
Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

LMS/RLS Kernel-LMS/RLS

Manuel Forrer, Markus Fröhle

Signal Processing and Speech Communication Laboratory

December 17, 2009

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 1/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Outline

1 Motivation

2 LMS

3 RLS

4 Kernel-LMS

5 Kernel-RLS

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 2/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Motivation

Applications for Adaptive Filters:

echo/noise cancellation

Figure: Echo cancellation [6]

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 3/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Motivation

channel equalization

Figure: Channel Equalization [7]

system identification

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 4/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Definitions

stochastic variables X scalar and Y = [y(1), y(2), . . . , y(N)]T

covariance matrices

ΣY X = E[Y X]

ΣY Y = E[Y Y]

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 5/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

The linear MMSE estimator

often the MMSE estimator x̂opt(Y) = E[X|Y] is hard to
compute

therefore introduce a linear estimate

x̂(Y) =

N∑
n=1

θ(n)y(n) = Y T θ

where

θ = [θ(1), θ(2), . . . , θ(N)]T

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 6/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

The linear MMSE estimator

The optimal choice of the weight vector θ minimizes the MSE

MSE(x̂(Y)) = E[(X − x̂(Y))2] = E[(X − Y T θ)2]

derive with respect to θ and set to zero:

d

dθ
MSE(x̂(Y)) = E[(X − Y T θ)Y] = 0

it follows that
ΣY X − ΣY Y θ = 0

the linear MMSE estimator

x̂opt(Y) = Σ−1Y Y ΣY XY = θToptY

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 7/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

Least Mean Squares (LMS) - Algorithm

Problem: in practise second order moments are not available

if the MSE criterion is time dependent, we can rewrite it to

MSE(n, θ) = E[(x(n)− Y T (n)θ)2]

where

Y (n) = [y(n), y(n− 1), . . . , y(n−N + 1)]T

θ = [θ(0), . . . , θ(N − 1)]T

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 8/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

LMS - Algorithm

weight update criterion:

θ̂(n) = θ̂(n− 1)− µ

2

∂

∂θ
MSE(n, θ) |θ=θ̂(n−1)

drop expectation of MSE, use instantaneous error instead

M̂SELMS(n, θ) = (x(n)− Y T (n)θ)2

calculate gradient:

∂

∂θ
M̂SELMS(n, θ) = −2(x(n)− Y T (n)θ)Y (n)

LMS-Algorithm

θ̂(n) = θ̂(n− 1) + µY (n)[x(n)− Y T (n)θ̂(n− 1)]

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 9/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

Properties of the LMS-Algorithm

both x(n) and y(n) have to be available

the LMS-Algorithm produces estimates (”guesses”) of the
optimal parameter vector

θopt(Y) = Σ−1Y Y ΣY x

computational cost of O(N) operations in each iteration

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 10/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

Analysis of the LMS-Algorithm

What are the stability and convergence properties of the
LMS-Algorithm?

writing out the LMS formula gives

θ̂(n) = (I − µY (n)Y T (n))θ̂(n− 1) + µx(n)Y (n)

this is a linear state-space system with stochastic transition
matrix

difficult to analyse!

analyse the averaged system instead

only possible if µ is small [1]

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 11/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

Analysis of the LMS-Algorithm

What are the stability and convergence properties of the
LMS-Algorithm?

writing out the LMS formula gives

θ̂(n) = (I − µY (n)Y T (n))θ̂(n− 1) + µx(n)Y (n)

this is a linear state-space system with stochastic transition
matrix

difficult to analyse!

analyse the averaged system instead

only possible if µ is small [1]

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 11/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

Analysis of the LMS-Algorithm

What are the stability and convergence properties of the
LMS-Algorithm?

writing out the LMS formula gives

θ̂(n) = (I − µY (n)Y T (n))θ̂(n− 1) + µx(n)Y (n)

this is a linear state-space system with stochastic transition
matrix

difficult to analyse!

analyse the averaged system instead

only possible if µ is small [1]

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 11/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

Analysis of the LMS-Algorithm

introduce
θopt = Σ−1Y Y ΣY x

x̂opt(n) = Y T (n)θopt

x̃(n) = x(n)− x̂opt(n)

θ̃(n) = θopt − θ̂(n)

the averaged system describing the error propagation

(blackboard)

θ̃(n) = [I − µΣY Y]θ̃(n− 1)− µx̃(n)Y (n)

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 12/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

Analysis of the LMS-Algorithm

introduce
θopt = Σ−1Y Y ΣY x

x̂opt(n) = Y T (n)θopt

x̃(n) = x(n)− x̂opt(n)

θ̃(n) = θopt − θ̂(n)

the averaged system describing the error propagation

(blackboard)

θ̃(n) = [I − µΣY Y]θ̃(n− 1)− µx̃(n)Y (n)

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 12/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

Stability

the LMS-Algorithm is stable if the eigenvalues of I − µΣY Y

are strictly inside the unit circle

(blackboard)

stable if

0 < µ <
2

λ1

λ1 · · · largest eigenvalue of ΣY Y

also the mean of the parameter error θ̃(n) converges then to
zero

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 13/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

Stability

the LMS-Algorithm is stable if the eigenvalues of I − µΣY Y

are strictly inside the unit circle

(blackboard)

stable if

0 < µ <
2

λ1

λ1 · · · largest eigenvalue of ΣY Y

also the mean of the parameter error θ̃(n) converges then to
zero

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 13/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

More Properties of the LMS

Misadjustment (= steady state prediciton error)

for large n it holds that

MSELMS(n) ≈MSE(θopt)(1 +M)

where the Misadjustment M is given by

M ≈
µNσ2y

2

M is proportional to

the step-size µ
the number of parameters N
the signal power (variance) σ2

y

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 14/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

Properties of the LMS

thus there is a tradeoff between:

small µ− slow convergence, small misadjustment

large µ− fast convergence, large misadjustment

λ1
λN

large ⇒ slow convergence

λ1
λN

close to one ⇒ fast convergence

(contour plot)

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 15/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

Normalized LMS - NLMS

Stability and misadjustment depend on the signal power
(variance) σ2y

LMS can be made insensitive by normalizing the step size

µ(n) =
µ̄

c+ ||Y (n)||2

where c > 0 is a constant

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 16/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Derivation
Analysis
Properties
MATLAB-Demo

MATLAB-Demo

System identification

Would like to

identify an unknown FIR filter with LMS

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 17/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Analysis
MATLAB-Demo

Recursive Least Squares (RLS) - Algorithm

Problems with LMS:

Convergence rate is poor when ΣY Y is ill-conditioned (large
eigenvalue spread)

LMS is noise sensitive

To avoid this, use a MSE(θ) with:

second derivative information (Hessian)

a less noise sensitive approximation

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 18/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Analysis
MATLAB-Demo

Recursive Least Squares (RLS) - Algorithm

Use second derivative information and set to zero

since MSE(θ) is quadratic it holds for any parameter value θ

∂MSE(θ)

∂θ

∣∣∣∣
θ=θopt

=
∂MSE(θ)

∂θ
+
∂2MSE(θ)

∂θ2
(θopt − θ)

!
= 0

⇒ θopt = θ −
[
∂2MSE(θ)

∂θ2

]−1
∂MSE(θ)

∂θ

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 19/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Analysis
MATLAB-Demo

Recursive Least Squares (RLS) - Algorithm

Denote M̂SE
′

(n, θ) and M̂SE
′′

(n, θ) as approximations of
the first and second order derivative

θ̂(n) = θ̂(n−1)−µ
[
M̂SE

′′

(n, θ̂(n− 1))

]−1
M̂SE

′

(n, θ̂(n−1))

Use a less noise sensitve approximation for the MSE(θ) e.g.

M̂SERLS(n, θ) =
n∑
k=1

λn−k(x(k)− Y T (k)θ)2

where 0 < λ ≤ 1 is known as the forgetting factor

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 20/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Analysis
MATLAB-Demo

Recursive Least Squares (RLS) - Algorithm

Define

Σ̂RLS
Y x (n) =

n∑
k=1

λn−kY (k)x(k)

Σ̂RLS
Y Y (n) =

n∑
k=1

λn−kY (k)Y T (k)

Derive the corresponding gradient and Hessian approximations
of the M̂SERLS (blackboard)

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 21/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Analysis
MATLAB-Demo

Recursive Least Squares (RLS) - Algorithm

approximation of the M̂SERLS

⇒ ∂

∂θ
M̂SERLS(n, θ) = −2Σ̂RLS

Y x (n) + 2Σ̂RLS
Y Y (n)θ

⇒ ∂2

∂θ2
M̂SERLS(n, θ) = 2Σ̂RLS

Y Y (n)

plug into weight update criterion and get

basic form of the RLS-Algorithm (with µ = 1)

θ̂(n) = θ̂(n− 1) +
[
Σ̂RLS
Y Y (n)

]−1
(Σ̂RLS

Y x (n)− Σ̂RLS
Y Y (n)θ̂(n− 1))

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 22/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Analysis
MATLAB-Demo

Alternative expression of RLS and comparison to LMS

RLS can be rewritten as

RLS-Algorithm (µ = 1) [1]

θ̂(n) = θ̂(n− 1) +
[
Σ̂RLS
Y Y (n)

]−1
Y (n)[x(n)− Y T (n)θ̂(n− 1)]

with Σ̂RLS
Y Y (n) =

∑n
k=1 λ

n−kY (k)Y T (k)

Recall LMS-Algorithm (µ = 1)

θ̂(n) = θ̂(n− 1) + Y (n)[x(n)− Y T (n)θ̂(n− 1)]

⇒ only difference is the update direction

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 23/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Analysis
MATLAB-Demo

Analysis of the RLS-Algorithm

How does the forgetting factor λ influence the covariance matrix?

λ = 1: all data are treated equally (no forgetting)

λ < 1: old data has less influence (able to adapt changing
signal properties)

Computational complexity:

O(N3) for the RLS-Algorithm

([
Σ̂RLS
Y Y (n)

]−1)
with Matrix Inversion Lemma [1] ⇒ O(N2)

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 24/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Analysis
MATLAB-Demo

Analysis of the RLS-Algorithm

Misadjustment:

for λ = 1:

M =
N

n

for λ < 1:

M =
(1− λ)N

2

independent of signal power (variance)

decays for large n (for the case where λ = 1)

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 25/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Analysis
MATLAB-Demo

MATLAB-Demo

System identification

Would like to

identify an unknown FIR filter with RLS

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 26/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Analysis
MATLAB-Demo

MATLAB-Demo (Comparison between LMS and RLS)

Noise Cancellation

Figure: Source: [1]

s(n) ... signal of interest
x(n) ... disturbance
x̂(n) ... estimated disturbance (with adaptive filter)
ŝ(n) ... estimated signal of interest

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 27/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Properties
Simulation

Kernel-LMS

Why kernels?

Non-linear adaptive filters require a training set

Kernel Methods:

proposed to produce non-linear algorithms from linear ones
expressed with inner product by employing the kernel trick

Idea:

Apply the LMS directly in kernel feature space and employ the
kernel trick to obtain the solution in the input space

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 28/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Properties
Simulation

Kernel Methods

Map data xi from input space to high-dimensional feature
space using mapping Φ(xi)

⇒ Non-linear mapping

Kernel function:

κ(xi, xj) = 〈Φ(xi),Φ(xj)〉

Gaussian kernel:

κ(x, y) = exp

(
−||x− y||

2

2σ2

)
⇒infinite dimensional Hilbert space

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 29/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Properties
Simulation

Kernel Methods

Map data xi from input space to high-dimensional feature
space using mapping Φ(xi)

⇒ Non-linear mapping

Kernel function:

κ(xi, xj) = 〈Φ(xi),Φ(xj)〉

Gaussian kernel:

κ(x, y) = exp

(
−||x− y||

2

2σ2

)
⇒infinite dimensional Hilbert space

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 29/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Properties
Simulation

From LMS to Kernel-LMS

LMS-Algorithm

θ(n) = θ(n− 1) + µY (n)[x(n)− Y T (n)θ(n− 1)︸ ︷︷ ︸
e(n)

]

transfom to feature space using mapping Φ(Y (n))

Ω(n) = Ω(n− 1) + µΦ(Y (n))e(n)

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 30/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Properties
Simulation

From LMS to Kernel-LMS

Ω(n) = Ω(0)︸︷︷︸
=0

+µ

n−1∑
i=0

e(i)Φ(Y (i))

Now exploit the kernel trick:

x̂(n) = 〈Ω(n),Φ(Y (n))〉 = µ

n−1∑
i=0

e(i)〈Φ(Y (i)),Φ(Y (n))〉

Kernel LMS Algorithm

x̂(n) = µ
n−1∑
i=0

e(i)κ(Y (i), Y (n))

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 31/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Properties
Simulation

From LMS to Kernel-LMS

Ω(n) = Ω(0)︸︷︷︸
=0

+µ

n−1∑
i=0

e(i)Φ(Y (i))

Now exploit the kernel trick:

x̂(n) = 〈Ω(n),Φ(Y (n))〉 = µ

n−1∑
i=0

e(i)〈Φ(Y (i)),Φ(Y (n))〉

Kernel LMS Algorithm

x̂(n) = µ
n−1∑
i=0

e(i)κ(Y (i), Y (n))

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 31/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Properties
Simulation

Properties

unique solution, because it solves a quadratic problem in
feature space

weights of the filter are never used explicitly

order of the filter is not user controllable

present output x̂(n) is determined by:

previous inputs Y (n)

all previous errors e(i)

⇒ can be computed in input space

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 32/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Properties
Simulation

More Properties

Computational complexity:

O(N) for each output sample, if errors are reasonable small
after N samples

No need for regularization [2], [5]:

because of the non-parametric improvement in the output
samples (believed)

Stepsize µ controls the convergence, speed and misadjustment

just like for the LMS-Algorithm

µ is upper bounded by the largest eigenvalue of the data
covariance

lies in feature space
difficult to estimate

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 33/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Properties
Simulation

Simulation

One-step ahead prediction of Mackey-Glass time series
Setup:

normalized input data σ2 = 1
step size µ = 0.01 for LMS
µ = 0.5 for KLMS

Figure: left: learning curves; right: error samples for KLMS [2]
Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 34/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Kernel-RLS

Basic Idea: Extend the linear Least Squares (LS) method to a
non-linear version by transforming the data into feature space

consider the LS criterion

J = min
θ
||x−YT θ||2

with a given vector x ∈ RN×1 and a data matrix
YT ∈ RN×M of observations, θ ∈ RM×1 the solution vector

transform data to feature space, where θ
′ ∈ RM ′×1 and

Y
′ ∈ RN×M ′

J ′ = min
θ′
||x−Y′T θ′||2

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 35/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Kernel-RLS

Basic Idea: Extend the linear Least Squares (LS) method to a
non-linear version by transforming the data into feature space

consider the LS criterion

J = min
θ
||x−YT θ||2

with a given vector x ∈ RN×1 and a data matrix
YT ∈ RN×M of observations, θ ∈ RM×1 the solution vector

transform data to feature space, where θ
′ ∈ RM ′×1 and

Y
′ ∈ RN×M ′

J ′ = min
θ′
||x−Y′T θ′||2

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 35/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Kernel-RLS

The transformed solution θ′ can also be represented in the
basis defined by the rows of the transformed matrix Y′ with
the solution vector α ∈ RN×1 (high dim. of M ′)

θ′ = Y′Tα

Introduce the kernel matrix K = Y′Y′T

The LS problem in feature space:

J ′ = min
α
||x−Kα||2

Take usage of the kernel trick (Gaussian Kernel):

K(i, j) = κ(YT
i ,Y

T
j)

YT
i and YT

j are the i-th and j-th rows of YT

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 36/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Kernel-RLS

The transformed solution θ′ can also be represented in the
basis defined by the rows of the transformed matrix Y′ with
the solution vector α ∈ RN×1 (high dim. of M ′)

θ′ = Y′Tα

Introduce the kernel matrix K = Y′Y′T

The LS problem in feature space:

J ′ = min
α
||x−Kα||2

Take usage of the kernel trick (Gaussian Kernel):

K(i, j) = κ(YT
i ,Y

T
j)

YT
i and YT

j are the i-th and j-th rows of YT

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 36/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Measures Against Overfitting

Dimension of feature space M ′ often higher than the number
of available data points N (M ′ =∞ for Gaussian kernel)

J ′ can have an infinite number of solutions

Overfitting problem

One possible solution: Regularize the solution vector α

Penalize the norm of θ′

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 37/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Measures Against Overfitting

Rewriting the problem:

J ′′ = min
θ′
||x−Y′T θ′||2 + c||θ′||2 = min

α
||x−Kα||2 + cαTKα

with the solution

α = K−1regx

and
Kreg = K + cI

c is a regularization constant

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 38/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

A sliding window approach

Taking only the last N pairs of input-output pairs
{(y1, x1), (y2, x2), . . .} into account

we get the regularized kernel matrix

Kn = YnY
T
n + cI

xn = [x(n), x(n− 1), . . . , x(n−N + 1)]

Yn = [y(n),y(n− 1), . . . ,y(n−N + 1)]

This reduces the complexity of the algorithm

track changes without any extra burden

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 39/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Updating the Kernel Matrix

The updated solution: αn = K−1n xn

Update the Kernel Matrix Kn as follows:

Kn =

[
K̂n−1 kn−1(xn)

kn−1(xn)T knn + c

]
where K̂n−1 is Kn−1 removed by the first row and column
kn−1(xn) = [κ(xn−N+1,xn), . . . , κ(xn−1,xn)]
knn = κ(xn,xn)

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 40/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Summary of the Kernel-RLS algorithm

Initialize K0 as (1 + c)I and K−10 as I/(1 + c)
for n = 1, 2, . . . do

1 Obtain K̂n−1 out of Kn−1
2 Calculate K̂−1n−1
3 Obtain Kn

4 Calculate K−1n (blackboard)

5 Obtain the updated solution αn = K−1n xn

end for

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 41/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Analysis of Kernel-RLS algorithm

calculating K−1n explicitly would cost computationally and
memory-wise O(N3) operations for each window

derive them from known matrices ⇒ O(N2)

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 42/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

Conclusion

Basic algorithms LMS and RLS

Kernel LMS

Kernel RLS

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 43/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

References

[1] Håkan Hjalmarsson, Björn Ottersten (2002). ”Lecture
Notes in Adaptive Signal Processing”. Kungliga Tekniska
Högskolan, Royal Institute of Technology, Department of
Signals, Sensors and Systems

[2] Puskal P. Pokharel, Weifing Liu, Jose C. Principe
(2007). ”Kernel LMS”. Computational NeuroEngineering
Laboratory, University of Florida, Department of Electrical and
Computer Engineering, ICASSP 2007

[3] Bernhard Schölkopf, Alexander J. Smola (2002).
”Learning with Kernels”. Massachusetts Institute of
Technology (MIT)

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 44/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

References

[4] Steven van Vaerenbergh; Javier Via; Ignacio
Santamaria (2006). ”A Sliding-Window Kernel RLS
Algorithm and its Application to Non-linear Channel
Identification”. University of Cantabaria, Spain, Department of
Communications Engineering, ICASSP 2006

[5] Weifing Liu, Puskal P. Pokharel,Jose C. Principe
(2008). ”The Kernel Least-Mean-Square Algorithm”.
Computational NeuroEngineering Laboratory, University of
Florida, Department of Electrical and Computer Engineering,
2008-February

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 45/46

Motivation
LMS
RLS

Kernel-LMS
Kernel-RLS

References

[6] Christoph Krall (2008). ”Lecture Notes in Adaptive
Systems”. Graz University of Technology, Department of
Signal Processing and Speech Communication Laboratory

[7] Ragnar Thobaben (2009). ”Lecture Notes in Advanced
Digital Communications”. Kungliga Tekniska Högskolan, Royal
Institute of Technology, Department of Electrical Engineering

Manuel Forrer, Markus Fröhle LMS/RLS Kernel-LMS/RLS 46/46

	Motivation
	LMS
	
	
	
	

	RLS
	
	

	Kernel-LMS
	
	

	Kernel-RLS

