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Bayesian Networks

I Popular graphical model in AI literature.

I Directed graph structure.

I Applications: Medical diagnosis, language understanding,
heuristic search ...
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”Asia” Medical Diagnosis

Medical system modelling statistical dependencies between
symptoms, test results and diseases:

I A recent trip to Asia (A) increases the chances to tuberculosis
(T).

I Smoking (S) is a risk factor for both lung cancer (L) and
bronchitis (B).

I The presence of either (E) tuberculosis or lung cancer can be
detected by an X-ray results (X), but the X-ray alone cannot
distinguish between them.

I Dyspnoea (D) (shortness of breath) may be caused by
bronchitis (B), or either (E) tuberculosis or lung cancer.
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”Asia” Medical Diagnosis

p(x) = p(xA)p(xS)p(xT | xA)p(xB | xS)× (1)

p(xE | xL, xT )p(xD | xB, xE)p(xX | xE)
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Bayesian Networks

joint probability:

p(x1, x2, . . . , xN ) =

N∏
i=1

p(xi | Par (xi)) (2)

marginal probability:

p(xi) =
∑
{x}\xi

p(x1, x2, . . . , xN ) (3)
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Pairwise Markov Random Fields

I Undirected graph model.

I Low level computer vision, image yi, scene xi.
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Pairwise Markov Random Fields

I evidence function φi (xi, yi)

I compatibility function ψij (xi, xj)

joint probability:

p(x,y) =
1

Z

∏
(i,j)

ψij (xi, xj)
∏
i

φi (xi, yi) (4)

David Kappel November 29, 2010 page 9/26



TU Graz - Advanced Signal Processing Seminar WS 2010

Converting Bayesian Networks to Factor Graphs

Factor graph functions ψa ({x}a) directly correspond to Bayesian
network probabilities p(xi | Par (xi)).
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Converting Markov Random Fields to Factor Graphs

I Observed nodes replaced by single node functions φi (xi, yi)

I Two node functions ψij (xi, xj) linking hidden nodes
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Standard Belief Propagation

joint probability:

p(x) =
1

Z

∏
(i,j)

ψij (xi, xj)
∏
i

φi (xi) (5)

marginal probability:

p(xi) =
∑
x\xi

p(x1, x2, . . . , xN ) (6)
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Message Passing

bi (xi) = kφi (xi)
∏

j∈N(xi)

mij (xi) (7)

mij (xi)←
∑
xi

φi (xi)ψij (xi, xj)
∏

k∈N(xi)\j

mki (xi) (8)
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Free Energies

I A system of N particles.

I Each which can in one of a discrete number of states.

I The state of the system: x = {x1, x2, . . . , xN}
I Each state has a corresponding energy E (x)

Boltzmann’s law:

p(x) =
1

Z
e−E(x)/T (9)
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The Potts and Ising Models

I field hi (xi, yi) = lnφi (xi, yi)

I interaction Jij (xi, xj) = lnψij (xi, xj)

Potts model energy:

E (x) = −
∑
(i,j)

Jij (xi, xj)−
∑
i

hi (xi, yi) (10)

Boltzmann law:

p(x) =
1

Z
e−E(x)/T

→ p(x) =
1

Z

∏
(i,j)

ψij (xi, xj)
∏
i

φi (xi, yi)
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The Helmholtz free energy

I Important quantity in statistical mechanics.

I Many techniques exist which give good approximations.

partition function (normalisation constant):

Z =
∑
x∈S

e−E(x)/T (11)

Helmholtz Free Energy:

FH = − lnZ (12)
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Variational approach:

I True probability distribution p(x).

I Trail probability distribution b(x).

Gibbs Free Energy:

F (b) = U (b)−H (b) (13)

Average energy:

U (b) =
∑
x∈S

b (x)E (x) (14)

Variational entropy:

H (b) = −
∑
x∈S

b (x) ln b (x) (15)
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Gibbs Free Energy

F (b) = U (b)−H (b)

=
∑
x∈S

b(x)E(x) +
∑
x∈S

b(x) ln b(x)

=
∑
x∈S

b(x) (E(x) + ln b(x))

using Boltzmann’s law:

p(x) =
1

Z
e−E(x)

E(x) = − lnZ − ln p(x)

E(x) = FH − ln p(x)
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Gibbs Free Energy

F (b) =
∑
x∈S

b(x) (FH − ln p(x) + ln b(x))

= FH +
∑
x∈S

b(x) ln
b(x)

p(x)

= FH +DKL(b|p)

With DKL(b|p), the Kullback-Leibler divergence.
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Gibbs Free Energy

I BP is equal to minimizing the variational free energy.

I If graph is loop-free the solution is exact.

I If graph has loops the results are equal to the Bethe
approximation from statistical mechanics.
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Summary

I Different disciplines have yielded different approaches and
models.

I Yet, the methods are similar and can be converted into each
other.

I Belief Propagation can be understood as a solution to an
energy minimisation problem.
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Questions?
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