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Motivation

Feature extraction
 Find a common structure in data

Dimensionality reduction
» Represent the most important part of the data in a lower dim

Blind source separation
« Separate data without prior knowledge of the mixing process

Signal processing in feature space
* Artifact removal from data

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Outline

« Unsupervised Learning

« Basic ICA

* Matlab examples

* Applications

* Matlab examples

 Kernel ICA

* Matlab examples

 Conclusion
 Literature

. Lukas Pfeifenberger

Salzburg, November 2009

ICA and Kernel ICA
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Unsupervised learning

* |s a descriptive model

« Goal:
* Finds structure in the data (feature extraction)
« Dimensionality reduction with minimal information loss

* Problems:
« Separability should be maximized
* Number of necessary features should be minimized
* No means of a perfect solution (unsupervised)

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Unsupervised learning

* Represents the data in feature space

« Feature space can be
» Higher-dimensional to find a hyperplane for separation
« Lower-dimensional to omit unnecesary information

- Different properties can be optimized:
- PCA (maximal variance, uncorrelated, orthogonal data)
* CCA (maximal correlation)
« ICA (maximal non-gaussianity, independent data)

. Lukas Pfeifenberger Salzburg, November 2009

ICA and Kernel ICA

5



SPSC - Signal Processing & Speech Communication Lab ﬂ-le-rg-

PCA vs. ICA

« Coordinate transform to an orthogonal basis where the data is
uncorrelated

« Dimensionality reduction that preserves maximum variance and
minimizes the mse

n
T
Y1 = Zwklxk =WwW; X
k=1
« ylisapcofx, if its variance E{y7} is maximal

- - find a weight vector w that maximizes the variance
- Constraint: ||wi|| =1

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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PCA vs. ICA

« Maximizing variance:

T
w Cw

T
W W

02 = E[(x'W)’] =W E[xx' W -

W

w _ 2 2 . 2
_WTW(CW—O'VAVW) =0 = Cw=o,w

« Problem of finding the eigenvalues of C:

C-= Zﬂ,,.el.el.T

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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PCA vs. ICA

« Maximizing variance:
» C has n orthogonal eigenvectors E:

E{xx’} = EDE”

« Eigenvalues as diagonal matrix D:
D = E' E{xx"} E = E{E'xx"E} = E{zz'}

« Eigenvectors are sorted after descending eigenvalues D

« This also minimizes the mse when discarding the PCs with the
smallest eigenvalues:

T = B} - B (w0?)

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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PCA vs. ICA

« PCA algorithms:

« Closed-form: decomposition of the cov matrix C in eigenvectors
E and eigenvalues D

* on-line: calculates a PC at a time
« Stochastic gradient descent
» Recursive least squares

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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PCA vs. ICA

* Properties:

- Dimensionality reduction of input vector x

* Preprocessing step to ICA if the mixing matrix A is rectangular or
noisy components need to be removed

« The eigenvalues of C are an orthogonal basis for the input x

 zis uncorrelated, scaling it to unit variance makes it white.
Whitening is an important preprocessing step to ICA.

- Whitening means: cov(z) =1

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Whitening

* Whitening of x
+ Find a whitening matrix V that spheres x:

z = VX
E{zz!} =1

« V can be obtained from the eigenvalues and —vectors of C

vV =D"1/2g"

 (blackboard)

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Whitening

* Any arbitrary matrix UV is can be a whitening matrix, as long as
U is orthogonal:

E{zz'} = UVE{xx"}VTU" = UIU! =1

* Another example is the inverse square root of the cov matrix:

c'? = ED-1/2ET

« Whitening = decorrelation + scaling

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Basic ICA

« PCA does only half the trick:

« PCA yields uncorrelated components

* |CA extends PCA:

« ICA yields uncorrelated and independent components

« PCA can be used as preprocessing for whitening and
dimensionality reduction

. Lukas Pfeifenberger Salzburg, November 2009

ICA and Kernel ICA

13



SPSC - Signal Processing & Speech Communication Lab ﬂ-le-rg-

Basic ICA

* Basic ICA model

 Unknown sources s
« Unknown mixing matrix A
* Observed mixtures x

X = As

- Goal: estimate A and its inverted matrix only from the PDF of x

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Basic ICA

 Model restrictions

* sis assumed to be statistically independent

P(Y1,Y2, s Yn) = P1(y1)P2(Y2).-.Pn(Yn)

* This holds for most BSS situations

* The independent components s must not have a gaussian
distribution up to one (see later)

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Basic ICA

* Model restrictions
A must be invertible so that its inverse B exists:

s = Bx

* The mixing matrix A cannot model:
* uncorrelated noise:

X = As+n

* time lags in the observations x
« convolved mixtures of x
* Nonlinear mixtures

« extensions to address these problems do exist

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Basic ICA

« Ambiguities

« The variances (and hence energies and amplitudes) of s cannot
be estimated, because:

x = 3 (=ai)(sia)

Q'

- therefore, the variance of s is initially set to 1 by whitening

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Basic ICA
* Ambiguities
« The order of the independent components in s cannot be

determined, because a permutation matrix P:

x = AP 1Ps
 ...would simply result in an unknown, new mixing matrix:

AP~!

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Basic ICA

« Example:

« Generate two uniformly distributed variables and a mixing
matrix A

« Subtract the sample mean from observations x
« Sphere the data with the whitening matrix V
* Do a PCA and ICA and compare the results

- matlab example pca_vs_ica.m

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Basic ICA

* Main difference between PCA and ICA:

3 3 1
0.8+
2 Y 0.6
1l n 0.4+
0.2¢
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-1r g 'r s . 1 -1F —04
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(a) Original (b) After PCA pre-whitening (c) After ICA projection
« Taken from: http://ict.ewi.tudelft.nl/~dick/cvonline/ica/
. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Basic ICA

* uncorrelatedness:

COV(ylnyz) = E{y1y2}_E{y1}E{y2} =0

E{yy' y=cov(y) =1

* is a property of the PCA, but not sufficient for the ICA
* Independence implies uncorrelatedness, but not vice versa

cov(y)=1

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Basic ICA

* Sphering
« Solves the ICA problem up to an orthogonal transformation
« Can be done by PCA with a whitening matrix:

V =ED'/?ET

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Basic ICA

* Problem with gaussian inputs
«  Whitening makes the mixing matrix A orthogonal:

z=Vx =VAs = As

AAT =1

. Therefore, 4 does not change the joint pdf of z1 and z2:

p(zl,z2) =— exp[ HSH ]
2

» (blackboard)

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA

23



SPSC - Signal Processing & Speech Communication Lab ﬂ-le-rg-

Basic ICA

* Problem with gaussian inputs
* Density is rotationally symmetric:

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Basic ICA

 Solving the ICA problem

« Measures of mutual independence:

« Maximum likelihood
* [nformation maximization

« Higher-order statistics:
« Kurtosis
« Negentropy

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Maximum likelihood

 Basic log likelihood function with the parameterr :

« Maximum likelihood estimate forr :

ol N-1 d L N—1 o
oy ZT'Og{p(%m;r)} = — Y o(=x¥;T)
Vi =0 i “

« With the score function® as an prior assumption of the real pdf
of X

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Maximum likelihood

* Density of the ICA mixture model:

po(x) = | det B| | | pi(b] x) B=A"! x=As

* Log likelihood:

1 n
T log L(B) = E{Zlogpi(bgnx)} + log | det B|
i=1

- Gradient of the log-likelihood with the score function g:

1 dlogL . piy T - — (1o _,:p_;;
o =BT + E{gBx)x"} g (logp;) 0.

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Maximum likelihood

« Natural gradient algorithm:

AB x (I+E{g(y)y'})B

« The pdf of x is not known exactly, the model distinguishes only the
super- and subgaussian case:

log pi (s) = a1 — 2log cosh(s)
log p; (s) = a2 — [s%/2 — log cosh(s)]
» Which results in a score function for supergaussian ICs:

9" (y) = —2tanh(y)

» And another for the subgaussian case:
g9~ (y) = tanh(y) —y

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Maximum likelihood

 Algorithm:
* Initialize the separation matrix B with random values
- Compute y = Bx
« Choose a learning rate ¢ and p-
« Update vi = (1 — 14)%i + py E{~ tanh(y;)y; + (1 — tanh(y;)*)}
* coose g+if vi >0, else g-
« Update the seperating matrix: B « B+ u[I+g(y)y’|B
- Repeat until the convergence criterion: E{g(y)y’} =1
is met.

 This algorithm is also used by FastICA

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Information maximization

* Infomax principle:
« The entropy from the outputs y =s = Bx is maximized:

H(y) = H(¢1(b{x), ..., pn(bp X))

« The entropy of the outputs can be expressed as the entropy of
the inputs x plus the entropy of the transformation x — s :

H(y) = H(x) + B{log| det 52 (<)]}

- Withaset F(x) = (¢1(w{x), ..., op(wlx))
of nonlinear output functions oF

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Information maximization

* Infomax principle:
« Taking a closer look at the derivative of F(x)

aF -
Eflog|det == (x Z E{log¢)(b!'x)} + log | det B|

« The output entropy is of the same form as the log likelihood on
slide #27

« The pdfs of the outputs y are replaced by the nonlinear output
functions ¢; , these would be the same as the score functions g

- - infomax and mle algorithm are identical

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Maximization of nongaussianity

* ICA by maximization of nongaussianity

« Gaussian PDFs cannot be separated

« According to the CLT, the sum of two independent variables
tends towards a gaussian distribution

 |dea: maximization of non-gaussianity also maximizes
independence

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Maximization of nongaussianity

« Linear mixtures tend towards a gaussian density:

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Kurtosis

* Measure of non-gaussianity:
« Kurtosis or curvature of the density of y:

kurt(y) = E{y*} — 3(E{y*})?

« Assumptions: y has already zero mean is whitened,
so that the variance = 1:

kurt(y) = E{y*} -3

. Lukas Pfeifenberger Salzburg, November 2009

ICA and Kernel ICA
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Kurtosis

« Kurtosis for a laplacian and an uniform distribution, both with
unit variance:

supergaussian: subgaussian:
kurt(y) > 0 kurt(y) <O
. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Kurtosis

Kurtosis is zero for a gaussian density
» Positive for a supergaussian
» Negative for a subgaussian

Maximizing ‘kurt(y)‘ equals maximizing the non-gaussianity of y.
By whitening:z = Vx

« z was defined to unit variance

 and because of the 2" ambiguity of the ICA, y also has unit variance

- therefore: ||w| =1 becauseof: y = wlz

- search for the angle in w that maximizes \kurt(y)\

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Kurtosis

* The whitening step already made the data uncorrelated and
normalized it to unit variance.

« The only step left is to find the angle in the demixing matrix w
that makes the output y- independent:

reger

0.5 1 1.5 2 2.5 3 3.5
angle of w

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Kurtosis

* The extrema of kurtosis occur at the correct angle of w
- Calculating the derivative with respect to w

O|kurt(w’ z)]
ow
* results in a simple gradient algorithm:
Aw o sign(kurt(w!z))E{z(w!z)3}

w — w/|[w|

— 4 sign(kurt(w’z))[E{z(wTz)?} — 3w||w]|?]

* dividing by the norm of w keeps the variance to 1

- The term 3w||w||* does only change the norm, and can thus be
omitted.

« This algorithm is also used by FastICA

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Negentropy

* Problems with kurtosis:

- Sample outliers get massively amplified by the fourth moment
E{y"} - 3(E{y*})’

- Better: estimate the non-quadratic moment from kurtosis by
nonlinear functions G

« Computationally more complex, but also more stable

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Negentropy

* Negentropy

« A gaussian RV has the largest entropy amongst all RVs with
equal variance = The normalized entropy, or negentropy J can
be used as a measure of non-gaussianity:

H(y) = — / py(n) log p,(n)dn

J(y) — H(ygauss) o H(y)

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Negentropy
* Negentropy

* Approximation:

1 1
~ —FE{y’Y + = 2
J(y) B {v’}" + 48kurt(y)

« Approximation by a nonlinear function G:
J(y) o< [E{G(y)} — E{G(v)}]"

* V is a gaussian with zero mean and unit variance.

- G is basically a compromise between approximating kurtosis and
avoiding the fast-growing fourth power. Usually it is set to:

1

Gi(y) = alog coshayy or Ga(y)=— exp(_yQ/Q)

based on heuristic search

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Negentropy

Algorlthm

Whiten the input data x and remove its mean
« Choose an initial value for w and~y
- Update Ay o (G(wlz)—E{G(v)})—
- Update Aw o yzg(w!z)
» g is the derivative of G
« Normalize w < w/||w|| to attain unit variance
« Repeat until the convergence criterion: E{g(y)y’} =1

IS met.

« This algorithm is also used by FastICA

. Lukas Pfeifenberger Salzburg, November 2009

ICA and Kernel ICA
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Basic ICA

- Efficient fixed-point implementation of maximum
likelihood estimation, kurtosis and negentropy:

* FastICA toolbox

« Matlab demo using kurtosis: fastica_test.m

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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ICA Applications

* Popular applications:
« Feature extraction of natural images
« Blind source separation (cocktail party phenomenon)
* Image denoising
- EEG signal separation

. Lukas Pfeifenberger Salzburg, November 2009

ICA and Kernel ICA
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Feature extraction of natural images

« Feature extraction of natural images done by Marian Stewart
Bartlett et. al. on examples of the FERET database:

S X U
>A<
Sources  Unknown Face Learned  Separated
Mixing Images Weights  Outputs
Process

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Feature extraction of natural images

« PCA detects global features. ICA local ones.

[

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Blind source separation by ICA and ABF

* Quite realistic model done by Hiroshi Saruwatari et. al. for real-
world speech signals:

{ Source signal S ] ‘ Observed signal X ] { Unmixed signal Y ]

Hello‘ Wl’ﬂng‘ W Hello!
L@ X, o5 ®-0] v,
H2 2
Morning! 2 M@'Tﬂng' 19 Morning!

S, TH” _" X, @_’H:I Y,

Mlxlng system H Unmlxmg system W
* delay *Estimate S, and S,
* attenuation

* reverberation using only X, and X,

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Blind source separation by ICA and ABF

« Their idea: beamforming in the FD with a subband ICA
 Straight-line ABF:

A
Sound
Sound won] source 2 Sound
source | sOLrCe !
B
i
= " =
ol
Microphone | Microphone &
(d = dy) T (d = dy )
. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Blind source separation by ICA and ABF

[fjlulf_ﬂ -4|!,f._f:l—|
* The mixing matrix ai)=| :
L"xmi_f.i -%;LL’._HJ
 consists of convolution kernels instead of mixing ratios
« models echo paths and time delays and their change with time

m Xi(f.t)
3 ﬂ >
o~ |

As :
'."-l.—.|..\:|||.I = W/ l||' | X ,'I- ) 3‘-|3:,|]:.]|H

Yif i Separated
0

st-DFT [ Aatirmion WY o phap
v v | Up_-u mize Wi/ :I !-.L‘:-lhdl |

| Yilf, thand Yalf, t) |

- Jﬂ‘\ | are mutually independent |

> ¢ ) S e s

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Blind source separation

* The delay-and-sum beamformer is realized in the FD.

« The elements of the mixing matrix turn from convolutive mixtures in
TD into a cross-correlation index per subband in FD.

» Hence the ICA can be done on each frequency bin over multiple
st-DFTs to obtain an unmixing matrix for each bin.

* Problems:

« Permutation ambiguity must be solved for each frame.
 Original volume is lost (ICA assumes unit variance)

« matlab demo: bss test.m

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Image denoising with sparse code shrinkage

- An Image is represented by a minimal number of basis vectors
« Similar to wavelet decomposition or Gabor analysis

+ Image x is modeled as clean image s with noise: x =s+vVv
. . . . 2
* V is a gaussian with zero mean and variance o

* A set of basis vectors W is obtained by a noise (and very large)
free training set of patches of natural images with the ICA.

« Typically 50,000 patches with 16x16 pixels [1][12].

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Image denoising with sparse code shrinkage

« Advantage of ICA:
« Gabor functions or the mother wavelet have to be chosen carefully.
 |CA finds the best basis vectors from small patches of natural images.

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Image denoising with sparse code shrinkage

« With the basis vectors W, the noisy image x can now be
represented as:

y=Wx

+ For optimal W, the components y, will have a sparse distribution.
A shrinkage nonlinearity g, is now applied to y:

u, = g,(y,)

- The shrinkage nonlinearity is defined with the noise variance o :
1
| +02a

g(u) = sign(u) max (0, [u| — ho?)

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Image denoising with sparse code shrinkage

- The shrinkage nonlinearity is defined with the noise variance o :

I

sign(u) max (0, [u| — bo?)

glu) = | +62a

- The components u, which only represent noise are wiped out from
the sparse representation

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Image denoising with sparse code shrinkage

* The noise-free image is reconstructed by transforming the
sparse, noise-free representation u, back:

|
- 7 | |
S, =W'u, -—u1-+u2.+...+un.

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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EEG signal separation

« Artifact identification and removal from EEG:

- EEG data is corrupted by muscle activity, like eye movement.

* Instantaneous mixing mode of the ICA is valid:
» Source signals are statistically independent

» No considerable reflections or time delays since all measured signals
lie well below 1kHz

« But the mixing matrix A is non-stationary - use small time frames and
batch algorithms

» FastlCA achieves good results for small data sets

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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EEG signal separation

« EEG artifacts can be removed from relevant data:

Original EEG ICA Components Comrected EEG

| Fer W
P2 | Wi ottt e

F3 s L T

Fp1 Blinks.

. Line Moise

=4 ™ ; ; : . : :
F4 WW’ 5 Pt '.1“"! o h Fd MW_MW\_
" EKG : : :
: Ca -
P3

F7

TG N Pt e
Fz MMWW
C2 [t TV A e
Pz Wl

0 1 2 3 4 8
Time(sac)

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Kernel ICA

* Problems with standard ICA algorithms:

- Common approaches using Kurtosis or Negentropy have
difficulties for near-gaussian distributions.

« The pdf of the inputs and therefore the global optimum for
independence is unknown, only local convergence is ensured.

« Higher-order moments are approximated by nonlinearities.

« Only for 2 cases are differentiated:
» Subgaussian density
« Supergaussian density

« |dea: use Kernels to search over a richer set of nonlinearities and
to define new independence measures

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Kernel ICA

* Properties:

« Kernel ICA does not project the input data to a nonlinear feature
space for linear separation like kernel PCA

« We are still interested in a linear separation in input space by
the basic ICA model:

X = As

« Kernels are used for finding nonlinear independence measures
of x

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA
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Kernel ICA

* Properties:

- Kernel methods measure independence in the spectrum of the
covariance for functions defined in reproducing kernel hilbert spaces.
Chen and Bickel (2005), (2002); Gretton et al. (2005)

+ Independence measures in Hilbert space:

* CCA in feature space [2]
« Maximizes the correlation between projections of the data in feature space

» Constrained Covariance (COCO) [10]
« Spectral norm of the covariance operator.

 Hilbert-Schmidt Independence Criterion (HSIC) [10]
» Hilbert-Schmidt norm of the covariance operator
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Kernel ICA

* |ICAmodelusedin[2]: y= Az

« Correlation in RKHS:
« ®(x) maps x into the feature space F

 The reproducing property for the RKHS F is defined as:
fx) =(®(z). f), YfeF, YreR  (Saitoh, 1988):

* [2] defines the correlation:

corr(f1(z1), fo(x2)) = corr ((P(z1). f1), (P(x2). f2))
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Kernel ICA

 Kernel

« The Gram matrix K;; = K(z;.x;) contains every possible inner product
of ®(x) in feature space, and is postive semi-definite for any x.

« The kernel can be used to evaluate an inner product in feature space F:
(®(2), @(y)) = (K(~.2). K(~y)) = K(z.y) “kernel trick”

« Example of an isotropic gaussian kernel:

- 1 y
K(2.9) = oo~ ) = exp (~ 5l = ol
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Kernel ICA

* Independence measures:

« The independence measure presented in [2] is the maximization of the
correlation between projections of the output data x projected to the
feature space F :

_ N ()Y cov(f1(x1), fo(T2))
P77 plher corr(fu(@). fol2)) = fLf2eF (var fi(z1))'/?(var fo(z2))!/?

o (K ) OelTKlKga-Q
PF\N1, Ny ) = max — — = _—p
a1, azeRN (af K2a1)Y2(ay K2ao)t/?

(blackboard)

 Basically a CCA eigenvalue problem in feature space:

0 K1 Ky ap K{ 0 a
KoK, 0 as ) P\ 0 K2 o
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Kernel ICA
* Algorithm:

* Whiten the input data y
« Define a Kernel K(x,y)

- Compute the Gram Matrices for the kernels K,..K, for the
estimated outputs x =Wy

 Minimze the contrast function with respect to W

. 1 .
Is (Ki,....Kp) = —3 logdr(K1,....Kn)

« This algorithm is implemented in the KernellCA toolbox
- matlab: kernel_ica_test.m

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA

64



SPSC - Signal Processing & Speech Communication Lab ﬂ-le-rg-

Kernel ICA

* Problems:

- Difficulties with large data sets, the Gram matrices of the
Kernels have to be computed and stored for every optimization
step of the unmixing matrix W.

» Gradient calculation on the indeEendence measures with
respect to W is of requires O(m") operations for m
independent sources [10].

. Lukas Pfeifenberger Salzburg, November 2009 ICA and Kernel ICA

65



SPSC - Signal Processing & Speech Communication Lab ﬂ-le-rg-

Kernel ICA

 Conclusion:

ICA addresses a vast field of application
- BSS
« Deconvolution
« Denoising

Though its model has some tough constraints
- Additive noise must be gaussian, etc.

No algorithm that guarantees a global optimum
Kernel extension is computationally expensive
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