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Introduction – Challenges

Typical Challenges in (Wireless) Sensor Networks

● Distributed nature of computation and deployment

● Communication bandwidth constraints

● Energy constraints

● Information sharing involves approximation

● Traditional measures of distortion not sufficient to 
describe quality of approximation
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Introduction – Graphical models? What for?

● Well suited to capture structure of sensor network which consists of

○ Nodes (for sensing, communication and computation)

○ Connections between nodes (for modelling statistical dependencies 
and communication links)

● Well developed inference algorithms on graphs already exist 

○ Scalable

○ Can deal with “loopy graphs”

○ good convergence and accuracy properties

● Inference Algorithms use parallel message-passing operations 

○ well suited to parallel realization of sensor networks via physically 
distributed processors

● Provide suitable framework for development and analysis of 
communication-constrained versions of message-passing 
algorithms
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Graphical Models – Definitions

● GM defined on (undirected) graph G(V,E) consisting of

○ Vertex or node set V and

○ Edge set  E ⊂ V x V

● Each node v ∈ V is associated with a random variable 
or random vector Xv

● Set of edges E describe conditional dependencies that 
exist between nodes

● set of random variables/vectors X = {Xv : v ∈ V} has to 
satisfy Markov property with respect to G
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Graphical Models – Conditionally Independence

Definition of conditionally independence:

● two variables XA and XB are conditionally independent 
given a third variable XC if:

P(XA,XB| XC) = P(XA|XC) P(XB| XC)  … for every XC

● which is equivalent to saying

P(XA|XB,XC) = P(XA| XC)   … for every XC
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Graphical Models – Markov Property 

● Assuming V partitioned in disjoint sets A, B and C, in which B 
separates A and C (Every path between sets A and C must pass 
through set B)

● The sets of variables XA = {Xv : v ∈ A} and XC = {Xv : v ∈ C} must 
be conditionally independent given the values of XB = {Xv : v ∈ B}

● Thus, the distribution p(XA,XB,XC)
can be written in the form:

p(XB) p(XA|XB) p(XC|XB)

● For a “graph” associated to time series we could say: the past and 
the future are conditionally independent given the present 

[Ihler et al. 05]
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Graphical Models

● Graphical models represent large joint distributions compactly 
using a set of “local" relationships specified by a graph

● Macro language for description particular family of joint 
distributions

● Edges between the nodes tell us qualitatively about the 
factorisations of the joint probability

● Functions, stored at the nodes tell us quantitative details of the 
pieces into which the joint distribution factors

[Roweis 06]
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Graphical Models – Factorization (1)

● As long G is relatively sparse, performing factorisation 
is an efficient method for calculating joint distributions 
of a large number of random variables

● Let C denote the set of 
all cliques on G

● A clique C is a subset of 
nodes out of V that are 
fully connected
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Graphical Models – Factorization (2)

● If a random vector X is Markov with respect to G its 
distribution p(x) admits factorisation as product of 
functions ψ of variables restricted to cliques C ∈ C

● p(x) has to be strictly positive 

● Z is the partition Function 

● ψC(xC) are the so-called compatibility functions

● if log is applied to this functions, they are referred to as 
potentials or potential functions
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Graphical Models – Factorization (3)

● Assumption for simplicity: a potential is a function either of 

○ variable at single node of graph (node potential) or

○ variables at pair of nodes corresponding to an edge in E (edge 
potential)

● Assumption causes no real loss of generality

● Graphical models with higher-order potential functions may 
always be converted to models with pair wise potential functions
(via variable augmentation)
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Graphical Models – Joint Distributions

● Computation of marginal distributions relatively straight forward 
for graphs without loops

● Node and pair-wise potentials can be expressed in terms of 

○ marginal probabilities at nodes: ψs(xs) = ps(xs)  or ψs(xs) = ps(xs) p(ys|xs) 
if there is a measurement ys associated with xs

○ Joint probabilities of pairs of nodes connected by edges: 
ψ(xs,xt) = ps(xs,xt) / p(xs) p(xt)

● Marginal probabilities (at each node) can be calculated 
efficiently by so-called belief propagation algorithms
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Graphical Models – Belief Propagation (1)

● Synonym: sum-product algorithm

● popular method for solving inference problems on arbitrary 
graphical models exactly or approximately

○ Tree-structured GMs: optimal (exact) results

○ Loopy graphs: approximate results, may not converge

● Approximate nature of loopy belief propagation acceptable price 
for performing efficient inference

● Often even additional approximations are performed because

○ Exact message representation is computationally intractable

○ Finite parameterisation for messages is needed

○ Reducing size of messages to decrease their representational costs 
(energy and bandwidth constraints)

○ …

[Ihler et al. 05]
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Graphical Models – Belief Propagation (2)

● Goal: compute marginal distribution p(xt) at each node t

● Via message-passing algorithm between nodes

● Message is expressed in 
terms of updating outgoing 
message at iteration i from 
each node t to each neighbour s
in terms of previous (i-1)
iteration’s incoming messages 
from t’s neighbours Γt

[Ihler et al. 05]
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Graphical Models – Belief Propagation (3)

● Message mt,s sent from node t to subsequent node s

○ Γt … Neighborhood nodes of t

○ Each message is normalized so as to integrate to unity

[Ihler et al. 05]
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Graphical Models – Belief Propagation (4)

● Marginal distribution at any node is calculated by

● Belief propagation algorithm:

○ Choose an arbitrary root node

○ Calculate messages and pass 
them from leaves up to root (a) 
and then back down (b)

○ Given all messages, 
compute marginals by upper 
formula 

[Roweis 06]
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Other methods 

● Max-product algorithm

○ alternative factorisation of p(x) in terms of max-marginals

○ For loop free graphs

● Tree-reweighted max-product algorithm (TRMP)

● Nonparametric belief propagation (NBP)

Graphical Models – Other Propagation Algorithms
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Mapping Network Applications to GM (1)

Self localisation in sensor networks

● Well-recognized problem for many sensor network 
applications

● We consider case in which available information for 
sensor location consists of

○ Uncertain prior information about location of a sensor subset 
(e.g. GPS data)

○ Ability of sensors to communicate with each other and 
measure their intersensor distance

○ Any distance measurements obtained
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Mapping Network Applications to GM (2)

Sensor localisation

a) Physical location of sensors

b) Graphical Model: 

• Nodes correspond to sensor 
node location variables

• Edges correspond to 
observed information 
(intersensor distance 
measurements) from a 
subset of node pairs
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Mapping Network Applications to GM (3)

Definitions:

● ps(xs) … prior location probability distribution

● Pr(xs,xt) … probability of obtaining a distance 
measurement between two sensors s and t
(located at xs and xt)

● pL(lst|xs,xt) … probability distribution of measuring a 
distance lst (given, that the true sensor 
positions are xs and xt)
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Mapping Network Applications to GM (4)

● Calculating potentials

● Finally we can apply the belief propagation algorithm 
to this network to gather marginal distributions of all 
nodes

● Marginals refer to inferenced sensor position
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Message Censoring (1)

Self localization in sensor networks

Multiobject data association

Different approaches

● Sum-product algorithm (Belief-propagation)

● Max-product 

● TRMP algorithm

For all these messages

● Message transmitted over whole network
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Message Censoring (2)

Message schedule

● Creation, transmission, processing

● Convergence behaviour

○ Centralized coordination

○ Local rules

Simple local rule 

● Compute Kullback-Leibler divergence (KLD)
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Message censoring (3)

Kullback-Leibler divergence

● Completely local

● Data dependent message

● Nodes can become silent

● Restart sending when sufficiently new information 
reaches from “elsewhere”
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Message censoring (4)

Modified 

sum-product algorithm 

● Tracking targets

● Varying threshold

● Number of wrong 
matches / number of 
measurements

● Compared to 

○ Max-product (cyan)

○ TRMP (blue)
Performance-communication tradeoff
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Message censoring (5)

Side-effect

● Better performance with message censoring (?)

● “Rumor propagation” of algorithm 

○ Repeated propagation of messages in loops

○ Leads to incorrect corroboration of hypothesis
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Trading off accuracy for Bits (1)

Particle based representations of messages 

● Efficient transmission for such messages

● How many particles do we need

● How accurate a representation is required
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Trading off accuracy for Bits (2)

The task is to transmit a probability distribution 
q(x) represented by a set of particles {xi}

● Standard problem in transmission

● Big difference: Neither order nor the accuracy is 
important for individual particles

● Only the accuracy of the reconstruction of q(x) is 
important

● Transmission protocol can order the particles and 
encode only differences xi+1 - xi
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Trading off accuracy for Bits (3)

KD-tree

● The idea is to group particles in a binary tree structure

● Starting from a root node where all particles are 
grouped together

● Split the set and refine the clustering

● Make an easy approximation on each node of the tree 
such as Gaussian

● Every cut through this tree corresponds to an 
approximation of the full, fine scale distribution q(x)
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Trading off accuracy for Bits (4)

KD-tree conceptional illustration
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Trading off accuracy for Bits (5)

KD-tree benefits

● The tree structure allows an easy estimation of KLD

● Transmission protocol can take advantage of the 
structure of parent/child mean/covariances

● Adaption of message transmission

○ Specify a desired message accuracy leads to a cut through 
in the tree/message approximation

○ Specify a upper bound of bits for communication 
determines the most accurate approximation
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Trading off accuracy for Bits (6)

Trade off between message approximation error 
and localization error
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Trading off accuracy for Bits (7)

Entropy behaviour in successive messages over 
iterations proceed
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Effects of Message Approximation (1)

The preceding methods

● Message approximation due to censoring or to particle 
based approximation

● A relation between communication resources and the 
accuracy of the fused estimates 

Difference between an exact and approximate 
message

● Kullback Leibler divergence

● Dynamic range measure

Reminder of BP
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Dynamic range (1)

● measure for ets(xs)

● point wise equality condition d(ets) = 1 or log d(ets) = 0

● Equivalently definition

● It is directly related to the point wise error between two 
distributions
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Dynamic range (2)

Scalar α

● „purpose of zero-centering“ – invariance of simple 
rescaling

● Acts as a scale factor defining a class of equivalent 
messages

● The closest message will be chosen in log-error sense

Bernhard Reinisch and Michael Schneeberger Advanced Signal Processing 1 38

Dynamic range (3)

Other interesting properties

● Bounding of the error

● Error propagation 

● Mixing of potentials

● Satisfies a rate 

of contraction
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Effects of Message Approximation (2)

● These properties provide a basis for bounding 

● For loopy graph it is often visualized through 
„unwrapping“

● It is possible to compute a bound on the dynamic 
range after any number of iterations (without message 
approximation)

● Provide a strict bound for error
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Effects of Message Approximation (3)

● This bounds seems to be to pessimistic to actual 
performance

● Assumption of uncorrelated error between nodes and 
iterations (crazy?)

● Empirically the system behave similarly to the 
predictions made by such a assumption

● However such a assumption is unsuitable for deriving 
strict convergence guarantees
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Effects of Message Approximation (4)

Experimental results

● Maximum errors incurred over quantization error
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Effects of Message Approximation (5)

KL-divergence measures

● Dynamic range measure is to strict (?)

● KLD address to a weighted average

● Can such a measure fail (?)

● Many properties can not be fulfilled

○ Result is more an approximation than a bound

○ Error accumulation bounding, additive error, contraction 
rates

● Experiments
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Effects of Message Approximation (6)

Again the same setup than before

● Different power of potentials 

● Different quantization level
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Summary (1)
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Summary (2)

Message censoring & Bit trading

● Optimisation for communication 

● First step to get some logic in one particular node

● Algorithm with more local word load

Effects of message approximation

● the message at each iteration is a noisy (erroneous) 
version of some true BP fixed point

● For two different error measures

● Mathematical model for error propagation
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Final Slide

Thank you for 
your attention!

Beliefs are more powerful than facts.
Brian Herbert and Kevin Anderson, Dune: House of Atreides
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