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Typical Challenges in (Wireless) Sensor Networks

Distributed nature of computation and deployment
Communication bandwidth constraints

Energy constraints

Information sharing involves approximation

Traditional measures of distortion not sufficient to
describe quality of approximation
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Well suited to capture structure of sensor network which consists of
o Nodes (for sensing, communication and computation)

o Connections between nodes (for modelling statistical dependencies
and communication links)

Well developed inference algorithms on graphs already exist
o Scalable
o Can deal with “loopy graphs”
o good convergence and accuracy properties
Inference Algorithms use parallel message-passing operations

o well suited to parallel realization of sensor networks via physically
distributed processors

Provide suitable framework for development and analysis of
communication-constrained versions of message-passing
algorithms
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e GM defined on (undirected) graph G(V,E) consisting of
o Vertex or node set V and

o Edgeset EcVxV

e Each node v €V is associated with a random variable
or random vector X,

e Set of edges E describe conditional dependencies that
exist between nodes

e set of random variables/vectors X = {X, : v € V} has to
satisfy Markov property with respect to G

Bernhard Reinisch and Michael Schneeberger Advanced Signal Processing 1 L _J

Erap”ma' Ho!e's — !ongl!lona"y |n!epen!ence E

Definition of conditionally independence:

e two variables X, and Xz are conditionally independent
given a third variable X; if:

P(X,,Xg| Xc) = P(X5|Xc) P(Xg| Xo) ... for every X¢

e which is equivalent to saying

P(XAlXg, Xc) = P(XA|l X¢) ... for every X,
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e Assuming V partitioned in disjoint sets A, B and C, in which B
separates A and C (Every path between sets A and C must pass
through set B)

e The sets of variables X, = {X, : v € A} and X, = {X, : v € C} must
be conditionally independent given the values of X; = {X, : v € B}

e Thus, the distribution p(X,,Xg,Xc) i
can be written in the form: i

p(XB) p(XA|XB) p(xclxg) —————:Q— A I

[lhler et al. 05]

e For a “graph” associated to time series we could say: the past and
the future are conditionally independent given the present
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e Graphical models represent large joint distributions compactly
using a set of “local" relationships specified by a graph

e Macro language for description particular family of joint
distributions

e Edges between the nodes tell us qualitatively about the
factorisations of the joint probability

e Functions, stored at the nodes tell us quantitative details of the
pieces into which the joint distribution factors
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[Roweis 06]
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e As long G is relatively sparse, performing factorisation
is an efficient method for calculating joint distributions
of a large number of random variables

e Let C denote the set of e

all cliques on G
e A clique Cis a subset of e‘

nodes out of V that are e
fully connected
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e If a random vector X is Markov with respect to G its
distribution p(x) admits factorisation as product of
functions  of variables restricted to cliques C € C

e p(Xx) has to be strictly positive

[Icec Velxe) oA
px) = ~ WA ;ﬂ Velxe)
e Z is the partition Function
e y.(Xc) are the so-called compatibility functions

e if log is applied to this functions, they are referred to as
potentials or potential functions
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e Assumption for simplicity: a potential is a function either of
o variable at single node of graph (node potential) or

o variables at pair of nodes corresponding to an edge in E (edge
potential)

(Hse V ws(xs)) (H(s,f)EE Vs, #(Xs, xr))
Z

px) =

e Assumption causes no real loss of generality

e Graphical models with higher-order potential functions may
always be converted to models with pair wise potential functions
(via variable augmentation)
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e Computation of marginal distributions relatively straight forward
for graphs without loops

e Node and pair-wise potentials can be expressed in terms of

o marginal probabilities at nodes: y,(x,) = p,(X;) or (X)) = py(X;) P(Y4X,)
if there is a measurement y, associated with x

o Joint probabilities of pairs of nodes connected by edges:
YXXe) = Py(XsXe) 1 p(Xg) P(Xy)

1—[ Pst(Xs, X¢)
P = VpS( * (s.h)ekE Ps(Xs) p1(xe)

e Marginal probabilities (at each node) can be calculated
efficiently by so-called belief propagation algorithms
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e Synonym: sum-product algorithm [Ihler et al. 05]

e popular method for solving inference problems on arbitrary
graphical models exactly or approximately

o Tree-structured GMs: optimal (exact) results

o Loopy graphs: approximate results, may not converge

e Approximate nature of loopy belief propagation acceptable price
for performing efficient inference

e Often even additional approximations are performed because
o Exact message representation is computationally intractable
o Finite parameterisation for messages is needed

o Reducing size of messages to decrease their representational costs
(energy and bandwidth constraints)
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e Goal: compute marginal distribution p(x,) at each node t
e \/ia message-passing algorithm between nodes

e Message is expressed in
terms of updating outgoing
message at iteration i from
each node t to each neighbour s
in terms of previous (i-1)
iteration’s incoming messages
from t's neighbours T,

[Ihler et al. 05]
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e Message m,, sent from node t to subsequent node s

o) e [ wisConmwi) T iy ()

uely\s
o I ... Neighborhood nodes of t

o Each message is normalized so as to integrate to unity

[lhler et al. 05]
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e Marginal distribution at any node is calculated by

Mf(xr) o< Yy (xy) H mi,r(x;).

uels

e Belief propagation algorithm: .
A\
o Choose an arbitrary root node f

o Calculate messages and pass Y
them from leaves up to root (a)
and then back down (b)

o Given all messages, (@) (b)
compute marginals by upper Roweis 06]
formula
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Other methods

e Max-product algorithm

o alternative factorisation of p(x) in terms of max-marginals

Gst(Xs, Xt) gs(Xs) = max p(xy, ..., Xn)

p(x) 68 q. (.X' ) s u,ueWs
seHV o (3_11,9 Gs(Xs)q(x¢)

Gst(Xs, X¢) = max p(xy, ..., Xn)
xy,ueW\{s,t}

o For loop free graphs

e Tree-reweighted max-product algorithm (TRMP)

e Nonparametric belief propagation (NBP)
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apping Network Applications to

Self localisation in sensor networks

e \Well-recognized problem for many sensor network
applications

e \We consider case in which available information for
sensor location consists of

o Uncertain prior information about location of a sensor subset
(e.g. GPS data)

o Ability of sensors to communicate with each other and
measure their intersensor distance

o Any distance measurements obtained
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Sensor localisation S
a) Physical location of sensors ;- '-_- - '
b) Graphical Model: e e,

* Nodes correspond to sensor
node location variables

« Edges correspond to
observed information
(intersensor distance
measurements) from a
subset of node pairs
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Definitions:
e p(X,) ...priorlocation probability distribution

e Pr(x,X,) ...probability of obtaining a distance
measurement between two sensors s and t
(located at x, and x,)

o p, (I4x.,Xp) ... probability distribution of measuring a
distance |l (given, that the true sensor
positions are x, and x;)
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e Calculating potentials

Vs(Xs) = ps(Xs)

| Prxs, xe)pr(lse);  Ist is observed
Vist (X5, Xt) = { 1 — Pr(xs, x¢); otherwise.

e Finally we can apply the belief propagation algorithm
to this network to gather marginal distributions of all
nodes

e Marginals refer to inferenced sensor position
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Self localization in sensor networks
Multiobject data association
Different approaches

e Sum-product algorithm (Belief-propagation)
e Max-product

e TRMP algorithm
For all these messages

e Message transmitted over whole network
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essage Lensoring

Message schedule
e Creation, transmission, processing

e Convergence behaviour
o Centralized coordination

o Local rules
Simple local rule

e Compute Kullback-Leibler divergence (KLD)

ME (x5)

kyagh—1\ _ k {s S

D(MENMET) = Zx ' ME (x)log M—f—sl(xs)
s S
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Kullback-Leibler divergence
e Completely local
e Data dependent message
e Nodes can become silent

e Restart sending when sufficiently new information
reaches from “elsewhere”
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Modified

: 08+
sum-product algorithm \
e Tracking targets ) o \
e Varying threshold i \
e Number of wrong 5 \
matches / number of
measurements <
0.3 k-
e Compared to o -
o Max-product (cyan) 02— ppe ppe

Amount of Communication
o TRMP (blue)

Performance-communication tradeoff
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Side-effect

e Better performance with message censoring (?)

e “Rumor propagation” of algorithm
o Repeated propagation of messages in loops

o Leads to incorrect corroboration of hypothesis
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Particle based representations of messages
e Efficient transmission for such messages
e How many particles do we need

e How accurate a representation is required
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The task is to transmit a probability distribution
q(x) represented by a set of particles {x;}

e Standard problem in transmission

e Big difference: Neither order nor the accuracy is
important for individual particles

e Only the accuracy of the reconstruction of q(x) is
important

e Transmission protocol can order the particles and
encode only differences xi,4 - X;

Bernhard Reinisch and Michael Schneeberger Advanced Signal Processing 1 29

|ra!|ng O|| daccuracy |or EI!S !!! E

KD-tree

e The idea is to group particles in a binary tree structure

e Starting from a root node where all particles are
grouped together

e Split the set and refine the clustering

e Make an easy approximation on each node of the tree
such as Gaussian

e Every cut through this tree corresponds to an
approximation of the full, fine scale distribution q(x)
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KD-tree conceptional illustration
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KD-tree benefits

e The tree structure allows an easy estimation of KLD

e Transmission protocol can take advantage of the
structure of parent/child mean/covariances
e Adaption of message transmission

o Specify a desired message accuracy = leads to a cut through
in the tree/message approximation

o Specify a upper bound of bits for communication =
determines the most accurate approximation
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Trade off between message approximation error

and localization error
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Median Localization Error
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Allowed Message Error (KL)
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Entropy behaviour in successive messages over

iterations proceed
6.5 T

o
(3]

Message Entropy
(8]

BP lteration

Bernhard Reinisch and Michael Schneeberger Advanced Signal Processing 1 34




!”ec!s O| HGSSHQG !pproxma!lon ! | ! E

The preceding methods

e Message approximation due to censoring or to particle
based approximation

e A relation between communication resources and the
accuracy of the fused estimates

Difference between an exact and approximate
message

e Kullback Leibler divergence

e Dynamic range measure
Reminder of BP
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e measure for e,(x,) d (ers) = sup\/ess(a)/es(b)
ab

e point wise equality condition d(e,) = 1 or log d(e,,) =0

e Equivalently definition

logd (e;5) = infsup |log oy (x) — logni(x)| = infsup|log o — loge;s(x)|
o x o x

e It is directly related to the point wise error between two
distributions
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Scalar a

e ,purpose of zero-centering“ — invariance of simple

rescaling

e Acts as a scale factor defining a class of equivalent

messages

e The closest message will be chosen in log-error sense

Bernhard Reinisch and Michael Schneeberger
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Other interesting properties

e Bounding of the error
e Error propagation
logd (EL) < 3, Togd (e,
e Mixing ofﬂ;rc;:entials
e Satisfies a rate
of contraction

d () d (EL) +1
d(yis)” +d (EL)

af (eH—l) S

is

Bernhard Reinisch and Michael Schneeberger

logd(e) —

logd (Ey~
// ’ 2
logd (y)
d(y) d(E)+1
log d(w) +d(E)
logd (E) —
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ects of Message Approximation

e These properties provide a basis for bounding

e For loopy graph it is often visualized through
,2unwrapping”

(a) (b)

e |tis possible to compute a bound on the dynamic
range after any number of iterations (without message
approximation)

e Provide a strict bound for error
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ects of Message Approximation

e This bounds seems to be to pessimistic to actual
performance

e Assumption of uncorrelated error between nodes and
iterations (crazy?)

e Empirically the system behave similarly to the
predictions made by such a assumption

e However such a assumption is unsuitable for deriving
strict convergence guarantees
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Experimental results

e Maximum errors incurred over quantization error

— Strict Bound

1 L= Stochastic Estimate

10°F «  positive Corr. Potentials
*  Mixed Corr. Potentials

max log d(M,.-'@}
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KL-divergence measures
e Dynamic range measure is to strict (?)
e KLD address to a weighted average
e Can such a measure fail (?)

e Many properties can not be fulfilled
o Result is more an approximation than a bound

o Error accumulation bounding, additive error, contraction
rates

e Experiments
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Again the same setup than before

e Different power of potentials

e Different quantization level

10' . 10'

= Expectation bound
== == Stochastic estimate
— 19| Positive carr. potentials - " — 1
(E‘H «  Mixed corr. potentials i (E‘H
10'E . 107" s . 4
S LA o
E 10k ***'* E 10 “'*j... 3
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e Challenges in sensor networks

e \Why graphical models are used?
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e Definitions, Markov property, Factorization

e Sum Product Algorithm for calculating marginal
distributions

Mapping a Network Application to a Graphical Model

e Self localization in Sensor Networks
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Message censoring & Bit trading

e Optimisation for communication

e First step to get some logic in one particular node
e Algorithm with more local word load
Effects of message approximation

e the message at each iteration is a noisy (erroneous)
version of some true BP fixed point

e For two different error measures

e Mathematical model for error propagation

Bernhard Reinisch and Michael Schneeberger
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Thank you for
your attention!

Beliefs are more powerful than facts.
Brian Herbert and Kevin Anderson, Dune: House of Atreides
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