
Learning Dynamic Bayesian Networks

Ashley Mills

ashley@igi.tugraz.at

Structure of talk

1. Representation of DBNs

2. Inference in DBNs

3. Parameter learning in DBNs

4. An application which uses DBNs

5. Retrospection

Representation in DBNs

Introduction

I DBNs are extensions of BNs over potentially-infinite
collections of RVs Z1,Z2,

I Usually RVs are partitioned Zt = (Ut ,Xt ,Yt) into inputs Ut ,
states Xt , and outputs Yt .

I DBN is a pair (B1,B→), where

I B1 is a prior which defines P(Z1)
I B→ is a 2TBN which defines P(Zt |Zt−1) via a DAG s.t.

P(Zt |Zt−1) =
N∏

i=1

P(Z i
t |Pa(Z i

t))

I P(Z1:T) =
∏T

t=1

∏N
i=1 P(Z i

t |Pa(Z i
t))

DBN example: Hidden Markov Model (HMM)

Y1 Y2

X1 X2

I Xt+1 |= Xt−1 |Xt (Markov property)

I Yt |= Yt′ |Xt ,∀t ′ 6= t

I P(X ,Y) = P(X1)P(Y1|X1)
T∏

t=2

P(Xt |Xt−1)P(Yt |Xt)

I P(Yt = y |Xt = i) = N(y ;µi ,Σi)

DBN example: Linear Gaussian Input-Output HMM

Y1 Y2

X1 X2

U1 U2

I P(U,X ,Y) =

P(X1)P(Y1|X1,U1)
T∏

t=2

P(Xt |Xt−1,Ut)P(Yt |Xt ,Ut)

I P(X1 = x) = N(x ; x0,V0)
P(Xt+1 = xt+1|Xt = x ,Ut = u) = N(xt+1;Ax + Bu,Σα)
P(Yt = y |Xt = x ,Ut = u) = N(y ;Cx + Du,Σβ)

I Kalman filter: online computation of P(Xt |y1:t , u1:t).

DBN example: Factorial HMM

I Imagine trying to model M objects each of which can occupy
K positions.

I Doing this with standard HMM would require KM states.

I In FHMM, state representation is distributed over M variables

Xt = X
(1)
t , ...X

(m)
t , ...,X

(M)
t

I Each of which can take on K values.

I State space is still KM but we constrain transitions.

DBN example: Factorial HMM

X
(1)
t−1

X
(2)
t−1

X
(3)
t−1

Yt−1

X
(1)
t

X
(2)
t

X
(3)
t

Yt

X
(1)
t+1

X
(2)
t+1

X
(3)
t+1

Yt+1

DBN example: Factorial HMM

I Each state variable is independent

P(Xt |Xt−1) =
M∏

m=1

P(X
(m)
t |X (m)

t−1)

I Lets use linear-Gaussian D-dimensional observation vectors:

P(Yt |Xt) = |R|−1/2(2π)−D/2 exp

{
−1

2
(Yt − µt)

′R−1(Yt − µt)

}
where

µt =
M∑

m=1

W (m)X
(m)
t

DBN example: Tree structured HMM

X
(1)
t−1

X
(2)
t−1

X
(3)
t−1

Yt−1

X
(1)
t

X
(2)
t

X
(3)
t

Yt

X
(1)
t+1

X
(2)
t+1

X
(3)
t+1

Yt+1

Ut−1 Ut Ut+1

Stochastic decision tree with Markovian decision dynamics.

Switching State space model

X
(1)
t−1

X
(M)
t−1

St−1

Yt−1

X
(1)
t

X
(M)
t

St

Yt

X
(1)
t+1

X
(M)
t+1

St+1

Yt+1

Switching State space model

P({St ,X
(1)
t , ...,X

(M)
t ,Yt}) = P(S1)

∏T
t=2 P(St |St−1)

×
∏M

m=1 P(X
(m)
1)

∏T
t=2 P(X

(m)
t |X (m)

t−1)

×
∏T

t=1 P(Yt |X (1)
t , ...,X

(M)
t ,St)

P(Yt |X (1)
t , ...,X

(M)
t ,St = m) =

|R|−1/2(2π)−D/2 exp
{
−1

2(Yt − C (m)X
(m)
t)′R−1(Yt − C (m)X

(m)
t)

}
Its a bit like mixture of linear Gaussian experts.

DBNs in context of GMs

directed

HMM KFM other mixture
models

dimensionality
reduction

PCA ICA

regression

DBNs

 (BN)

GM

chain graph dependency

Boltzmann

(MRF)
undirected

BNs

netother

maxent
modelsmachine

Inference in DBNs

Inference in BNs

I Marginalize out variables not interested in, for example for
FHMM

P({Yt}|θ) =
∑
{Xt}

P({Xt ,Yt})|θ)

we have to marginalize out all possible state sequences, unless
we exploit conditional independencies.

I Brute force marginalization requires at worst full joints.

I In general computating full joints is huge, and marginalization
is huge.

I Efficient inference algorithms exploit conditional
independencies to reduce complexity.

Exact inference

I Forward backward algorithm for HMMs.

I Belief propagation:

I Pearl’s message passing algorithm for polytrees (DAGs without
undirected cycles).

I Junction tree algorithm for general undirected networks (belief
propagation on cliques).

Belief propagation

p1 p2

p3

n

c1 c2
c3

e (n)
+

e (n)
-

p(n|e) ∝

 ∑
{p1,..,pk}

P(n|p1, ..., pk)
k∏

i=1

P(pi |e+(pi))

 l∏
j=1

P(cj , e
−(cj)|n)

P (pi|e+(pi))

p

n

Message

P (cj , e
−(cj)|n)

n

c

Message

Approximate inference

I Sampling methods:
I Importance sampling: draw random samples x from P(X) and

weight by likelihood P(y |x), where y is evidence.
I Markov Chain Monte Carlo

I Variational methods: for example approximate large sums of
random variables by their means.

I Loopy belief propagation: apply Pearl’s agorithm to the
original graph even if it has undirected cycles.

Parameter Learning in DBNs

Parameter learning

Observability
Structure Full Partial

Known Closed form EM
Unknown Local search Structural EM

I Can either find a “best” set of parameters or infer a
distribution.

Known structure, full observability

I Compute ML parameters using given sufficient statistics.

I For example, in a HMM, using the frequentist approach

PML(Y = α|X = β) =
Number of times Yt = α when Xt = β

Number of times Xt = β

I Dirichlet priors can be used to avoid assigning null
probabilities to events absent from the training set.

I For Gaussian nodes, ML µ and Σ are just the sample µ and Σ.

Known structure, partial observability

I Sufficient statistics unavailable.

I Compute expected sufficient statistics (ESS) and treat as
complete data case.

I EM: compute ESS given current θ, maximise likelihood of
expected complete data with respect to θ, iterate.

I EM is gradient ascent, but general gradient ascent can be
used.

I There is some debate over which is better.

Expectation Maximisation for HMMs (aka Baum Welch
algorithm)

Given:

I N hidden states, M output symbols.

I Observation sequence Y = {Y1Y2...YT}
I Prior selection of parameters λ = (A,B, π) for state

transitions A = {aij}, emission probabilities B = {bj(k)}, and
initial state distribution πi .

Hidden:

I State sequence X = {X1X2...XT}
I Use indicator variables γt(i) to model P(Xt = Si |Y , λ)

Expectation Maximisation for HMMs

1. E-STEP:
Use current λ to estimate state sequence via ESS.

I Compute expected values for the state at time t:
γt(i) = P(Xt = Si |Y , λ)

I Compute expected values for occurance of state tuples:
εt(i , j) = P(Xt = Si ,Xt+1 = Sj |Y , λ).

I These expectations are computed using the forward-backward
functions.

2. M-STEP:
Find new ML parameters λ̄
ML parameters π̄i , āij , and b̄j(k) are the expected values
given the expected state sequence computed in the E-Step.

I π̄i = γ1(i)

I āij =
PT−1

t=1 εt(i,j)PT−1
t=1 γt(i)

I b̄j(k) =
PT

t=1 [s.t. Yt=vk] γt(j)PT
t=1 γt(j)

Unknown structure, full observability
I Local search over structure; need to define search space,

scoring, and algorithm.
I ML estimate is complete graph so MAP estimate of score is

used

Pr(G |D) =
Pr(D|G)Pr(G)

Pr(D)

L = log Pr(G |D) = log Pr(D|G) + log Pr(G) + c

I Give higher priors to simpler models.
I Marginal likelihood automatically penalizes complex models.

P(D|G) =

∫
θ
P(D|G , θ)P(θ|G)

I Parameter independence allows likelihood decomposition:

P(D|G) =
n∏

i=1

∫
P(Xi |Pa(Xi), θi)P(θi)dθi

Unknown structure, partial observability

I Marginal likelihood is intractible and doesn’t decompose

P(X |G) =
∑
Z

∫
θ
P(X ,Z |G , θ)P(θ|G)

I Can approximate marginal likelihood and use local search.

I Scoring functions exist (e.g BIC) which do decompose.

I Structural EM (local search within M step).

An application which uses DBNs:

A Comparison of HMMs and Dynamic Bayesian
Networks for Recognizing O�ce Activities

– Nuria Oliver and Eric Horvitz

Layered HMMs and DBNs

I Model consists of layers.

I Each layer is connected to the next via its inferential results.

I Layers correspond to different levels of temporal detail and
abstractness.

I Each layer of the heirarchy is trained independently.

I Paper discusses replacing top-level HMM with DBN.

Layered HMM Model: Raw signals

I Audio:
I Two microphones capture audio and LPC coefficients are

computed.
I Coefficients are selected via PCA so 95% of variability is kept.
I Energy, mean and variance of fundamental frequency, and zero

crossing rate also extracted.
I Sound source is localized using the Time Delay of Arrival

method.

I Video:
I Firewire camera 30FPS.
I Extract: density of skin pixels, density of motion pixels, density

of foreground pixels, and density of face pixels.

I Keyboard and Mouse:
I History of last 1, 5, and 60 seconds of activity.

Layered HMM: First level

I Bank of discriminative audio and video signal classifier HMMs.

I One HMM trained for each class, ML model defines class of
instance at runtime.

I Audio classes: human speech, music, silence, ambient noise,
phone ringing, and keyboard typing.

I Video classes: nobody present, one person, one active person,
and multiple people.

Layered HMM: Second level

I Objective is to model activities at increased temporal
granularity:

I Phone conversation, presentation, face-to-face conversation,
user present but performing other activity, distant
conversation, and nobody present.

I Using:
I Audio and video inferences from level one.
I Sound localization: left of monitor, center of monitor, right of

monitor.
I Keyboard/mouse activities: no activity, current mouse activity,

current keyboard activity, both active in past second.

Layered HMM: Overview

Layered HMM: Top level

Layered HMM: comparison of second level modules

I Second level had either:

1. Bank of discriminative HMMs.
2. DBN with hidden “Activity” node.

I DBN and HMM top levels trained with 1800 samples (300 per
activity).

I Average accuracy was 94.3% for HMM vs 97.7% for DBN
without selective perception.

I Average accuracy was 92.2% for HMM vs 96.7% for DBN
with selective perception.

I Performance of DBNs degrade less with selective perception
because they are able to perform inference from past time
slices.

Paper summary

I DBN can learn dependencies between variables that are
assumed independent in HMMs.

I DBN provides a unified probability model.

I HMMs are simpler to train and are more efficient than
arbitrary DBNs.

I They suggest to consider merits of each approach.

Retrospection

Retrospection

1. Representation of DBNs

2. Inference in DBNs

3. Parameter learning in DBNs

4. An application which uses DBNs

References

Slide by slide references

This presentation borrows from several sources, the table below
indicates from exactly where that borrowing occurs on a
slide-by-slide basis. Unlisted slides draw unspecifically.

Slides Reference

16,18,20,25,26 [8]

4,13 [10]

6 [9]

7–12,17 [1]

23-24 [13]

28-35 [11]

[1] Zoubin Ghahramani.
Learning dynamic Bayesian networks.
Lecture Notes in Computer Science, 1387, 1998.

[2] Zoubin Ghahramani.
Graphical models: parameter learning, 2002.
http://www.gatsby.ucl.ac.uk/ zoubin/course05/.

[3] David Heckerman.
A tutorial on learning with bayesian networks.
Technical report, Microsoft Research, 1995.
http://research.microsoft.com/ heckerman/.

[4] E. Horvitz, J. Apacible, R. Sarin, and L. Liao.
Prediction, expectation, and surprise: Methods, designs, and
study of a deployed traffic forecasting service.
In Proceedings of the Conference on Uncertainty and Artificial
Intelligence 2005. AUAI Press, 2005.

[5] Finn V. Jensen.
An Introduction to Bayesian Networks.
Springer-Verlag, 1997.
First published by UCL Press, 1996.

[6] Michael I. Jordan, editor.
Learning in Graphical Models.
MIT Press, 1999.

[7] Kevin B. Korb.
Bayesian Artificial Intelligence.
Chapman and Hall/CRC Press UK, 2004.

[8] Kevin P. Murphy.
An introduction to graphical models, 2001.
http://www.cs.ubc.ca/ murphyk.

[9] Kevin P. Murphy.
Dynamic bayesian networks, 2002.
http://www.cs.ubc.ca/ murphyk.

[10] Kevin Patrick Murphy.
Dynamic Bayesian Networks: Representation, Inference and
Learning.
PhD thesis, University of California Berkeley, 2002.

[11] N. Oliver and E. Horvitz.
A comparison of hmms and dynamic bayesian networks for
recognizing office activities.
In Proceedings of the Tenth Conference on User Modeling,
2005.

[12] Judea Pearl.
Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference.
Morgan Kaufmann Publishers, San Mateo, California, 1988.

[13] Lawrence R. Rabiner.
A tutorial on hidden markov models and selected applications
in speech recognition.
Proceedings of the IEEE, 77(2), 1989.

