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Intro – A Simple Learning Problem

Classification

Sets X and Y
Each data point xi is assigned a label yi .

Training data: (x(1), y (1)), . . . , (x(m), y (m))

Goal: classify an unseen data point x, i.e. predict its label y

Find (x, y) that is similar to the training examples.

How to measure similarity?
Use the standard inner product, for a vector space Rn:

〈a,b〉 =
n∑

i=1

aibi
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Intro – Example

Prototype classifier

Separate patterns from class A and B

Classification criterion: distance to means of class samples
(blackboard example)
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Intro – Example

Prototype classifier

Separate patterns from class A and B

Classification criterion: distance to means of class samples

Euclidean distance between two points: norm of difference
vector d

‖d‖ = ‖x− y‖

=
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

=
√
〈x− y, x− y〉
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Intro – Example

Prototype classifier - Summary

If 〈ā− b̄, x〉 > θ then x ∈ A else ∈ B

with θ = 1
2(〈ā, ā〉 − 〈b̄, b̄〉)

Decision boundary along 〈ā− b̄, x〉 = θ, orthogonal to
distance vector of means
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Intro – Inner Product Space

Definition
A vector space X over the reals R is an inner product space if
there exists a real-valued symmetric bilinear map 〈x, x〉 ≥ 0.

Angles and lengths

cosφ =
〈x, y〉
‖x‖‖y‖

‖x‖ =
√
〈x, x〉
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Mapping – Non-linear Problems

How to separate these
data sets?

Use a map to a space were the sets are separable!
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Maps – Non-linear Problems

Φ : X → Z
x 7→ z

Data can be separated by a
linear hyperplane!
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Maps – Non-linear Problems

Example:

Φ : R2 → R3

(x1, x2) 7→ (z1, z2, z3) := (x2
1 ,
√

2x1x2, x
2
2 )

For the similarity measure the feature space has to be an inner
product space!

〈Φ(x),Φ(y)〉 = x2
1 y2

1 + 2x1x2y1y2 + y2
1 y2

2 = 〈x, y〉2

〈x, y〉2 := k(x, y) is a kernel function
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Kernels – Definition

Definition
A kernel is a function k that for all x, y ∈ X satisfies

k(x, y) = 〈Φ(x),Φ(y)〉

where Φ is a mapping from X to an (inner product) feature
space Z

Φ : x 7→ Φ(x) ∈ Z
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Kernels – The Kernel Trick

Instead of 〈Φ(x),Φ(y)〉 compute 〈x, y〉2.

Compute inner product directly in the input space.

No mapping to the feature space is necessary.

Computationally more efficient!

This is called the kernel trick.
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Kernels – The Kernel Trick

Summary

Any algorithm that only depends on inner products can
benefit from the kernel trick.

Kernels are a generalization of inner products.

They can be seen as a nonlinear similarity measure.
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Kernels – Examples for Kernel Functions

Polynomial
k(x, y) = (〈x, y〉+ c)d

Sigmoid
k(x, y) = tanh(κ〈x, y〉+ Ω)

Gaussian
k(x, y) = exp(−(x− y)2/(2σ2))
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Kernels – Positive Definite Kernels

A Kernel can always be constructed by

k(x, y) = 〈Φ(x),Φ(y)〉

How to find out if k(., .) defines an inner product in feature
space without actually computing Φ?

The kernel has to be positive definite.

Symmetric: k(x, y) = k(y, x).
Its kernel matrix or Gram matrix K is positive semi-definite.

Kij := k(xi , xj) and vT Kv ≥ 0 for all vectors v
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RKHS – Feature space

Construction of the feature space

Define a feature map.

Turn Φ(X ) into a linear space.

Endow it with a dot product satisfying

〈k(., xi ), k(., xj)〉 = k(xi , xj)

Complete the space to get a reproducing kernel Hilbert space
(RKHS).
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RKHS – The Reproducing Kernel Hilbert Space

Definition
A Hilbert Space H is an inner product space with the additional
properties that it is separable and complete.

Completeness refers to the property that every Cauchy
sequence of elements of H converges to an element h of H
A space H is separable if for any ε > 0 there is a finite set of
elements h1, ..., hN of H such that for all h of H

min
i
‖hi − h‖ < ε
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RKHS – Turn It into a Linear Space

Form all linear combinations

f (.) =
m∑

i=1

αik(., xi ),

g(.) =
m′∑
j=1

βik(., x ′
j ),

(m,m′ ∈ N, αi , βi ∈ R, xi , x
′
j ∈ X ).
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RKHS – Endow It with an Inner Product

〈f , g〉 :=
m∑

i=1

m′∑
j=1

αiβjk(xi , x
′
j )

=
m∑

i=1

αig(xi ) =
m′∑
j=1

βj f (x ′
j )

This is well-defined, symmetric and bilinear.
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RKHS – The Reproducing Kernel Property

Two special cases:

Assume
f (.) = k(., x)

In this case we have

〈k(., x), g〉 = g(x)

If moreover
g(.) = k(., x ′)

we have
〈k(., x), k(., x ′)〉 = k(x , x ′)

k is called a reproducing kernel.
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RKHS – The Reproducing Kernel Property

Because of the reproducing property of the kernel, the feature
space is called reproducing kernel Hilbert space (RKHS).
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Discussion

Thank you for your attention!
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