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Representation in DBNs



Introduction

» DBNs are extensions of BNs over potentially-infinite
collections of RVs 71,75, .....

» Usually RVs are partitioned Z; = (U, Xt, Y:) into inputs U,
states X, and outputs Y;.

» DBN is a pair (B1, B—,), where

» B is a prior which defines P(Z;)
» B_, is a 2TBN which defines P(Z;|Z;_1) via a DAG s.t.

N
P(Z:|Z.-1) = [ P(Z{|Pa(Z
i=1

> P(Zi7) =TI, [T, P(Zi|Pa(Z}))



DBN example: Hidden Markov Model (HMM)

X1 X2
> Xiy1 AL Xi—1 [Xe (Markov property)
> Y I Y| X, VE #£ t

.

> P(X,Y) = P(X1)P(YilX1) [] P(XelXe—1) P( Vel Xe)
t=2

> P(Y:=y|Xe = 1) = N(y; pi, Z;)



DBN example: Linear Gaussian Input-Output HMM

> P(U,X,Y) =
-
P(X1)P(Yi| X1, Ur) H P(X¢| Xe—1, Ue) P(Ye| Xe, Ut)
t=2
> P(X1=x)= N(x;x0, Vo)
P(Xt+1 = xeq1| Xt = x, Ur = u) = N(xty1; Ax + Bu, Z,,)
P(Y: = y|Xe = x, Uy = u) = N(y; Cx + Du, X)

» Kalman filter: online computation of P(X:|y1.t, u1.t).



DBN example: Factorial HMM

v

Imagine trying to model M objects each of which can occupy
K positions.

Doing this with standard HMM would require KM states.

v

v

In FHMM, state representation is distributed over M variables
X, = xW, .xtm L xM

Each of which can take on K values.

v

State space is still K™ but we constrain transitions.

v



DBN example: Factorial HMM
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()




DBN example: Factorial HMM

» Each state variable is independent

P(X:|X;_1) H P xm)y

> Lets use linear-Gaussian D-dimensional observation vectors:

1
PUYAX0) = IRIH2(2n) O exp { (Ve = e RHYe = )

where

M
= Y WX

m=1



DBN example: Tree structured HMM

Stochastic decision tree with Markovian decision dynamics.



Switching State space model




Switching State space model

PU{Se, X, s X ve}) = P(S1) TT, P(St[St-1)
x [TV, P(X™) T, POXE™ X))
< 1, P(Ye X, . xIM) s,)

P(Ye XY, .o xM s, = m) =
IRI7/2(2m) P/ exp { ~3(Y; — CMXIMYR(Y, — Clmx(™)}

Its a bit like mixture of linear Gaussian experts.



DBNSs in context of GMs

G
other chain graph dependency net
directed undirected
BN) (MRF)
\ Boltzmann maxent
\ machine models
KFM other mixture dimensionality regression
models reduction

PCA ICA



Inference in DBNs



Inference in BNs

» Marginalize out variables not interested in, for example for
FHMM

PHY:30) = > P({X:, Ye})[0)
{X:}

we have to marginalize out all possible state sequences, unless
we exploit conditional independencies.

» Brute force marginalization requires at worst full joints.

» In general computating full joints is huge, and marginalization
is huge.

» Efficient inference algorithms exploit conditional
independencies to reduce complexity.



Exact inference

» Forward backward algorithm for HMMs.
» Belief propagation:
» Pearl's message passing algorithm for polytrees (DAGs without

undirected cycles).
» Junction tree algorithm for general undirected networks (belief

propagation on cliques).



Belief propagation

[ > Plalpy, s bk H P(pile* (pi))

{p1,...0x}




Approximate inference

» Sampling methods:

» Importance sampling: draw random samples x from P(X) and
weight by likelihood P(y|x), where y is evidence.
» Markov Chain Monte Carlo

» Variational methods: for example approximate large sums of
random variables by their means.

» Loopy belief propagation: apply Pearl’s agorithm to the
original graph even if it has undirected cycles.



Parameter Learning in DBNs



Parameter learning

Observability

Structure Full Partial
Known Closed form EM

Unknown | Local search  Structural EM

» Can either find a “best” set of parameters or infer a
distribution.



Known structure, full observability

v

Compute ML parameters using given sufficient statistics.

v

For example, in a HMM, using the frequentist approach

Number of times Yy = o when X; = 3
Number of times X; = (3

Puc(Y = alX = 5) =

v

Dirichlet priors can be used to avoid assigning null
probabilities to events absent from the training set.

v

For Gaussian nodes, ML p and X are just the sample p and .



Known structure, partial observability

» Sufficient statistics unavailable.

» Compute expected sufficient statistics (ESS) and treat as
complete data case.

» EM: compute ESS given current 6, maximise likelihood of
expected complete data with respect to 0, iterate.

» EM is gradient ascent, but general gradient ascent can be
used.

» There is some debate over which is better.



Expectation Maximisation for HMMs (aka Baum Welch
algorithm)

Given:

» N hidden states, M output symbols.
» Observation sequence Y ={Y1Y>...Y7}

> Prior selection of parameters A\ = (A, B, ) for state
transitions A = {a;;}, emission probabilities B = {b;(k)}, and
initial state distribution ;.

Hidden:

> State sequence X = {X1 Xo... X7}
> Use indicator variables v;(i) to model P(X; = S5;|Y, \)



Expectation Maximisation for HMMs

1. E-STEP:
Use current A to estimate state sequence via ESS.
» Compute expected values for the state at time t:
i) = P(Xe = S|, )

> Compute expected values for occurance of state tuples:
Et(i’j) = P(Xt = 5f7Xt+1 = SJ|Y7 )\)

» These expectations are computed using the forward-backward
functions.

2. M-STEP: B
Find new ML parameters A

ML parameters 7;, 3;;, and b;(k) are the expected values
given the expected state sequence computed in the E-Step.

> T= 'Yl(')
" %= Zztf 1118;5(71))
> B( ) Zz 1[s.t. Yi= vk]'yf(./)

X vl)



Unknown structure, full observability

>

Local search over structure; need to define search space,
scoring, and algorithm.

ML estimate is complete graph so MAP estimate of score is
used

Pr(D|G)Pr(G)

Pr(G|D) = Pr(D)

L =log Pr(G|D) = log Pr(D|G) + log Pr(G) + ¢

Give higher priors to simpler models.
Marginal likelihood automatically penalizes complex models.

P(D|G) :/OP(D|G,0)P(9|G)

Parameter independence allows likelihood decomposition:

P(D|G) = H / P(X|Pa(X;), 0;)P(60;)d6;
i=1



Unknown structure, partial observability

» Marginal likelihood is intractible and doesn't decompose

P(X|G) = Z/P(X,Z\G,G)P(G\G)
7 0

» Can approximate marginal likelihood and use local search.
» Scoring functions exist (e.g BIC) which do decompose.
» Structural EM (local search within M step).



An application which uses DBNs:

A Comparison of HMMs and Dynamic Bayesian
Networks for Recognizing Office Activities

— Nuria Oliver and Eric Horvitz



Layered HMMs and DBNs

» Model consists of layers.

» Each layer is connected to the next via its inferential results.

» Layers correspond to different levels of temporal detail and
abstractness.

» Each layer of the heirarchy is trained independently.

v

Paper discusses replacing top-level HMM with DBN.



Layered HMM Model: Raw signals

» Audio:
» Two microphones capture audio and LPC coefficients are
computed.
» Coefficients are selected via PCA so 95% of variability is kept.
» Energy, mean and variance of fundamental frequency, and zero
crossing rate also extracted.
» Sound source is localized using the Time Delay of Arrival
method.
» Video:

» Firewire camera 30FPS.
» Extract: density of skin pixels, density of motion pixels, density
of foreground pixels, and density of face pixels.

» Keyboard and Mouse:
» History of last 1, 5, and 60 seconds of activity.



Layered HMM: First level

» Bank of discriminative audio and video signal classifier HMMs.

» One HMM trained for each class, ML model defines class of
instance at runtime.

» Audio classes: human speech, music, silence, ambient noise,
phone ringing, and keyboard typing.

» Video classes: nobody present, one person, one active person,
and multiple people.



Layered HMM: Second level

» Objective is to model activities at increased temporal
granularity:

» Phone conversation, presentation, face-to-face conversation,
user present but performing other activity, distant
conversation, and nobody present.

» Using:

» Audio and video inferences from level one.

» Sound localization: left of monitor, center of monitor, right of
monitor.
Keyboard/mouse activities: no activity, current mouse activity,
current keyboard activity, both active in past second.



Layered HMM: Overview
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Layered HMM: Top level
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Layered HMM: comparison of second level modules

v

Second level had either:

1. Bank of discriminative HMMs.

2. DBN with hidden “Activity” node.
DBN and HMM top levels trained with 1800 samples (300 per
activity).
Average accuracy was 94.3% for HMM vs 97.7% for DBN
without selective perception.
Average accuracy was 92.2% for HMM vs 96.7% for DBN
with selective perception.
Performance of DBNs degrade less with selective perception
because they are able to perform inference from past time
slices.



Paper summary

» DBN can learn dependencies between variables that are
assumed independent in HMMs.

» DBN provides a unified probability model.

» HMMs are simpler to train and are more efficient than
arbitrary DBNs.

» They suggest to consider merits of each approach.



Retrospection
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