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Wireless Sensor Networks and
Machine Learning

A strange combination?

• Sensor networks collect data.
• Machine learning extracts information from given data.
• In principle, two independent tasks.
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Fundamental Problems

• Wireless sensor networks:
• Tight energy constraints
• Limited communication capabilities

• Machine learning:
• Process of data acquisition is disregarded
• Algorithms depend critically on instantaneous

availability of training data
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Machine learning
• Supervised learning

• Generate a function that maps input to output data
• Based on some training data
• Kernel methods, boosting, nearest-neighbour rules. . .

• Unsupervised learning
• No training data available
• E.g. data clustering, principle component analysis. . .

• others
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Supervised Learning
Terminology

X feature, input or observation space
e.g. X ⊆ R3, 2 space and 1 time dimension

Y label, output, target or parameter space
e.g. Y ⊆ R, measured temperature

Distinguish between:
• Classification (detection)

e.g. Y = {0,1}
• Regression (estimation)

e.g. Y ⊆ Rd
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Loss Function

Find a function g : X → Y that minimizes

E{l(g(X ),Y )} X ∈ X , Y ∈ Y

Given a loss function l : Y × Y → R

Typical loss functions:
• Regression: squared error

l(y , y ′) := |y − y ′|2

• Classification: zero-one loss

l(y , y ′) :=


0 if y = y ′

1 if y 6= y ′
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Parametric vs. Nonparametric
Models

Risk function:
R(g) = E{l(g(X ),Y )} =

∑
i

l(g(X ),Y )PXY

• Parametric setting:
• Joint probability distribution PXY known
• Regression: g(x) = E{Y |X = x}
• Classification: MAP decision rule

• Nonparametric setting:
• PXY unknown, but training data available
• Sn = {(xi , yi)}n

i=1 ⊂ X × Y
• Empirical risk minimization

R̃n(g) = 1
n

n∑
i=1

l(g(xi), yi)



Distributed
Learning in

WSNs

Georg Piewald

Motivation

Classical
Learning
The Supervised
Learning Model

Kernel Methods

Distributed
Learning in
WSNs
Incremental
Subgradient Methods

Alternating
Projection Algorithm

Kernel Design

Design a kernel as a similarity measure for inputs:

K : X × X → R

Examples:
• Linear kernel: K (x , x ′) := xT x ′

• Naive kernel: K (x , x ′) :=


1 if ‖x − x ′‖ ≤ rn

0 otherwise

• Gaussian kernel: Kσ(x , x ′) = exp(− 1
2σ2 ‖x − x ′‖2

2)

Distributed
Learning in

WSNs

Georg Piewald

Motivation

Classical
Learning
The Supervised
Learning Model

Kernel Methods

Distributed
Learning in
WSNs
Incremental
Subgradient Methods

Alternating
Projection Algorithm

Construct an Estimator

Given a kernel, construct an estimator gn:

gn(X ) = gn(X ,Sn) =

{ Pn
i=1 K (X ,Xi )YiPn

i=1 K (X ,Xi )
if
∑n

i=1 K (X ,Xi) > 0
0 otherwise

As n→∞, it can be proven that R̃n(g)→ R(g).
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Reproducing Kernel Method

Drawback of previous approach: arbitrarily slow
convergence.

Alternative: reproducing kernel method

min
f∈HK

[
1
n

n∑
i=1

(f (Xi)− Yi)
2 + λ‖f‖2HK

]

• 1
n
∑n

i=1(f (Xi)− Yi)
2 empirical risk

• ‖f‖2HK
complexity control

• λ ∈ R+ tradeoff factor
• HK reproducing kernel Hilbert space
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Training Distributively using
Incremental Subgradient

Methods

min
f∈HK

[
1
n

n∑
i=1

(f (Xi)− Yi)
2 + λ‖f‖2HK

]

F (f ) :=
n∑

i=1

(
(f (Xi)− Yi)

2 + λi‖f‖2HK

)
Gradient descent algorithm:

f̂ (k+1) = f̂ (k) − αk
∂F
∂f

(
f̂ (k)
)
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Training Distributively using
Incremental Subgradient

Methods

f̂ (k+1) = f̂ (k) − αk
∂Gj

∂f

(
f̂ (k)
)

Gj(f ) := (f (Xj)− Yj)
2 + λj‖f‖2HK

j = k mod m
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1 Choose a path through the network
2 Initialize f̂ (0) = 0 ∈ HK

3 Every node j along the path
• receives f̂ (k)

• calculates f̂ (k+1) using (Xj ,Yj)

• transmits f̂ (k+1) to the next node in the path
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Training Distributively with
Alternating Projections

Local estimation:

min
f∈HK

∑
j∈Ni

(f (xj)− yj)
2 + λi‖f‖2HK


Ni set of neighbours of sensor i

(xj , yj) training sample of neighbour j

zi ∈ Y estimate of the field at Xi
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Algorithm outline:
1 each sensor initializes zi = yi

2 sensor i queries {(xj , zj)}j∈Ni from all neighbours
3 uses this as training data to compute fi ∈ HK

4 calculates zj = fi(xj) for all j ∈ Ni

5 writes zj back to the neighbours
6 repeat in multiple iterations

Properties:
• Local information propagates globally
• Sensors share data, not functions
• Parallelization possible
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