg{1}(2) X in_msg{2}(1)

11.2.3 Determine the order of messages for directional nodes
In case of directional nodes, the in-bound messages, the linklist, and the index of the cpt
table (if applicable) must be correctly associated before any calculation.

11.2.4 Simplify the calculation
The speed of calculation is heavily affected by the number of product terms involved. In
turn, the number of product terms is determined by the number of values in the message
and the number of in-bound messages. It is critically important to reduce the number of
product terms to make the algorithm practical for an application.

