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Motivation

Supervised Classification is one of the main components in Machine
Learning

The goal is to find a Classification Algorithm which is able to
separate the data

while beeing as simple as possible

Usually simple Algorithms need only a small number of training
examples to work well enough

LDA is based on quite simple assumptions

Extension by Kernels allows solving more complex problems
efficiently
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Supervised Learning

Given some training examples xi ∈ X i = 0..N − 1

and given the corresponding class labels Yi ∈ Y i = 0..N − 1,

try to find the ”best” hypothesis Hopt ∈ H : X → Y.

So learning is a mapping (xi , yi ) ∈ X × Y → H i = 0..N − 1

But what means ”best”??
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Optimal Hypothesis

We need to measure the quality of a hypothesis

One possibility: error(H) = E {d(H(x), y)}

Typically with d : Y × Y →

{
0 x = y

1 x 6= y

Optimality Criterion

The optimal hypothesis Hopt minimizes the expectation of the
classification error:

Hopt = arg min
H∈H

E {d(H(x), y)} (1)

Problem: Typically the hypothesis space H is extremely large.
Possible solution: Restrict H to a special class of parameterized
hypotheses and try to learn the parameters (e.g. polynomial base
functions).
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How to decide between classes?

Every hypotheses produces a decision boundary (→ discriminant
function)

Structure depends on the hypothesis class H (e.g. linear, RBF,...)

Best hypothesis class is strongly depending on problem

→ class seperability!
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Class Seperability

Linear Seperability: We call two classes linearly seperable if they
can be seperated by a linear discriminant function

Nice to have, but quite rare

In all other cases we will need nonlinear discriminant functions
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Examples (1)

Figure: Two classes which are linearely seperable
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Examples (2)

Figure: Two classes which are not linearely seperable
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What it is...

Common method in statistics / machine learning

Typically used for classification / dimensionality reduction

Definition (binary case)

Given an N-dimensional feature space X , examples xi
1 ∈ X belonging to

class 1 and examples xj
2 ∈ X belonging to class 2, find a linear

(N − 1)-dimensional subspace X̂ ⊆ X which best seperates classes 1 and
2.

The subspace X̂ is represented by its normal vector wT (wT x = const.).
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Illustration

Figure: Many possibilities for seperation
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Remarks

Basically, LDA does not define how wT is found

But typically LDA is associated with Fisher’s Discriminant Analysis

In this presentation we will consider FDA
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Fisher’s Idea

Definition of an optimality criterion which allows us to determine wT

Fisher’s Optimality Criterion

Choose a direction wT that maximizes the Within Class Variance while
minimizing the Between Class Variance.
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Illustration of the FDA principle

Figure: Source: [Mika, 2002]
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Formulation

We define:

Mean of Class 1: m1 = E {x1}
Mean of Class 2: m2 = E {x2}
Projected Mean of Class 1: µ1 = wT m1

Projected Mean of Class 2: µ2 = wT m2

Variance of projected Class 1: σ2
1 = E

{
(wT x1 − µ1)2

}
Variance of projected Class 1: σ2

2 = E
{

(wT x2 − µ1)2
}

We consider the ratio of between class variance and within class
variance

J(w) =
(µ1 − µ2)2

σ2
1 + σ2

2

(2)

gives us the following optimization problem:

w = arg max
w∈X

J(w) (3)
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Determining w

It can be shown (blackboard) that

J(w) =
(µ1 − µ2)2

σ2
1 + σ2

2

=
wT Sbw

wT Sw w
(4)

with
Sb = (m1 −m2)(m1 −m2)T (5)

and
Sw = Cx1x1 + Cx2x2 (6)

wT Sbw
wT Sw w is known as the rayleigh coefficient,

which can be maximized in closed form with respect to w
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Determining w (2)

Solution

Fisher’s optimal direction can be determined as

w = S−1
w (m1 −m2) (7)

The discriminant function is then given by

wT x = w0 =
wT (m1 + m2)

2
(8)
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Classifying new Data Points

Check if the data point xnew lies ”above” or ”below” the resulting
hyperplane

HLDA : X → Y =

{
Class1 wT xnew < w0

Class2 wT xnew ≥ w0

(9)

Can also be interpreted as projecting the data point onto w and
checking the decision threshhold w0 in the reduced subspace (see
MATLAB demo!)
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Optimality

In many cases, clusters follow a normal distribution

Knowing the gaussian class densities p1(x) ∼ N (m1,Σ1) and
p2(x) ∼ N (m2,Σ2), an optimal decision boundary can be
determined by setting

p1(x) ≡ p2(x). (10)

It can be shown that if Σ1 = Σ2 = Σ, the decision boundary takes a
linear form:

wT x = const. (11)

Does LDA produce the optimal gaussian decision boundary?
(blackboard)

Yes it does!
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We get similar results for Bayesian models

BUT: Class priors must be equal!
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In some cases LDA yields bad results

Trivial: If data is not linearly separable

Can be really bad, even if data is linearly separable

Often if underlying densities are complex (e.g. multi-modal)
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Shortcomings of Fisher Discriminant

Limited on linear discriminant functions...

...limited in complexity of problems which can be solved
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Shortcomings of Fisher Discriminant

Figure: Two classes which are not linearly separable
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Advantages of Kernels

Proper solution to more complex, nonlinear problems

Linear discriminant functions in higher (even infinitely high)
dimensional feature space...

...complex, nonlinear discriminant function in input space

Kernel trick

Computational benefits

Kernels are not restricted to vectorial data - e.g. Strings
([Blaz, 2004], [Lodhi et al., 2002]) or Graphs ([Zhou et al., 2009])
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Idea of how to use a kernel

As linear discriminants are not enough for real world data...

...look for non-linear discriminants

Map the data non-linearly to a feature space F ...

...compute Fisher Discriminant there, yielding a non-linear
discriminant in input space
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Recap

For the Fisher Discriminant we had to optimize:

J(w) =
(µ1 − µ2)2

σ2
1 + σ2

2

=
wT Sbw

wT Sw w
(12)

with
Sb = (m1 −m2)(m1 −m2)T (13)

and
Sw = Cx1x1 + Cx2x2 (14)

and
mi = E {xi} (15)
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Formulation of the non-linear mapping Φ

J(w) =
wT SΦ

b w
wT SΦ

w w

with: SΦ
b = (mΦ

1 −mΦ
2 )(mΦ

1 −mΦ
2 )T

mΦ
i = E {Φ(xi )}

SΦ
w = CΦ

x1x1
+ CΦ

x2x2

CΦ
xixi

= E
{

(Φ(xi )−mΦ
i )(Φ(xi )−mΦ

i )T
}

BUT NOW: w ∈ F
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Kernel trick

Kernel trick!!!

Need a formulation of
wT SΦ

b w
wT SΦ

w w with only dot-products

〈Φ(x),Φ(y)〉 → k(x, y)

Then we can use different kernels (RBF, Polynomial, ...) to do the
computation efficiently, without explicitly map to the feature space
F
As numerator and denominator are both scalars, reformulation can
be done independently
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Reformulation of numerator

Problem: J(w) =
wT SΦ

b w
wT SΦ

w w

Numerator: wT SΦ
b w = wT (mΦ

1 −mΦ
2 )(mΦ

1 −mΦ
2 )T w

Theory of RKHS: w =
∑M

x∈Z αxΦ(x)

mΦ
i = E {Φ(xi )}

Solution: αT Mα

where M = (Kx̄1 −Kx̄2 )(Kx̄1 −Kx̄2 )T
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Reformulation of numerator

Problem: J(w) =
wT SΦ

b w
wT SΦ

w w

Numerator: wT SΦ
b w = wT (mΦ

1 −mΦ
2 )(mΦ

1 −mΦ
2 )T w

Theory of RKHS: w =
∑M

x∈Z αxΦ(x)

mΦ
i = E {Φ(xi )}

Solution: αT Mα

where M = (Kx̄1 −Kx̄2 )(Kx̄1 −Kx̄2 )T
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Kernel Fisher Discriminant Solution

Solving the Kernel Fisher Discriminant by:

Optimization Problem

J(α) =
αT Mα

αT Nα
(16)

solve like the Fisher Discriminant, Eigenvector problem

Projection of new example xnew onto w:

Projection of new example xnew onto w

wT Φ(xnew ) =
M∑

x∈Z
αxk(x, xnew ) (17)
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Some useful facts

Regularization ([Mika, 2002])

Choice of an optimal kernel ([Kim et al., 2006])

Computational efficiency - Kernel Matrix

Approximation algorithms ([Mika, 2002])
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Example to KFD from ([Knaf, 2007])

Figure: Input data X = X1 ∪ X2, Source: [Knaf, 2007]
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Approach

Separate the data by:

Kernel Fisher Discriminant with different Kernels

Gaussian Kernel: K (x1, x2) = e−
‖x1−x2‖

2

h2

Polynomial Kernel: K (x1, x2) = (〈x1, x2〉+ c)3

Comparison to simple Fisher Discriminant
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Discriminant function of the KFD with Gauss-Kernel

Figure: Source: [Knaf, 2007]
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Discriminant function of the KFD with Polynomial-Kernel

Figure: Source: [Knaf, 2007]
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Distributions of the data points projected on the
discriminant functions

Figure: Source: [Knaf, 2007]
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Solution of the simple Fisher discriminant function

Figure: Source:[Knaf, 2007]
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Demo

MATLAB Demo...
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