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Motivation

Motivation

Applications for Adaptive Filters:

@ echo/noise cancellation
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Figure: Echo cancellation [6]
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Motivation

Motivation

@ channel equalization

— X(2) f equalizer detector ——

Figure: Channel Equalization [7]

@ system identification
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Motivation

Definitions

@ stochastic variables X scalar and Y = [y(1),%(2),...,y(N)]"

@ covariance matrices
Yyx = E[Y X]

Syy = E[YY]
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Motivation

The linear MMSE estimator

e often the MMSE estimator 2o, (Y) = E[X|Y] is hard to
compute

@ therefore introduce a linear estimate
N
(V)= 6(n)y(n) =Y"0
n=1

@ where
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Motivation

The linear MMSE estimator

@ The optimal choice of the weight vector # minimizes the MSE
MSE(#(Y)) = E[(X - &(Y))?] = E[(X = YT9)?
@ derive with respect to 6 and set to zero:

d%MSE(i(Y)) =E[(X-YT9)Y]=0

o it follows that
Yyx —Xyy0 =0

the linear MMSE estimator

Zopt(Y) = Sy ByxY =62, Ty

Manuel Forrer, Markus Frohle | LMS/RLS Kernel-LMS/RLS 7/46




Derivation
Analysis
Properties
MATLAB-Demo

Least Mean Squares (LMS) - Algorithm

@ Problem: in practise second order moments are not available

@ if the MSE criterion is time dependent, we can rewrite it to
MSE(n,0) = El(@(n) — Y7 (n)6)?]

@ where
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Derivation
Analysis
Properties
MATLAB-Demo

LMS - Algorithm

@ weight update criterion:

@ drop expectation of MSE, use instantaneous error instead
MSEpys(n,0) = (z(n) — YT (n)§)?
@ calculate gradient:

%]\mLMs(n, 0) = —2(z(n) — YT(”)G)Y(”)

LMS-Algorithm

B(n) = 6(n — 1) + uY (n)[z(n) — YT (0)f(n — 1)]
Ty




Derivation
Analysis
Properties
MATLAB-Demo

Properties of the LMS-Algorithm

@ both z(n) and y(n) have to be available

e the LMS-Algorithm produces estimates (" guesses”) of the
optimal parameter vector

Oopt(Y) = Xy Sya

e computational cost of O(IV) operations in each iteration
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Derivation
LUELE
Properties
MATLAB-Demo

Analysis of the LMS-Algorithm

@ What are the stability and convergence properties of the
LMS-Algorithm?
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Derivation
LUELE
Properties
MATLAB-Demo

Analysis of the LMS-Algorithm

@ What are the stability and convergence properties of the
LMS-Algorithm?
@ writing out the LMS formula gives

B(n) = (I — p¥ (n)YT (n))(n — 1) + p(n)Y (n)

@ this is a linear state-space system with stochastic transition
matrix
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Derivation
LUELE
Properties
MATLAB-Demo

Analysis of the LMS-Algorithm

@ What are the stability and convergence properties of the
LMS-Algorithm?
@ writing out the LMS formula gives

B(n) = (I — p¥ (n)YT (n))(n — 1) + p(n)Y (n)

@ this is a linear state-space system with stochastic transition
matrix

o difficult to analyse!
@ analyse the averaged system instead
@ only possible if y is small [1]
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Derivation
LUELE
Properties
MATLAB-Demo

Analysis of the LMS-Algorithm

@ introduce
-1
eopt = EYYEYZ‘

i0pt(”) = YT(n)eopt
Z(n) = z(n) — Lopt(n)
0(n) = Oopt — O(n)
@ the averaged system describing the error propagation
o (blackboard)
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Derivation
LUELE
Properties
MATLAB-Demo

Analysis of the LMS-Algorithm

@ introduce
Oopt = Zyy Eya
Zopt(n) = YT(n)eopt
Z(n) = z(n) — Lopt(n)
6(n) = Oopt — ()
@ the averaged system describing the error propagation

o (blackboard)

B(n) = [I — uSyy)i(n — 1) — pi(n)Y (n)
Ty



Derivation
LUELE
Properties
MATLAB-Demo

Stability

@ the LMS-Algorithm is stable if the eigenvalues of [ — uXyy
are strictly inside the unit circle

o (blackboard)
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Derivation
LUELE
Properties
MATLAB-Demo

Stability

@ the LMS-Algorithm is stable if the eigenvalues of [ — uXyy
are strictly inside the unit circle

o (blackboard)

2

A1 - - - largest eigenvalue of Xyy

@ also the mean of the parameter error é(n) converges then to

Zero ﬁ
T4,
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Derivation
Analysis
Properties
MATLAB-Demo

More Properties of the LMS

Misadjustment ( = steady state prediciton error)

o for large n it holds that
MSELMs(n) ~ MSE(@opt)(l + M)
@ where the Misadjustment M is given by

M =~ LNUZ
2
@ M is proportional to

o the step-size i
e the number of parameters N

o the signal power (variance) o7 ﬁ'grla!_
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Derivation
Analysis
Properties
MATLAB-Demo

Properties of the LMS

thus there is a tradeoff between:
@ small u— slow convergence, small misadjustment
o large ;u— fast convergence, large misadjustment
A
ﬁ large = slow convergence
i\Tlv close to one = fast convergence

(contour plot)
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Derivation
Analysis
Properties
MATLAB-Demo

Normalized LMS - NLMS

@ Stability and misadjustment depend on the signal power

(variance) o

@ LMS can be made insensitive by normalizing the step size

B I
) = v me

where ¢ > 0 is a constant
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Derivation
Analysis
Properties
MATLAB-Demo

MATLAB-Demo

System identification

Would like to
@ identify an unknown FIR filter with LMS
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Analysis
MATLAB-Demo

Recursive Least Squares (RLS) - Algorithm

Problems with LMS:

e Convergence rate is poor when Xyy is ill-conditioned (large
eigenvalue spread)

@ LMS is noise sensitive
To avoid this, use a MSE(6) with:
@ second derivative information (Hessian)

@ a less noise sensitive approximation
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Analysis

RLS MATLAB-Demo

Recursive Least Squares (RLS) - Algorithm

Use second derivative information and set to zero

@ since M SE(0) is quadratic it holds for any parameter value 6

OMSE(0) _ OMSE(0)  9°MSE(9) 1
90 |y, ~ 00 o w00
P2MSE(0)] " OMSE(6)
éa"pt_e_[ 067 ] BT,
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Analysis

RLS MATLAB-Demo

Recursive Least Squares (RLS) - Algorithm

o Denote MSE (n,0) and MSE (n,8) as approximations of
the first and second order derivative

i(n) = B(n—1)—p [m (n, 0(n — 1))] MSE (n,6(n—1))
@ Use a less noise sensitve approximation for the MSE () e.g.
MSErps(n,0) Z)\” Flak) — YT (k)6)?
where 0 < A <1 is known as the forgetting factor
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Analysis

RLS MATLAB-Demo

Recursive Least Squares (RLS) - Algorithm

@ Define N
SEES (n) = ATRY (k)a(k)
k=1
S (n) =AY (k)Y T (k)
k=1

@ Derive me\corresponding gradient and Hessian approximations
of the MSERs (blackboard)
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Analysis

RLS MATLAB-Demo

Recursive Least Squares (RLS) - Algorithm

approximation of the ]\75\ERLS
0 ——— .
= 55 MSEnLs(n,0) = —20BLS () 4 o2 LS ()9

2

:> PR

002

plug into weight update criterion and get

MSEgps(n,0) = 2585 (n)

basic form of the RLS-Algorithm (with = 1)

A~ ~

O(n) = 0 — 1) + [P )] (SFES(n) — S (m)fn — 1)

— Grazm
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Analysis
MATLAB-Demo

RLS

Alternative expression of RLS and comparison to LMS

RLS can be rewritten as

RLS-Algorithm (1 = 1) [1]

() = Bn — 1) + [SEEE ()] Y ()fa() — YT ()~ 1)

with S8 (n) = S, A RY ()Y ()

Recall LMS-Algorithm (1 = 1)

O(n) = 0(n —1) + Y (n)[z(n) — YT (n)0(n — 1)]

= only difference is the update direction ﬂTU
Grazm
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LUELE

RLS MATLAB-Demo

Analysis of the RLS-Algorithm

How does the forgetting factor A influence the covariance matrix?
e A\ = 1: all data are treated equally (no forgetting)

@ \ < 1: old data has less influence (able to adapt changing
signal properties)

Computational complexity:
. -1
e O(N3) for the RLS-Algorithm ([Z{E@S(n)] >
e with Matrix Inversion Lemma [1] = O(N?)
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LUELE

RLS MATLAB-Demo

Analysis of the RLS-Algorithm

Misadjustment:

o for A = 1:
o N
n
o for A < 1:
M:(l_;\)N

e independent of signal power (variance)

@ decays for large n (for the case where A\ = 1)
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Analysis
MATLAB-Demo

MATLAB-Demo

System identification

Would like to
@ identify an unknown FIR filter with RLS
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Analysis
MATLAB-Demo

MATLAB-Demo (Comparison between LMS and RLS)

Noise Cancellation

s(n)

Disturbance

yv2m L | %)
Estimator

Figure: Source: [1]

VA
—~
3
~—

. signal of interest
n) ... disturbance

n) ... estimated disturbance (with adaptive filter) ﬁTU
. estimated signal of interest Graza
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Properties

Kernel-LMS Simulation

Kernel-LMS

Why kernels?
@ Non-linear adaptive filters require a training set
Kernel Methods:

@ proposed to produce non-linear algorithms from linear ones
expressed with inner product by employing the kernel trick

Idea:

@ Apply the LMS directly in kernel feature space and employ the
kernel trick to obtain the solution in the input space
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Properties

Kernel-LMS Simulation

Kernel Methods

@ Map data z; from input space to high-dimensional feature
space using mapping ®(x;)
e = Non-linear mapping

@ Kernel function:

K(xi, xj) = (D), P(x5))
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Properties

Kernel-LMS Simulation

Kernel Methods

@ Map data z; from input space to high-dimensional feature
space using mapping ®(x;)
e = Non-linear mapping

@ Kernel function:

K(xi, xj) = (D), P(x5))

@ Gaussian kernel:

K(z,y) = exp <_Hx—yH2)

202

o =infinite dimensional Hilbert space ﬁ'EU
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Properties

Kernel-LMS Simulation

From LMS to Kernel-LMS

LMS-Algorithm
6(n) = 6(n — 1) + pY (n)[z(n) — Y (n)f(n — 1)]

e transfom to feature space using mapping ®(Y (n))

Qn) =Qn—1) + p®(Y(n))e(n)
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Properties

Kernel-LMS Simulation

From LMS to Kernel-LMS

Q
~——
=0

n—1
Qn) = Q0)+u Yy e(D)@(Y (i)
I =0

@ Now exploit the kernel trick:
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Properties

Kernel-LMS Simulation

From LMS to Kernel-LMS

n—1
Qn) = &@W > e(De(Y (i)
I =0

=0

@ Now exploit the kernel trick:
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Properties

Kernel-LMS Simulation

Properties

@ unique solution, because it solves a quadratic problem in
feature space

@ weights of the filter are never used explicitly

@ order of the filter is not user controllable
present output Z(n) is determined by:

@ previous inputs Y (n)

@ all previous errors e(3)

= can be computed in input space
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Properties

Kernel-LMS Simulation

More Properties

Computational complexity:
@ O(N) for each output sample, if errors are reasonable small
after N samples
No need for regularization [2], [5]:
@ because of the non-parametric improvement in the output
samples (believed)
Stepsize p controls the convergence, speed and misadjustment
@ just like for the LMS-Algorithm

@ 1 is upper bounded by the largest eigenvalue of the data
covariance

o lies in feature space

o difficult to estimate ﬁTU
Grazm



Properties

Kernel-LMS Simulation

Simulation

One-step ahead prediction of Mackey-Glass time series
Setup:

@ normalized input data 02 =1

@ step size i = 0.01 for LMS

o u = 0.5 for KLMS

— s
s IS
----- regularized

0 ] 50 100

150 20 250 300
time index time inclex

ﬁTU
Figure: left: learning curves; right: error samples for KLMS [2] eraze
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Kernel-RLS

Kernel-RLS

e Basic Idea: Extend the linear Least Squares (LS) method to a
non-linear version by transforming the data into feature space

@ consider the LS criterion

J = moin||x—YT9]|2

with a given vector x € RV*! and a data matrix
YT € RVXM of observations, § € RM*1 the solution vector

Ty,
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Kernel-RLS

Kernel-RLS

e Basic Idea: Extend the linear Least Squares (LS) method to a
non-linear version by transforming the data into feature space

@ consider the LS criterion

J = moin||x—YT9]|2

with a given vector x € RV*! and a data matrix
YT € RVXM of observations, § € RM*1 the solution vector

e transform data to feature space, where §' € RM'<! and
Y e RNV
J/ — Hé}n HX _ Y/T9/||2
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Kernel-RLS

Kernel-RLS

@ The transformed solution 6’ can also be represented in the
basis defined by the rows of the transformed matrix Y’ with
the solution vector a € RV*! (high dim. of M)

0/ — Y/Ta
o Introduce the kernel matrix K = YY"
@ The LS problem in feature space:

J' = min||x — Ka||?
6

Ty,
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Kernel-RLS

Kernel-RLS

@ The transformed solution 6’ can also be represented in the
basis defined by the rows of the transformed matrix Y’ with
the solution vector a € RV*! (high dim. of M)

0/ — Y/Ta
o Introduce the kernel matrix K = YY"
@ The LS problem in feature space:

J' = min||x — Ka||?
6

@ Take usage of the kernel trick (Gaussian Kernel):
K(i,j) = w(Y],Y])
Y;‘F and YjT are the ¢-th and j-th rows of YT ﬂ'!,g!_
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Kernel-RLS

Measures Against Overfitting

e Dimension of feature space M’ often higher than the number
of available data points N (M’ = oo for Gaussian kernel)

@ J' can have an infinite number of solutions

@ Overfitting problem

One possible solution: Regularize the solution vector «

@ Penalize the norm of §’
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Kernel-RLS

Measures Against Overfitting

@ Rewriting the problem:
J" = I%in Ix = Y702+ ¢]|¢||* = min ||x — Ka||> + ca’ Ka
/ o

@ with the solution

o= Kr_e%qx
and
K,y = K+l

c is a regularization constant
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Kernel-RLS

A sliding window approach

@ Taking only the last NV pairs of input-output pairs
{(y1,21), (y2,22), ...} into account

we get the regularized kernel matrix

K,=Y, Yl +cI

¥
I
T
S
“5‘3

(n—1),...,z(n— N +1)]
Yn = [y(n)ay(n_ 1)7"'aY(n_N+1)]

@ This reduces the complexity of the algorithm
o track changes without any extra burden
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Kernel-RLS

Updating the Kernel Matrix

o The updated solution: a,, = K 'x,

@ Update the Kernel Matrix K,, as follows:

K, = Kn—l kn—l(xn) :|

kn—l(xn)T knn +c
@ where anl is K,,_1 removed by the first row and column

kn—1<xn) = [K’(XH—N-‘rlv X’n): s 7ﬁ(xn—17 Xn)]
knn = H(Xnaxn)
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Kernel-RLS

Summary of the Kernel-RLS algorithm

Initialize Ko as (14 ¢)T and Ky ' as I/(1 +c¢)
forn=1,2,... do

© Obtain K,,_; out of K,,_;

@ Calculate K,‘;l

© Obtain K,,

Q Calculate K, (blackboard)

© Obtain the updated solution o, = K, 'x,
end for
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Kernel-RLS

Analysis of Kernel-RLS algorithm

e calculating K, ! explicitly would cost computationally and
memory-wise O(N?3) operations for each window

o derive them from known matrices = O(N?)
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Kernel-RLS

Conclusion

@ Basic algorithms LMS and RLS
o Kernel LMS
o Kernel RLS
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