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Support Vector Machines are used for time series prediction and compared to
radial basis function networks. We make use of two different cost functions for
Support Vectors: training with (i) an e insensitive loss and (ii) Huber’s robust
loss function and discuss how to choose the regularization parameters in these
models. Two applications are considered: data from (a) a noisy Mackey-Glass
system (normal and uniform noise) and (b) the Santa Fe Time Series Competition
(set D). In both cases, Support Vector Machines show an excellent performance.
In case (b), the Support Vector approach improves the best known result on the
benchmark by 29%.

1.1 Introduction

Support Vector Machines have become a subject of intensive study (see e.g. [3, 22]).
They have been applied successfully to classification tasks as OCR [22, 17] and more
recently also to regression [5, 23].

In this contribution! we use Support Vector Machines in the field of time series

1. This paper is an extended version of [12].
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2 Using Support Vector Machines for Time Series Prediction

prediction and we find that they show an excellent performance.

In the following sections we will give a brief introduction to support vector regression
(SVR) and we discuss the use of different types of loss functions. Furthermore,
the basic principles of state space reconstruction are introduced in section 1.4.
The experimental section considers a comparison of SVR and radial basis function
(RBF) networks (introduced in section 1.3) with adaptive centers and variances.
Both approaches show similarly excellent performance with an advantage for SVR
in the high noise regime for Mackey Glass data. For benchmark data from the Santa
Fe Competition (data set D) we get the best result achieved so far, which is 37%
better than the winning approach during the competition [25] and still 29% better
than our previous result [14]. A brief discussion concludes the chapter.

1.2 Support Vector Regression

In SVR the basic idea is to map the data x into a high-dimensional feature space
F via a nonlinear mapping ®, and to do linear regression in this space (cf. [3, 22])

fX)=(w-?x))+b with®:R"—>F, weF, (1.1)

where b is a threshold. Thus, linear regression in a high dimensional (feature) space
corresponds to nonlinear regression in the low dimensional input space R". Note
that the dot product in Eq.(1.1) between w-®(x) would have to be computed in this
high dimensional space (which is usually intractable), if we were not able to use the
kernel trick — described in the following — that finally leaves us with dot products
that can be implicitly expressed in the low dimensional input space R". Since ® is
fixed, we determine w from the data by minimizing the sum of the empirical risk
Remp[f] and a complexity term ||w||?, which enforces flatness in feature space

1
Ryegf] = Remplf] + Ml = D C(F(x:) — 93) + Allwl?, (1.2)
i=1
where [ denotes the sample size (x1,...,%;), C(.) is a cost function and A is a

regularization constant. For a large set of cost functions, Eq. (1.2) can be minimized
by solving a quadratic programming problem, which is uniquely solvable [18, 19].
It can be shown that the vector w can be written in terms of the data points

l
w= Z(ai —af)®(x;) (1.3)
i=1
with a;, @] being the solution of the aforementioned quadratic programming prob-
lem [22]. a;,af have an intuitive interpretation (see Fig. 1.1b) as forces pushing
and pulling the estimate f(x;) towards the measurements y; (cf. [4]). Taking (1.3)
and (1.1) into account, we are able to rewrite the whole problem in terms of dot
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1.2 Support Vector Regression 3

products in the low dimensional input space (a concept introduced in [1])
1 l

F60) =Y (@i —af)(®(x;) - @(x) +b =D (a; — af)k(xi, %) +b. (1.4)
=1 =1

In Eq.(1.4) we introduced a kernel function k(x;,x;) = (®(x;) - ®(x;)). It can

be shown that any symmetric kernel function k satisfying Mercer’s condition

corresponds to a dot product in some feature space (see [3] for details). A common

kernel is e.g. a RBF kernel

k(x,y) = exp(=[lx - y|*/(20%)).

For extensive discussion about kernels see [19].
1.2.1 Vapnik’s e-insensitive Loss Function

For this special cost function the Lagrange multipliers «;,a} are often sparse, i.e.
they result in non-zero values after the optimization (1.2) only if they are on or
outside the boundary (see Fig. 1.1b), which means that they fulfill the Karush-
Kuhn-Tucker conditions (for more details see [22, 18]). The e—insensitive cost
function is given by

|f(x) =yl —e for [f(x)—y|>e

(1.5)
0 otherwise

C(f(X)—y)Z{

(cf. Fig. 1.1a); the respective quadratic programming problem is defined as

1 1
S 1
minimize 7 Z (of — ai)(a]f — ay)k(xi,x;) — Z af(yi —€) —ai(yi + €)
i,j=1 i=1
: 1
subject to i_zlai —af =0, a;af €0, X] (1.6)
Note, that the less noisy the problem, the sparser are the «;,a} for Vapnik’s e-
insensitive loss function. Note that the cost from Eq.(1.5) introduces a systematic
bias, since we tend to underfit if € is too large, e.g. in the extreme case of very large
€ the resulting regression will be a constant.

1.2.2 Huber’s Loss Function

Other cost functions like the robust loss function in the sense of [6] can also be
utilized (cf. Fig. 1.1a) [18]. This cost function has the advantage of not introduc-
ing additional bias (like the e-insensitive one does), at the expense, however, of
sacrificing sparsity in the coefficients oy, a}.

C(f(x)—y):{ ‘i|f(x)—?/|—% for |f(x)—yl>e

7 (f(x) - y)? otherwise (1.7)
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interpolation —
alpha —

Figure 1.1 (a) e-insensitive and Huber’s loss for ¢ = 1. (b) The shown regression
for the e-insensitive case (kernel: B-splines [18]) of the sinc function is the flattest
within the ¢ tube around the data. a,a* are drawn as positive and negative forces
respectively. All points on the margin, where f(x;) — y; = € sign(a; — o} ), are used
for the computation of b.

The corresponding quadratic programming problem takes the following form

l

!
| x « « 1 %2
minimize 5”271(041- —a;)(af — aj)k(xi,x;) + ;_l(ai — o)y + ﬁ(a% +ai’)
! €
subject to E a; —a; =0, a;,af €0, X] (1.8)

i=1

So basically all patterns become support vectors.
1.2.3 How to compute the threshold b?

Egs. (1.6) and (1.8) show how to compute the variables as,aj. For the proper
choice of b, however, one has to make more direct use of the Karush-Kuhn-Tucker
conditions that lead to the quadratic programming problems stated above. The key
idea is to pick those values ay,aj for which the prediction error 6, = f(xx) — Y
can be determined uniquely. In the e-insensitive case this means picking points xy
on the margin, by requiring that one of the corresponding a4, or aj, be in the open
interval (0, 1). In that case we know the exact value

0 = € sign(ar — af)

of the prediction error. Already one x; would in principle be sufficient to compute
b but for stability purposes it is recommended to take the average over all points
on the margin with

b = average, {0x + yr — Z(ai — o )k(xi, xg) }-

i
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1.8 RBF networks with adaptive centers and widths 5

For the Huber case b is computed along the same lines with
519 = )\(Oék - Ck;;)

for a or aj € [0, %), i.e. for points where the quadratic part of the cost function
is active.

Finally, we note that when we solve the quadratic programming problem with an
optimizer which computes the double dual (e.g. [21]), we can directly recover the
value of the primal variable b as the corresponding one of the double dual [19].

1.3 RBF networks with adaptive centers and widths

The RBF nets used in the experiments are an extension of the method of Moody
and Darken [10], since centers and variances are also adapted (see also [2]). The
output of the network is computed as a linear superposition

K
fx) = wiegn(x) , (1.9)
k=1

where wi(k = 1,...,K) denotes the weights of the output layer. The Gaussian
basis functions gy are defined as

2

gr(x) = exp (—%) ; (1.10)
Tk

where uj and a;‘; denote means and variances, respectively. In a first step, the means

Wy are initialized with k-means clustering and the variances oy are determined as

the distance between uy and the closest u; (i # k). Then in the following steps we

perform a gradient descent in the regularized error function (weight decay)

1 l A K
Rreg =3 1221 (yi — F(x:))* + 3 ;(wk)Q- (1.11)

Note that in analogy to Eq.(1.2), we used A > 0 to denote the regularization
parameter. It is easy to derive the gradients OR,.,/Our and OR,.,/00) (see
Appendix). Numerically we minimize Eq.(1.11) by a conjugate gradient descent
with line search, where we always compute the optimal output weights in every
evaluation of the error function during the line search. The optimal output weights

w = [wy,...,wk]' in matrix notation can be computed in closed form by

A
w=(GTG + 271)_1GTy, where G, = g (x;) (1.12)
and y = [y1,...,%]" denotes the output vector, and I an identity matrix. For

A = 0, this corresponds to the calculation of a pseudo-inverse of G.
So, we simultaneously adjust the output weights and the RBF centers and
variances (see Appendix for pseudo-code of this algorithm). In this way, the network
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6 Using Support Vector Machines for Time Series Prediction

fine-tunes itself to the data after the initial clustering step, yet, of course, overfitting
has to be avoided with careful tuning of the regularization parameter (cf. [2]).

1.4 How to predict?

Let {z(t)}, t = 1,...,T, be a time series that was generated by a dynamical
system. For convenience, consider z(t) to be scalar, but note that the treatment of
multi-scalar time series is straightforward. We assume that {z(t)} is a projection
of a dynamics operating in a high-dimensional state space. If the dynamics is
deterministic, we can try to predict the time series by reconstructing the state
space. A way to reconstruct the state space was introduced by Packard et al. [13]
and mathematically analyzed by Takens [20]. A state vector is defined as

x¢ = (z(t), z(t —7), ..., z(t — (d—1)7)), (1.13)

with time-delay 7 and embedding dimension d. If the dynamics runs on an attractor
of dimension D, a necessary condition for determining x; is

d>D. (1.14)

If the embedding dimension is big enough, such that x; unambiguously describes
the state of the system at time ¢, then there exists an equation for points on the
attractor, which is of the form

z(t +p) = f* (%) (1.15)

In this equation, f* is a function that allows to predict future values of the time
series {z(t)} given past values, with p being the prediction horizon. Takens [20]
showed that there is an upper bound

d<2D+1 (1.16)

for the embedding dimension d, such that a continuous function f* can be found
within this bound. Regression techniques like SVR or RBF nets can therefore be
used to estimate the prediction function on the basis of time-delay coordinates ac-
cording to Eq. (1.13). For stationary dynamical systems the embedding parameters
7 and d can be found e.g. by the method of Liebert, Pawelzik and Schuster [8].

1.5 Experiments

We fix the following experimental setup for our comparison: (a) RBF nets and (b)
SVR are trained using a simple cross validation technique. We stop training the
RBF networks at the minimum of the one step prediction error measured on a
randomly chosen validation set. For SVR the parameters (A, ) are also determined
at the minimum of the one step prediction error on the same validation set. Other
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1.5 Ezperiments 7

methods, e.g. bootstrap can also be used to assess A and €. For SVR we distinguish
between a training with Huber loss and e-insensitive loss. Gaussian kernels with

k(x,y) = exp(—|lx - y||*/(20*)) and ¢*=0.75

are used in the SVR experiments. Note again that the RBF networks employed can
adapt their variances oy, to the data individually. Furthermore, in contrast to SVMs
the means py do not need to coincide with data points. As forecasting experiments
we consider (i) a toy problem to understand and control the experimental set-up
and (ii) a benchmark problem from the Santa Fe Competition (data set D).

1.5.1 Mackey Glass Equation

Our first application is a high-dimensional chaotic system generated by the Mackey-
Glass delay differential equation

dz(t) 0.2z(t — ta)
dt 14+ z(t —ta)t0’

with delay taA = 17. Eq. (1.17) was originally introduced as a model of blood cell
regulation [9] and became quite common as an artificial forecasting benchmark.
After integrating (1.17), we added noise to the time series. We obtained training
(1000 patterns) and validation (the following 194 patterns) sets using an embedding
dimension d = 6 and a step size 7 = 6. The test set (1000 patterns) is noiseless to
measure the true prediction error. We conducted experiments for different signal to
noise ratios (SNR) using Gaussian and uniform noise (Table 1.1).

We define the SNR in this experiment as the ratio between the variance of the
noise and the variance of the Mackey Glass data.

= —0.12(¢) + (1.17)

noise normal uniform
SNR| 22.15% | 44.3% 62% | 124% | 18.6%
test error|  1S[100S| 1S|1008| 1S]100S| 1S]100S| 1S]100S|
e-insensitive | 0.017]0.218 |0.040]0.335 | 0.006 ] 0.028 | 0.012]0.070 |0.017 ] 0.142
Huber | 0.017[0.209 | 0.040 [0.339 | 0.008 | 0.041 | 0.014 [ 0.065 | 0.019 | 0.226
RBF | 0.018]0.109 | 0.044]0.266 | 0.009 | 0.062 | 0.0140.083 | 0.028 | 0.282

Table 1.1 1S denotes the 1-step prediction error (RMS) on the test set. 100S is the
100-step iterated autonomous prediction. “SNR” is the ratio between the variance
of the respective noise and the underlying time series. E.g. parameter choices for
normal noise with SNR 22.15% is ¢ = 0.01 and A = 0.56 for e-insensitive loss and
€ = 0.1334 and X = 0.0562 for Huber loss. The respective RBF network uses 30
centers and A = 0.1 choosen according to the validation set.
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8 Using Support Vector Machines for Time Series Prediction

RBF networks and SVR achieve similar results for normal noise. It is to be
expected that the method using the proper loss function (squared loss) wins for
Gaussian noise, so we would actually expect the RBF nets to perform best followed
by SVR trained with Huber loss, which is for large € close to the squared loss
and finally followed by SVR using an e-insensitive loss. Table 1.1 confirms this
intuition partially. For uniform noise, the whole scenario should be reversed, since -
insensitive loss is the more appropriate noise model (cf. [6]). This is again confirmed
in the experiment. The use of a validation set to assess the proper parameters A and
€, however, is suboptimal and so the low resolution with which the (), ¢) space is
scanned is partly responsible for table entries that do not match the above intuition.

1.5.2 Data Set D from the Santa Fe Competition

Data set D from the Santa Fe competition is artificial data generated from a nine-
dimensional periodically driven dissipative dynamical system with an asymmetrical
four-well potential and a slight drift on the parameters [24]. The system has the
property of operating in one well for some time and then switching to another
well with a different dynamical behavior. Therefore, we first segment the time
series into regimes of approximately stationary dynamics. This is accomplished by
applying the Annealed Competition of Experts (ACE) method described in [14, 11]
(no assumption about the number of stationary subsystems was made). Moreover,
in order to reduce the effect of the continuous drift, only the last 2000 data points
of the training set are used for segmentation. After applying the ACE algorithm,
the data points are individually assigned to classes of different dynamical modes.
We then select the particular class of data that includes the data points at the end
of Data Set D as the training set for the RBF networks and the SVR2. This allows
us to train the RBF networks and the SVR on quasi-stationary data and we avoid
having to predict the average over all dynamical modes hidden in the full training
set (see also [14] for further discussion). However, at the same time we are left with
a rather small training set requiring careful regularization, since there are only 327
patterns in the extracted training set. As in the previous section we use a validation
set (50 patterns of the extracted quasi-stationary data) to determine the stopping
point and (A, €) respectively. The embedding parameters used, d = 20 and 7 = 1,
are the same for all the methods compared in table 1.2.

Table 1.2 shows that our 25 step iterated prediction of the SVR is 37% better than
the one achieved by Zhang and Hutchinson [25], who used a specialized network
architecture. It is still 29% better than our previous result [14] that used the same
ACE preprocessing as above and simple RBF nets (however at that time with
non-adaptive centers and variances). As expected, the results are inferior, if we

2. Hereby we assume that the class of data that generated the last points in the training
set is the one that is also responsible for the first couple of steps of the iterated continuation
that we aim to predict.
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train on the full, non-stationary training set without prior segmentation. However,
e-insensitive SVR is still better than the previous results on the full set.

| experiment | e-ins. | Huber | RBF | ZH [25] | PKM [14] |
full set | 0.0639 | 0.0653 | 0.0677 | 0.0665 -
segmented set | 0.0418 | 0.0425 | 0.0569 - 0.0596

Table 1.2 Comparison (under competition conditions) of 25 step iterated pre-
dictions (root mean squared errors) on Data set D. “~” denotes: no prediction
available. “Full set” means, that the full training set of set D was used, whereas
“segmented set” means that a prior segmentation according to [11, 14] was done as
preprocessing.

1.6 Discussion

and Outlook

The chapter showed the performance of SVR in comparison to tuned RBF net-
works. For data from the Mackey-Glass equation we observed that also for SVR it
pays to choose the proper loss function for the respective noise model (cf. [18, 19]).
In both SVR cases training consisted in solving a — uniquely solvable — quadratic
optimization problem, unlike the RBF network training, which requires non-linear
optimization with the danger of getting stuck in local minima. Note that a stable
prediction is a difficult problem since the noise level applied to the chaotic dynam-
ics was rather high. For the data set D benchmark we obtained excellent results
for SVR — 37% above the best result achieved during the Santa Fe competition
[25]. Clearly, this remarkable difference is mostly due to the segmentation used as
preprocessing step to get stationary data [11, 14], nevertheless still 29% improve-
ment remain compared to a previous result using the same preprocessing step [14].
This underlines that we need to consider non-stationarities in the time series be-
fore the actual prediction, for which we can then use SVR or RBF nets (see also
[11, 14, 15, 7] for discussion).

Our experiments show that SVR methods work particularly well if the data is
sparse (i.e. we have little data in a high-dimensional space). This is due to their
good inherent regularization properties.

Inspecting the RBF network approach more closely, we can see that a variety
of individual variances oy appear as a result of the learning process. Clearly, in
this sense RBF nets are the more flexible model, since multi-scaling information
is extracted and taken into account. Of course the higher flexibility must be
counter-balanced with a careful regularization. It now appears tempting to keep the
principled regularization approach of SVR and to also allow for multiple variance
SV kernels in Support Vector machine training. This way we would not to be obliged
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10 Using Support Vector Machines for Time Series Prediction

to determine a single scale to look at the data before learning?.

Other things that remain are: determining the proper parameters A and . This is
still suboptimal and computationally intensive (if not clumsy). Both, some improved
theoretical bounds and/or a simple heuristics to choose them would enhance the
usability of SVR, since (A, &) are powerful means for regularization and adaptation
to the noise in the data. Bootstrap methods or methods using a validation set are
only a first step.
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Appendix

Taking the derivative of Eq.(1.11) with respect to RBF means and variances we

obtain

OR,. d d . o Ti —

Tt = U0 =W S, with () = wi gt (39
and

ORpeg N~ pn 0 0 gl

6—04 = ; (f(xi) — v3) y‘qf(xz); with y‘qf(xz) = qugq(x,) ((1.19)

These two derivatives are employed in the following algorithm (in pseudo-code):

Algorithm RBF-Net
Input:
Sequence of labeled training patterns Z = ((x!,y'),---, (x!,4'))
Number of RBF centers K
Regularization constant A
Number of iterations T
Initialize:

Run K-means clustering to find initial values for p; and determine oy,
(k=1,...,K) as the distance between pj and the closest u; (i # k).

Dofort=1:T,
1. Compute optimal output weights w = (G'G + %I)_1 Gy'

3. The ability of processing multiscaling information could also be the reason to the often
more stable 100 step prediction of RBF nets that was observed in the experiments.
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2a. Compute gradients %ng and %Rreg asin (1.19) and (1.18) with

optimal w and form a gradient vector v

2b. Estimate the conjugate direction v with Fletcher-Reeves-Polak-
Ribiere CG-Method [16]

3a. Perform a line search to find the minimizing step size § in direction
v; in each evaluation of R,., compute the optimal output weights w as in
line 1

3b. update pj and o with ¥ and §

Output: Optimized RBF net
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Combining Support Vector and
Mathematical Programming Methods for
Classification

Kristin P. Bennett
Mathematical Sciences Department
Rensselaer Polytechnic Institute
Troy, NY 12180, USA
bennek@rpi.edu
http://www.math.rpi.edu/~bennek

We examine the relationship between Support Vector Machines (SVM) for clas-
sification and a family of mathematical programming methods (MPM) primarily
stemming from Mangasarian’s Multisurface Method of Pattern Recognition. MPM
and SVM share the same canonical form allowing the two approaches to be eas-
ily combined. We show how the dissimilarities of the MPM and SVM approaches
have been used to generate two new methods for nonlinear discrimination: support
vector decision trees and multicategory learning. Support vector decision trees are
decision trees in which each decision is a support vector machine. Multicategory
learning is an approach for handing classification problems with more than two
classes. In computational studies, altering the original MPM to include principles
of statistical learning theory almost always improved generalization. We also show
how mathematical programming models and tools allowed us to develop rapidly a
practical approach to solving a transduction problem using the theoretical princi-
ples of overall risk minimization. The basic of idea of transduction is to predict the
class of a given set of unlabeled testing points without first estimating the classifi-
cation function on the labeled training set. A semi-supervised SVM that includes
both labeled training data and unlabeled test data is formulated as a mixed-integer
program. Commercial optimization packages are used to solve moderately sized
problems. Computational results indicate that the semi-supervised approach did
improve generalization on many problems and never performed significantly worse
than the baseline supervised SVM.
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In this chapter we investigate the relationship between Support Vector Machines
(SVM) for classification and a family of mathematical programming methods pri-
marily stemming from Mangasarian’s Multisurface Method of Pattern Recognition
(MSM) (Mangasiarian, 1965; Mangasarian, 1968). We focus on this family of math-
ematical programming methods (hereafter referred to as MPM) out of the many
existing optimization-based classification methods in the literature because they
are closely related to SVM. MPM and SVM were developed independently but
they share the same canonical form. Thus a great potential exists for interaction
between the two approaches. By combining statistical learning theory concepts and
SVM ideas, such as kernels, with MPM, potentially many new SVM methods can
be derived. Also, model formulation ideas from MPM can be used to develop more
rapidly new algorithms based on statistical learning theory.

We begin with an overview of two optimization-based methods for classification:
MSM and the Robust Linear Programming (RLP) method (Bennett and Mangasar-
ian, 1992). Prior reviews cover how MPM are used for classification, clustering, and
function approximation (Mangasarian, 1997; Bradley et al., 1998). Potential for
integration of SVM and MPM exists in all these areas. In this chapter we will con-
centrate on the classification problem only. By starting with the linear classification
case, we can see the common roots of MPM and SVM and where the methodologies
branched in different directions. By examining dissimilarities, new opportunities for
integrated approaches become apparent. Specifically in this chapter we will examine
how MPM and SVM can be combined on two problems: nonlinear discrimination
via decision trees and multicategory classification. Then we will illustrate how an
idea from statistical learning theory on transduction, Ouerall Risk Minimization
(Vapnik, 1979), can be quickly converted into a practical algorithm using ideas
from MPM. These results are drawn primarily from existing work (Bennett et al.,
1998; Bredensteiner and Bennett, 1998; Bennett and Demiriz, 1998). The primary
goal of this chapter is to illustrate the current and potential integration of MPM
and SVM by making the MPM work accessible in a common format and pointing
to future possibilities.

Whenever possible we will use the notation in chapter 1 with a few exceptions.
In the original SVM, the separating plane is defined as w - x + b = 0. To make
the notation consistent with MPM literature we will use w - x — v = 0. The forms

are exactly equivalent with v = —b. For clarity in some problem formulations, we
must divide the training points into their respective classes. For ¥ > 2 classes, we
will denote the classes as A%, 4 =1,...,¥. For example, in the two-class case, the

sets are defined as A' := {x; | i € A'} := {x; | (xi,¥:), yi=1,4=1,...,£} and
A% = {x; | i€ A%} == {x; | (xi,¥;), yi = —1, i =1,...,£}. The cardinality of the
set A is denoted by £; = |AY|.
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19.2 Two MPM Methods for Classification

Multisurface
Method

Mangasarian’s Multisurface Method of Pattern Recognition (Mangasiarian, 1965;
Mangasarian, 1968) is very similar in derivation to the Generalized Portrait Method
of Vapnik and Chervonenkis (1974). Mangasarian proposed finding a linear discrim-
inant for linearly separable problems by solving the following optimization problem:

max a—pf

w,a,3
. . . 1
subject to w-x;>a, i€ A (19.1)
w-x; <8, j€ A2
llwll =1

The problem constructs two parallel supporting planes, one supporting each class,
and then maximizes the separation margin between the planes. The final optimal
plane, w-x = (O‘Zﬁ, is the same as that found by the Generalized Portrait Method.
Problem (19.1) is difficult to solve as formulated since the constraint, ||w|| = 1, is
nonconvex. The SVM formulation (1.9) — (1.10) can be viewed as a transformation
of (19.1) in which & — # = 2 and and [|w||, is minimized. In MSM, Mangasarian
proposed using the infinity-norm of w, ||W||cc = max;=1, ., |W;|, instead of the
2-norm. Then by solving the 2N linear programs (LPs), the optimal solution can
be found in polynomial time. In each LP one component wy of the weight vector
w is fixed to either 1 or —1 forcing the constraint ||[w||,, = 1 to be satisfied. Thus

the first d = 1,..., N linear programs are:
may o
subject to w-x; > a, ie Al
w-x; <3, j € A2 (19.2)
-1<w; <1, i=1,...,N
wg=1

The second set of N LPs consists of Problem (19.2) with w; = —1 replacing the
constraint wy = 1. The solution to the LP with maximal objective value is the
optimal solution of Problem (19.1) with ||w||_ =1 (Mangasarian et al., 1990).

Unlike the Generalized Portrait Method, MSM also works for the linearly in-
separable case. After training, the half-space w - x > 8 will contain only training
points in A'; the half-space w - x < a will contain only training points in A2%; and
the remaining margin may contain a mixture of points from both classes. By us-
ing Problem (19.2) recursively on points falling in the margin, MSM constructs a
piecewise-linear discriminant function such as in figure 19.1.

Our interest in MSM is primarily historical, because of the similarities to SVM
and because MSM set the pattern of how later MPM would address nonlinearly
separable problems. While MSM was successfully used in an initial automated
breast cancer diagnosis system at the University of Wisconsin-Madison (Wolberg
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Piecewise-Linear Separator. , -+ .

2"¢ Pair of, Planes

1%t Pair of Planes

Figure 19.1 Piecewise-linear discriminant constructed by MSM

and Mangasarian, 1990; Mangasarian et al., 1990), the method performs poorly
on noisy data sets since it minimizes the largest error in each class. The idea of
maximizing the margin of separation was used in both the Generalized Portrait
method and MSM, but different norms were used. For the nonlinear case, MSM
was applied recursively to yield a piecewise-linear discriminant function. Although
Mangasarian did observe that nonlinear discriminants could also be constructed by
mapping the input attributes to a higher dimensional space, he made no mention
of kernel-based methods.

To make MSM more tolerant of noise, Bennett and Mangasarian proposed the
Robust Linear Programming method (RLP) (Bennett and Mangasarian, 1992)
using the following linear program:

l
w,§,y Py

= (19.3)
subject to  yi(w-x; —y)+&>1

&>0 i=1,..¢0

where §; > 0 is the fixed misclassification cost associated with point x;. The original
RLP method used &; = ﬁ for points in A! and &; = ‘j—2‘ for points in A2. These
choices of J; ensure that the meaningless null solution w = 0 is never the unique
minimum of Problem (19.3). Smith (1968) proposed Problem (19.3) with §; = 7,
but w = 0 may be the unique optimal solution of the Smith formulation.

Of course RLP is identical to the Soft Margin Hyperplane formulation (1.37)
except for the absence of the capacity control term, ||w||, which maximizes the
margin of separation. If the 2-norm objective term, ||w||2, is added to RLP, the
result is the original quadratic program for SVM (1.9) — (1.10). From Mangasarian
and Meyer (1979) we know that there exists a constant C' such that for any C > C,
the optimal solution of SVM (1.9) — (1.10) is also an optimal solution of RLP
with &; = 1. If the solution of RLP is not unique, then the SVM solution with
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Primal RLP with
capacity control

Dual RLP with
capacity control

sufficiently large C' will be the optimal solution of RLP with the least 2-norm of w.
If the 1-norm objective term, ||w||1, is added, RLP can be generalized to construct
a SVM variation with 1-norm capacity control:

4
ming AMlw|l; + (1 — )\)Z(Si&
i=1

DOELE]

= (19.4)
subject to yi[w-x; —y] >1-¢&;

&>0, i=1,...,¢0

where §; > 0 is a fixed misclassification cost associated with point x; and A € (0,1)
is the relative weight on the margin maximization term. If A is close to 1 more
emphasis is placed on obtaining a large margin. If A is close to 0 then the emphasis
is on reducing the misclassification error. This problem is equivalent to following
parametric linear program:

N 4
min )\Zsj +(1- )\)Z(sz’&
j=1 i=1

W,7,8,§
subject to yi[w-x; —y] >1-¢&; (19.5)
>0, i=1,....0
—s;<=w;j<=s;5, j=1,...,N

A commercial linear programming package such as CPLEX (CPL, 1994), based on
simplex or interior point algorithms, can be used to solve very efficiently the dual
RLP problem (Murthy, 1983):

¢
min Zai
¢ i=1
¢
subject to —(1—MA)e < Zyiaixi <(1-Xe

, i=1 (19.6)
Z yioy =0
i=1

Ogalgézx\, i=1,...,£

where e is an N-dimensional vector of ones. The optimal w and «y are the Lagrangian
multipliers of the constraints of Problem (19.6). Most linear programming packages
provide the both the optimal primal and dual solutions.

RLP with 1-norm capacity control has been investigated in several papers (Ben-
nett and Bredensteiner, 1998; Bredensteiner, 1997; Bradley and Mangasarian,
1998a; Bennett et al., 1998). Adding capacity control to RLP has been found em-
pricially to improve generalization. Also there is no empirical evidence that either
the 1-norm or 2-norm formulation produces superior generalization. It is an open
question what the theoretical generalization differences are. In this chapter, we will
refer to the 1-norm form as RLP and the 2-norm form as SVM. Other names,
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such as Linear Programming Support Vector Machine, have used (Bradley and
Mangasarian, 1998a). One benefit of SVM over RLP is that the kernels can easily
be introduced into the dual problem in order to make nonlinear discriminants as
discussed in chapter 1. But new approaches for incorporating kernels into linear
programming based methods are being developed such as those in chapter 18. One
major benefit of RLP over SVM is dimensionality reduction. Both RLP and SVM
minimize the magnitude of the weights w. But RLP forces more of the weights
to be 0. This sparsity characteristic of the 1-norm compared to the 2-norm is also
used in Basis Pursuit (S. S. Chen, 1996). A second benefit of RLP over SVM is
that it can be solved using linear programming instead of quadratic programming.
State-of-the-art general-purpose linear program solvers are more efficient, more ro-
bust, and capable of solving larger problems than are quadratic program solvers.
If the original training data is sparse, the resulting LP formulation will be sparse
and typical linear program solvers are constructed to exploit any sparsity. Even for
sparse training data, the Hessian of the SVM quadratic program can become very
dense. Dense quadratic programs are more difficult. The greater effectiveness of lin-
ear versus quadratic programming algorithms is definitely true for general-purpose
solvers but optimization methods adapted to SVM problem structure such as the
ones discussed in this book and in (Bradley and Mangasarian, 1998b) may help
alleviate this difference. Other linear programming formulations such as those of
Glover (1990) are also popularly used.

There are many extensions of the basic MSM and RLP methods. The papers
(Mangasarian, 1997; Bradley et al., 1998; Bredensteiner, 1997) all contain interest-
ing reviews. For example, two related problems are feature selection: constructing
the best linear discriminant using the minimum number of attributes; and misclas-
sification minimization: explicitly minimizing the number of points misclassified
(Bradley and Mangasarian, 1998a; Bradley et al., 1995; Bredensteiner and Ben-
nett, 1997; Bennett and Bredensteiner, 1997). Both problems require minimization
of a metric that counts the number of nonzero components of a vector. Both are
NP-Hard problems (Amaldi and Kann, 1998, 1995), but approximate answers may
be found using nonconvex optimization techniques. Work on maximum feasible
subsystems of linear relations can also be applied to these problems (Amaldi and
Kann, 1998). These techniques are potentially applicable to SVM-related problems
as well.

MPM and SVM have significantly differed in their approach to nonlinear dis-
crimination and multicategory discrimination. For nonlinear discrimination, SVM
perform linear discrimination in a higher-dimensional space using kernels to make
the problem tractable. Starting with MSM, the primary MPM approach has been
to use many linear discriminants to construct piecewise-linear discriminants via a
decision tree. In section 19.3 we will investigate how SVM can be combined with
the MPM-based decision tree algorithms. Note that there are some MPM that do
perform nonlinear mappings into higher dimensional space, most notably the poly-
nomial neural network approaches of Roy et al. (1993, 1995); Roy and Mukhopad-
hyay (1997). In section 19.4, we examine the SVM and MPM approaches to multi-





1998/08/25 16:31

19.8 Nonlinear Separation via Decision Trees 813

category discrimination. Multicategory discrimination is the problem of classifying
points with more than two classes. The two approaches are combined to yield new
methods.

19.3 Nonlinear Separation via Decision Trees

Support Vector
Decision Trees

The primary MPM approach for nonlinear separation has been to construct
piecewise-linear discriminant functions. These functions are decision trees. This
approach can also be used with SVM. The original MSM can be viewed as produc-
ing a decision tree with specialized structure. RLP (19.3) has also been successfully
used in decision tree algorithms (Bennett, 1992). Here we consider decision trees in
which each decision is a support vector machine. Recent results on applying learn-
ing theory to decision trees show that there is a tradeoff between the structural
complexity of a tree, i.e. the depth and number of nodes, and the complexity of the
decisions that are used (Golea et al., 1998; Shawe-Taylor and Cristianini, 1998). We
also know that for a given tree structure and empirical risk, decisions with larger
margins should produce better generalization (Shawe-Taylor and Cristianini, 1998).
So statistical learning theory suggests that using SVM in decision trees is a good
idea for generalization. Another benefit is that the decision tree structure provides
valuable information about a problem beyond class membership. The decision tree
produces potentially interpretable rules, the attributes selected for the decisions
indicate which attributes are important, and the leaf nodes cluster the data in po-
tentially meaningful ways. For large data sets, trees with simple decisions based on
one attribute can be enormous. Using more powerful decisions, we can construct
trees with a much simpler structure. SVM can be regarded as decision trees with
one decision but that single decision is largely a black box. By using a linear SVM
with 1-norm capacity control (RLP) to construct each decision, a linear rule based
on only the necessary attributes will be produced. The 2-norm SVM usually is a
function of all the attributes. This attribute reduction is essential in many prac-
tical applications. What we want is something in between a very large univariate
decision tree and a single nonlinear support vector machine. The ideal decision tree
should generalize well, select the only relevant attributes, and provide information
about the properties of the underlying data relevant to the application.

In this section we will examine the Support Vector Decision Tree algorithm
(SVDT) and its successful application to a database marketing problem. Full details
of this work can be found in (Bennett et al., 1998). SVDT uses Dual RLP (19.6)
to construct simple decision trees with excellent dimensionality reduction.

SVDT performs top down induction of decision trees (TDIDT) like many
other decision tree algorithms including CHAID, CART, MSMT, C4.5, and OC1
(Breiman et al., 1984; Bennett, 1992; Quinlan, 1993; Murthy et al., 1994). The pri-
mary distinguishing factors between SVDT and other TDIDT algorithms are the
type of decisions used (linear SVM) and the method of constructing the decisions
(RLP (19.6)). The basic TDIDT algorithm works as follows:
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Algorithm 19.3.1 BASIC TDIDT Alogrithm
Start with the root node.
While o node remains to split

m Construct decision based on some splitting criterion.

® Partition the node into two or more child nodes based on decision.
Prune the tree if necessary.

In our case the splitting criterion and method is RLP (19.6) solved using the
commercial linear programming package CPLEX 5.0 (CPL, 1994).

SVDT has been applied to problems in database marketing. In database mar-
keting problems the primary goal is not testing set accuracy. The primary goal is
to produce a good rank ordering of customers. Decision tree algorithms using one
attribute per decision are frequently used in database marketing. The problem is
that univariate decision tree algorithms can produce very large trees with hundreds
of decisions on these large marketing data sets. In SVDT, we use more powerful
decisions to produce very compact trees typically with three decisions. By using
RLP (19.6) with 1-norm capacity control to construct the decisions, SVDT also
performs extensive dimensionality reduction. This is a property of the 1-norm for-
mulation. The primal objective term ||w||; tends to force the weights to zero. For
each decision, all of the original attributes are included in the RLP (19.6) model,
and then at optimality some of the constraints will be inactive or equivalently not at
bound. The Lagrangian multipliers for the constraints are the primal w variables.
Those corresponding to the inactive constraints must be zero due to complementar-
ity in the Karush-Kuhn-Tucker optimality conditions. So the linear program solver
will automatically determine which weights/attributes can be eliminated from the
problem at that decision.

The SVDT is constructed as part of the customer scoring process. The tradeoffs
between training accuracy, dimensionality reduction, and capacity control are con-
trolled by the parameter A. We tune A and prune the tree using a validation set. The
tuning takes into account the desired goals of the models in database marketing.
The customers are ranked based on the response rate of the decision tree nodes and
the minimum distance of the points from the decision. The results are reported in
gainscharts. The gainscharts are used to compare models for validation, to identify
potential customers, and to determine expected utility or profit. In (Bennett et al.,
1998) results are given on three business problems. SVDT produced simple, accu-
rate trees that would perform excellent scoring using a small number of attributes.
The trees also provide information about the structure of the problem.

On the data set Business I, SVDT produced the tree in figure 19.2. The training
data consisted of 2,358 points with 612 attributes and the testing set consisted of
1,006 points. CPLEX produced the root decision in 55 CPU seconds on a Sun Ultra
1/140 with 688 Megabytes of memory. The testing set accuracy of the tree is 77.8%
using three linear decisions. For comparison, C4.5 (Quinlan, 1993) produced a tree
consisting of 251 univariate decisions with 66% testing set accuracy. C4.5 took 110
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1 attr
82 margin

48 attr L1
28 margin
Class A'
Resp Rate:  85.6%
L2 49 attr Targ Class:  59.3%
17 margin Total Pop:  33.6%
Class A?
Resp Rate:  21.0%
Targ Class: 21.1% L3 L4
Total Pop:  48.8%
Class A? Class A!
Resp Rate:  45.5% Resp Rate  73.1%
Targ Class:  9.2% Targ Class  10.4%
Total Pop:  9.8% Total Pop:  9.8%

Figure 19.2 Decision tree for Business I test data, target class A*

minutes to construct the decision tree on the same platform. More accurate SVDT
trees exist but their corresponding gainscharts are not significantly different. Recall
that the goal is to identify “good” customers, e.g. customers in the target class A'.
The structure of this tree is very interesting. The tree has three internal nodes. A
value of A = .50 was used at the root node DO and a value of A = .25 for the two
subsequent decision nodes D1 and D2. In figure 19.2 each leaf node is labeled with
the response rate of the target Class A': (|Class A' at node|/|all points at node|), the
percentage of the target class reached at each node: (|Class A at node|/|Class A'
in population|), and the percentage of the total population reaching the node: (Jall
points at node|/|all points in population|). The optimal number of attributes and
margin of separation (ﬁ) is also given for each decision. The optimal number of
attributes is the number of attributes at that decision with nonzero optimal weights.
Notice that the first decision has only one nonzero weight and thus requires only
one attribute. This simple decision, using one attribute, produces leaf L1 which
reaches 59.3% of the target class with a response rate of 85.8%. Decision D1 uses
48 attributes to produce Leaf L2 that predominately contains points in A2. The
response rate of the target class is only 21.0%, and 48.9% of the total population
reaches that node. So in some sense decision DO identifies the easy points in A!
and decision D1 separates the points easily identified as being in A2. The points
reaching decision D2 are difficult to classify. The margin of separation in decision
D2 is much smaller and the accuracy of the decision is low. But decision D2 still
produces useful information for scoring. We can rank customers based on the leaf
of the tree that they reach. Our customer preference is L1, L4, L3, and then L2.
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Cumulative | Class A' | Cumulative
Decile | Class A! Class A! Response | Response Lift
Population | Population Rate Rate
1 20.04 20.04 97.03 97.03 199.62
2 18.00 38.04 88.00 92.54 190.37
3 15.54 53.58 76.00 87.04 179.07
4 15.13 68.71 73.27 83.58 171.95
5 8.79 77.51 42.57 75.35 155.01
6 7.36 84.87 35.64 68.71 141.35
7 4.50 89.37 22.00 62.07 127.70
8 4.29 93.66 20.79 56.89 117.05
9 3.48 97.14 17.00 52.49 107.98
10 2.86 100.00 13.86 48.61 100.00

Table 19.1 Gainschart for Business I test data.

After the points are ranked, they are sorted and the results displayed in a gain-
schart. Each line of the gainschart contains one decile (10%) of the population. The
deciles appear in order of response rate. For each decile we report the percentage
of the total target class population included in that decile, the cumulative percent-
age of the total target class population, response rate of the target class in that
decile, and the cumulative target class response rate. The last column represents
lift, a measure of how much better we are doing over choosing customers at ran-
dom. The lift is defined as 100*(response rate)*|Class A' in population|/|Class A
in decile|. Deciles with over 50% of Class A' are shown in bold. The gainschart for
the Business I test data is given in table 19.1.

Once we have the final model, we construct the gainschart using the test data. The
testing set response rate by decile is used to estimate the expected business response
rate. So for example if we market the top 40% of the customers we could expect
a response rate of 83.6% and we would reach approximately 68.7% of all possible
target customers in our population. The rule of thumb in database marketing is:
if in the fifth decile more than 70% of the target class is reached, then the model
is successful. In our gainschart the fifth decile is underlined. We reached 77% of
the Class A! population at the fifth decile. The testing gainschart combined with a
model of expected profitability can be used to determine thresholds for scoring. In
the scoring process, potential customers are selected based on the model and the
selected threshold (Thomas, 1996; Hughes, 1996).

SVDT was also tested on two other database marketing problems with similar
results. The largest data set attempted contained 33.6 megabytes of training data.
The largest root decision was solved in 23 minutes by CPLEX on a Sun Ultra 1/140
with 688 megabytes of memory. The interested reader should consult (Bennett et al.,
1998) for full details of these experiments.

Other versions of SVDT are possible. The original SVM quadratic program (1.37)
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approach could be used in a TDIDT algorithm. The catch is that this approach
frequently results in only one decision in the tree. Thus alternative SVM-based
algorithms that consider and optimize all the decisions in the tree simultaneously
have been proposed (Blue, 1998; Bennett and Blue, 1997). The trees found by SVDT
on the database marketing problem look very much like the classifiers produced by
the original MSM algorithm. So another possibility is to use trees with three-way
splits at each decision, the region to the left of the margin, the region in the margin,
and the region to the right of the margin. The more popular decision tree algorithms
like CART and C4.5 work on attributes that are symbolic. What does the margin
mean in the context of symbolic attributes? Can statistical learning theory help in
algorithms for problems with symbolic attributes? These are open research topics.

19.4 Multicategory Classification

In this section we focus on the different approaches MPM and SVM have used
to solve problems with ¥ > 2 classes. The original SVM method for multiclass
problems was to find ¥ separate two-class discriminants (Cortes and Vapnik, 1995;
Vapnik, 1995). Each discriminant is constructed by separating a single class from
all the others. This process requires the solution of ¥ quadratic programs. We
will denote this method ¥-SVM. When applying all ¥ classifiers to the original
multicategory data set, multiply classified points or unclassified points may occur.
This ambiguity has been avoided by choosing the class of a point corresponding to
the classification function that is maximized at that point. The LP approach has
been to construct directly ¥ classification functions such that for each point the
corresponding class function is maximized (Bennett and Mangasarian, 1993, 1994).
The Multicategory Discrimination Method (Bennett and Mangasarian, 1993, 1994)
constructs a piecewise-linear discriminant for the W¥-class problem using a single
linear program. We will call this method M-RLP since it is a direction extension of
the RLP approach. The ¥-SVM and M-RLP approaches can be combined to yield
two new methods: ¥-RLP, and M-SVM. We will provide a very brief description of
this work. Full details on all the results of this section can be found in (Bredensteiner
and Bennett, 1998; Bredensteiner, 1997).

To simplify the equations we introduce some notation. We wish to construct a
discriminant function between the elements of the sets, A%,i = 1,..., ¥, in the N-
dimensional real space RY. Let A’ be an #; x N matrix whose rows are the points
in A%. The jt* point in A’ and the j** row of A are both denoted A7. Let e denote
a vector of ones of the appropriate dimension. We can express a set of constraints
such asw-Aé >y+1,5=1,...,0 as Alw > (v + 1)e.

In the linear case the original MPM and SVM methods both construct a
piecewise-linear separator to discriminate between ¥ > 2 classesof £¢, i =1,..., ¥,
points. In U-SVM (Vapnik, 1995; Cortes and Vapnik, 1995) a quadratic program
is solved to construct a discriminant function to separate one class from the re-
maining ¥ — 1 classes. This process is repeated ¥ times. In the separable case, the
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= i. —
f(:v)—ig;?;faw

Al A? A3

Figure 19.3 Piecewise-linear separation of sets A', A%, and A% by the convex
piecewise-linear function f(x)

linear discriminant for each class must satisfy the following set of inequalities: Find
(wh,y),...,(wY,~+Y), such that
Atwi — yle > e

Tes e . (19.7)

—e> Alw' —~'e, i,j=1,...,0, i#j.

For the separable case, solving the ¥ one-class-from-the-rest SVM will yield
(whh), ..., (w¥,yY) if a solution exists.

To classify a new point x, compute f;(x) = wi-x—~¢ If f;(x) > 0 for only one i

then clearly the point belongs to Class A'. If more than one f;(x) > 0 or fi(x) <0

for all = 1,..., ¥ then the class is ambiguous. Thus the general rule is that the
class of a point x is determined from (w?,~¢%), i = 1,..., ¥, by finding i such that
filx) = wi - x — (19.8)

is maximized. Figure 19.3 shows a piecewise-linear function f(x) = max f;(x) on R
i=1,2,3

that separates three sets. Note that while (w?,~v?), i = 1..., ¥, are constructed in
U separate optimization problems, in the final classification function the problem
is not separable into ¥ separate functions.

Note that either SVM (1.37) or RLP can be used to construct the ¥ two-class
discriminants depending on the norm desired for capacity control. For clarity, we
will call this method used with SVM (1.37), ¥-SVM. We will denote this method
used with RLP (19.6), ¥-RLP. For both ¥-SVM and ¥-RLP to attain perfect
training set accuracy using the function (19.8), the following inequalities must be
feasible, i.e. there exist (w!,~!),...,(w¥,vY) satisfying

Alwt —yle > Alwl —rde, i,j=1,...,0, i#j (19.9)





1998/08/25 16:31

19.4 Multicategory Classification 819

M-RLP

or equivalently
Alw' —w) = (Y =7)e>e, i,j=1,...,0, i#j (19.10)

The M-RLP method! proposed and investigated in (Bennett and Mangasarian,
1993, 1994) can be used to find (w;, 7v;), ¢ = 1,..., ¥ satisfying the inequalities
(19.10). In the two-class case, M-RLP simplifies to the original RLP method:

i eTZij Zij Z _Az(wl —W]) + (’YZ _7])6 +€, zij Z 07
L i, j=1,...,% i#£j

min
w1 771 ,Z1J

(19.11)

N
=1 j=1
J#i
where z¥ € R%*!. In M-RLP (19.11), if the optimal objective value is zero, then
the data set is piecewise-linearly separable. If the data set is not piecewise-linearly
separable, the positive values of the variables zfj are proportional to the magnitude
of the misclassified points from the plane (w! — w?) - x = (v —47) + 1. M-RLP
(19.11) is a linear program. Like the original RLP (19.3), M-RLP does not include
any terms for maximizing the margin. So we will now show how M-RLP and SVM
can be combined by including margin maximization and generalized inner products
into M-RLP.

Intuitively, the “optimal” (w?, %) should provide the largest margin of separation
possible. So in an approach analogous to the two-class SVM approach, we add
margin maximization terms to control capacity. The dashed lines in figure 19.4
represent the margins for each piece (w! — w7, 4? — 47) of the piecewise-linear
separating function. The margin of separation between the classes ¢ and j, i.e. the
distance between

Al(wt —wI) > (v —+i)e+e and

ST o (19.12)
A(wt=w)) < (v —v)e—e,

is ﬁ So, we would like to minimize Hw’ - wj” foralli,j=1,...,9, i #j.
Also, we will add the regularization term %Z;P:l ||w’||2 to the objective. For the

piecewise-linearly inseparable problem we get the following;:

ooy (it IR T

min (1= Y 45 | W w2
w52z i=1 ;:&11 i=1j=1 i=1 (19.13)
subject to 7 + Al(wi —wi) —e(yi —4I) —e>0

i,j=1,...,0 §#j.

where A € (0,1). Note that the misclassification costs of Ei could be any positive
constant. In (Weston and Watkins, 1998) a U-class formulation very similar to
Problem (19.13) is proposed except the margin maximization term that minimizes
|lw? — wi||? is omitted.

1. The method was originally called Multicategory Discrimination.
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w'—w?) - x=('=7")+1

Al o \y (w' —w? 5! —77)

A2

AS

Figure 19.4 Piecewise-linear separator with margins for three classes

As in the two-class case, the dual of the problem can be formulated (see Bre-
densteiner and Bennett (1998)). Kernels can be easily incorporated into the dual
formulation to allow piecewise-nonlinear discriminants. The notion of support vec-
tor exists in this formulation. There are ¥ — 1 Lagrangian multipliers, u, for each
point. The final M-SVM produces a piecewise-nonlinear classification that computes

the class of a point x by finding ¢ = 1,..., ¥ such that the classification function
hd T T

fe) =) Y uiKxAL) - > wiK(x,Al)| -+ (19.14)
;;11 SVeai SVeai

is maximized. Figure 19.5 illustrates the results of M-SVM on a three-class problem
in two dimensions.

We summarize some of the computational results comparing M-SVM (19.13),
M-RLP (19.11), ¥-SVM using SVM (1.37), and ¥-RLP using RLP (19.6). See
(Bredensteiner and Bennett, 1998; Bredensteiner, 1997) for full details on the
problem formulation and results. The quadratic programming problems for M-SVM
and ¥U-SVM were solved using the nonlinear solver implemented in MINOS 5.4
(Murtagh and Saunders, 1993). This solver uses a reduced-gradient algorithm in
conjunction with a quasi-Newton method. In M-SVM, ¥-SVM, and M-RLP, the
values for A\ are .03, .05, and .03 respectively. Better solutions may result with
different choices of A. Additionally, it is not necessary for the same value of A to
be used for both methods. The kernel function for the piecewise-nonlinear M-SVM
and ®-SVM methods is K (z,z;) = (£ + l)d , where d is the degree of the desired
polynomial.
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Figure 19.5 Piecewise-polynomial separation of three classes in two dimensions.
Support vectors are indicated with large ovals.

We experimented with the United States Postal Service (USPS) Database (Le-
Cun et al., 1989) containing zipcode samples from actual mail. This database is
comprised of separate training and testing sets. There are 7291 samples in the
training set and 2007 samples in the testing set. Each sample belongs to one of
ten classes: the integers 0 through 9. The samples are represented by 256 features.
Our experiment was conducted on two subsets of the USPS. Subsets were selected
because the M-SVM for the complete formulation was too large for our solver with-
out using decomposition techniques. These data contain handwriting samples of the
integers 0 through 9. The objective of this data set is to interpret zipcodes quickly
and effectively. This data set has separate training and testing sets, each of which
consists of the 10 integer classes. We compiled two individual training subsets from
the USPS training data. The first subset contains 1756 examples each belonging to
the classes 3, 5, and 8. We call this set USPS-1 training data. The second subset
contains 1961 examples each belonging to the classes 4, 6, and 7. We call this set
USPS-2 training data. Similarly, two subsets are created from the testing data. In
all of these data sets the data values are scaled by ﬁ. Testing set accuracies are
reported for all four methods. The total numbers of unique support vectors in the
resulting classification functions for the M-SVM and ¥-SVM methods are given.
Reference SVM accuracies on the full 10-class USPS benchmark are 95.8%, using
a polynomial kernel, and 97.0%, incorporating prior knowledge by using a local
kernel and Virtual SVs (Scholkopf et al., 1998d).
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Data Method Degree
1 2 3 4 5
USPS-1 | M-RLP | 80.69 - - - -
U-RLP | 91.46 - - - -

M-SVM | 91.26 | 91.87 | 92.28 | 92.07 | 92.28
(415) | (327) | (312) | (305) | (317)
U-SVM | 91.67 | 92.28 | 92.89 | 92.68 | 92.48
(666) | (557) | (514) | (519) | (516)
USPS-2 | M-RLP | 80.66 | - - - -

U-RLP | 96.13 | - - - -

M-SVM | 94.58 | 94.97 | 95.36 | 94.97 | 94.00
(228) | (185) | (167) | (166) | (180)
¥-SVM | 96.13 | 96.52 | 96.13 | 95.16 | 94.58
(383) | (313) | (303) | (204) | (289)

Table 19.2 Percent testing set accuracies and (total number of support vectors)
for four multicategory discrimination methods

Table 19.2 contains results for the four methods on the USPS data subsets.
Both of these data sets are piecewise-linearly separable. The solution that M-
RLP has found for each of these data sets tests significantly worse than the other
methods. This shows the importance of margin maximization, since M-RLP is
the only method lacking capacity control. The ¥-SVM method generalizes slightly
better than M-SVM and is also more computationally efficient. The ¥-RLP method
reports accuracies similar to those of the ¥-SVM method. Additionally, ¥-RLP is
solving many small linear program rather than one big linear program or quadratic
programs, so the computational training time is significantly smaller than that of
the other methods. Changing the parameter A may further improve generalization.
The M-SVM method consistently finds classification functions using fewer support
vectors than those found by ¥-SVM. With fewer support vectors, a sample can
be classified more quickly since the dot-product of the sample with each support
vector must be computed. Thus M-SVM would be a good method to choose when
classification time is critical.

The results illustrate the value of combining SVM and MPM approaches. By
incorporating margin maximization, the M-RLP method was greatly improved and
two new methods ¥-RLP and M-SVM were constructed. Overall, the one-class-
from-the-rest approaches, U-RLP and ¥-SVM, are best both in terms of gener-
alization and computational time on the problems we tested. Our computational
experiments, however, were limited by the capacity of the solver used (MINOS).
Decomposition methods such as the ones discussed in this book could be used to
make the M-SVM method tractable for larger problems with more classes. Also,
1-norm capacity control and kernels could be added to the M-RLP formulation.
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So the best multicategory formulation is still very much an open question both
practically and theoretically.

19.5 Overall Risk Minimization and MPM

Semi-supervised
support vector
machine

In this section we show how modeling techniques from mathematical programming
can be used to help translate concepts from statistical learning theory into prac-
tical algorithms. As a concrete example, we examine the problem of overall risk
minimization in transduction. Vapnik briefly presented this problem at the NIPS
1997 Support Vector Machine Workshop (see chapter 3) and it also can be found in
chapter 10 of (Vapnik, 1979) and briefly in (Vapnik, 1995). Roughly, the transduc-
tion problem is: given a training set of labeled points (x1,y1), - -, (X¢, y¢), estimate
the value of a function y = f(x), at a given unlabeled working set2 Tpg1ye-esLim-
Vapnik distinguishes between this problem of transduction and the induction prob-
lem. In induction the goal is to estimate the function f at all possible points. Future
testing points are classified using deduction. In transduction, the goal is to estimate
the function value at a particular set of testing or working points. In induction, the
structural risk is minimized. In transduction, the overall risk is minimized. Accord-
ing to overall risk minimization, by explicitly including the working set data in the
problem formulation, we can expect better generalization on problems with insuffi-
cient data. We define the semi-supervised support vector machine problem (S*V M)
as: given a training set of points with known class, and a working set of data points
with unknown class, construct a SVM to label the working set.

To formulate S*V M, we start with either the 1-norm RLP or 2-norm SVM
formulation, and then add two constraints for each point in the working set. One
constraint calculates the misclassification error as if the point were in class A!
and the other constraint calculates the misclassification error as if the point were
in class A2. The objective function calculates the minimum of the two possible
misclassification errors. The final class of the points corresponds to the one that
results in the smallest error. Specifically we define the SV M as:

ll lz m
min (L= | D di&i+ Y Gizg+ Y dimin(és,z) | +5 | wl
=1 j=1

e =041

subject to  w-x;—y+&>1 §>0 i€ Al (19.15)
—W-Xj+y+z;>1 z;>0 j€A?
w-X;—7+&>1 & >0 s €working set
—W-Xs+7+2; 21 2,20

where &; > 0 are fixed misclassification costs. For the experiments reported here we
used §; = 1/m and X\ = .005.

2. This set is refered to as the testing set in (Vapnik, 1995).
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Integer programming can be used to solve this problem. The basic idea is to add
a 0 or 1 decision variable, ds, for each point x, in the working set. This variable
indicates the class of the point. If d; = 1 then the point is in class A! and if d;, =0
then the point is in class A2. This results in the following mixed integer program
(S*V M-MIP):

l1 12 m
min Q=X D o6&+ dizi+ Y, sil&+z)| +5 11wk
wWird,zsd i—1 i=1 i—¢
i= j= i=L4+1
subject to wezi—y+&>1 §>0 i€ Al (19.16)
-w-z;+v+z2;>1 z;>0 j€A2
w-rs—y+&+M(1—ds)>1 & >0 s € working set
—W-zs+v+z2s+Mds >1 2,>0 ds ={0,1}

The constant M > 0 is chosen sufficiently large such that if d; = 0 then & = 0 is
feasible for any optimal w and . Likewise if d; = 1 then z; = 0.

If the 1-norm is used, this problem can be exactly solved using CPLEX or other
commercial integer programming codes (CPL, 1994). CPLEX uses a combination
of branch-and-bound and branch-and-cut techniques to produce an enumeration
tree. At each node of the tree a continuous relaxation of the integer program is
solved using low-cost linear algebra. For problem (19.16) the effectiveness of the
algorithm is dependent on the number of integer variables, i.e., the size of the
working set, and the effectiveness of the algorithm at pruning the search space.
Using the mathematical programming modeling language AMPL (Fourer et al.,
1993), we were able to express the problem in approximately thirty lines of code
plus a data file and solve it using CPLEX.3 If the 2-norm is used for margin
maximization, then the problem becomes a quadratic integer program. Methods
exists for solving these problems but we did not have access to such a solver.

The S3V M-MIP can be used to solve the transduction problem using overall risk
minimization. Consider the simple problem given in figure 20 of (Vapnik, 1979).
The results of RLP and SVM-MIP on this problem are shown in figure 19.6. The
training set points are shown as transparent triangles and hexagons. The working
set points are shown as filled circles. The left picture in figure 19.6 shows the
solution found by RLP. Note that when the working set points are added, the
resulting separation has a very small margin. The right picture shows the SV M-
MIP solution constructed using the unlabeled working set. Note that a much larger
and clearer separation margin is found. These computational solutions are virtually
the same as the solution presented in (Vapnik, 1979).

We also tested SV M-MIP on ten real-world data sets from (Murphy and Aha,
1992). SV M-MIP tested better on nine of the ten data sets although not always
significantly so. On no data set did S*V M-MIP perform significantly worse. The

3. The AMPL code is available on request from the author at
http://www.math.rpi.edu/~bennek.
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Figure 19.6 Left = solution found by RLP; Right = solution found by S*V M-MIP

Data Set Dim | Points || CV-size | RLP SBVM-MIP | p-value
Bright 14 2462 50* 0.02 0.018 0.343
Cancer 9 699 70 0.036 0.034 0.591

Cancer(Prognostic) | 30 569 57 0.035 | 0.033 0.678
Dim 14 4192 50% 0.064 0.054 0.096

Heart 13 297 30 0.173 0.160 0.104
Housing 13 506 51 0.155 0.151 0.590

Ionosphere 34 351 35 0.109 | 0.106 0.59

Musk 166 476 48 0.173 | 0.173 0.999

Pima 8 769 50* 0.220 | 0.222 0.678

Sonar 60 208 21 0.281 0.219 0.045

Table 19.3 RLP vs S*V M-MIP Average Testing Error

results are given in table 19.3. For each data set, we performed 10-fold cross-
validation. For the three starred data sets, our integer programming solver failed due
to excessive branching required within the CPLEX algorithm. On those data sets
we randomly extracted 50-point working sets for each trial. The same parameters
were used for each data set in both the RLP and S*V M-MIP problems. While the
p-values for the paired t-test of the testing set accuracies are not always small,
this is not a surprise. Many algorithms have been applied successfully to these
problems without incorporating working set information. Thus it was not clear
a priori that S*V M would improve generalization on these data sets. For the
data sets where no improvement is possible, we would like S*VM-MIP to not
degrade the performance of RLP. Our results are consistant with the statistical
learning theory results that incorporating working data improves generalization
when insufficient training information is available. In every case, S*V M-MIP either
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improved or showed no significant difference in generalization compared to the
baseline empirical risk minimization approach RLP. With additional constraints
SVM-MIP can be adapted to clustering as well. Other problem formulations for
S*V' M that incorporate kernels are being investigated.

19.6 Conclusions

1998/08/25 16:31

We have shown that the past problem formulations for MPM from the work of Man-
gasarian share the same canonical form with SVM. These similarities allow MPM
and SVM methods to be easily combined. We examined how the dissimilarities of
the MPM and SVM approaches can be used to generate new methods for nonlin-
ear discrimination using support vector decision trees and multicategory learning.
In almost every case incorporating margin maximization into the MPM resulted in
better generalization. We also showed how MPM models and tools allowed us to de-
velop rapidly a practical approach to solving a transduction problem using overall
risk minimization. This integer programming approach was able to solve moder-
ately sized problem using commercial software. Our preliminary empirical results
support the overall risk minimization theory and indicate that transduction is both
a promising and practical research direction for both SVM and MPM. The review
here has been solely limited to a few examples from a single family of MPM. There
are many extensions of these methods such as those covered in (Bradley et al., 1998;
Mangasarian, 1997) that can also be potentially combined with SVM. In addition,
there are wide classes of totally unrelated MPM approaches, e.g. Glover (1990);
Gochet et al. (1997), that also can be potentially synthesized with SVM. Omission
of any method from this paper should not be used as an indication of the quality
of the method. The primary weakness of the MPM approaches is that they have
not been guided by statistical learning theory. In the problems investigated in this
chapter, altering MPM methods to include principles of statistical learning theory
almost always improved generalization. Many other optimization-based methods
can potentially be improved by similar transformations.
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