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1 The Channel 
If electromagnetic energy carrying a modulated signal, propagates along more than one “path” 
connecting the transmitter to the receiver, this is called “multipath” propagation. 
Multipath propagation occurs when for example radio waves are reflected, scattered or 
refracted by e.g. buildings, cars or hills. 

1.1 Delay Spread 
Signal components traveling along different paths suffer from different attenuations and 
delays, which combine at the receiver to produce a distorted version of the transmitted signal. 
To characterize the various delays incurred by the signal traveling through the channel the 
delay spread is introduced as the largest of the delays. 
The delay spread causes the two effects of time dispersion and frequency selective fading. 
In a time dispersion channel a signal bandwidth much larger than the inverse of the delay 
spread the various paths are distinguishable as they produce copies of the transmitted signal 
with different delays and attenuations. For narrower bandwidths however, the received signal 
copies tend to overlap. This generates a form of linear distortion known as intersymbol 
interference (ISI). 
If the bandwidth is large, different frequencies of the signal typically suffer from different 
attenuations along different paths. This is called frequency selective fading which is not a tpic 
in this paper. 

1.2 Channel Model 
Any further only passband PAM modulation and its degenerate case of baseband PAM are 
considered, since FSK is generally not used in situations where ISI is an important 
phenomenon. 
PAM is preferred in this situation because FSK is a nonlinear modulation technique and is 
therefore difficult to equalize properly. 
In general a channel can be modeled as a linear time-invariant filter with impulse response 
b(t) and additive noise N(t), as shown in Figure 1-1. 

 
Figure 1-1 
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Since the input to this transmit filter is discrete-time, and the output is sampled by the 
sampler, we can replace the transmit filter, channel and receive filter plus the sampler with an 
equivalent discrete-time filter. 
With 

 ( ) [ ( )* ( )]k t kTU U kT N t f t == =  (1) 

 and  

 ( ) [ ( )* ( )* ( )]k t ktp p kT g t b t f t == = . (2) 

The discrete-time equivalent channel model for PAM (as in Figure 1-1) is then shown in 
Figure 1-2. 

A passband PAM system with transmit filter g(t) and receive filter f(t)can be modeled as a 
completely discrete-time system if the continuous-time subsystems are considered as part of 
the channel. The equivalent discrete-time channel has impulse response pk and transfer 
function P(z). 

 2 2 2( )j T
E

m

P e G j m B j m F j m
T T T

ω π π πω ω ω
∞

=−∞

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∑  (3) 

The equivalent noise ( )kZ Z kT=  has independent real and imaginary parts each with 
variance given by 2σ . The power spectrum of the noise is given by 

 ( )( )
2

202( )j T
Z T

m

NS e F j m
T

πω ω
∞

=−∞

= +∑  (4) 

where T equals the symbol rate. 

 
Figure 1-3 

 
Figure 1-2 
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1.3 Matched Filter as Receiver Front End 
The first part of the receiver – the receive filter and the sampler – are typically built of a 
matched filter that is sampled at symbol rate. 
The discrete-time equivalent channel model utilizing a sampled matched filter may be 
depicted as in Figure 1-4. 

Of fundamental importance to the channel model is the autocorrelation function for a given 
baseband receive pulse shape h(t) 

 *( ) ( ) ( )h k h t h t kT dtρ
∞

−∞

= −∫ . (5) 

The Fourier transform of (5) autocorrelation ( )j T
hS e ω  is called folded spectrum:  

 ( )( )
2

21( ) ( )j T j kT
h h T

k m
S e k e H j m

T
πω ωρ ω

∞ ∞

=−∞ =−∞

= = +∑ ∑  (6) 

The folded spectrum is real valued, nonnegative and in general not symmetric. 
 
Now the discrete time channel that includes the matched filter is easily obtained using the 
discrete-time model for PAM systems. 
The receive filter from the discrete PAM model is replaced by the sampled matched 
filter *( ) ( )F j H jω ω= . The impulse response of the baseband channel ( )h kρ , the pulse 
autocorrelation function and the transfer function are equal to the folded spectrum ( )j T

hS e ω . 
Further, the equivalent discrete-time noise process kZ has power spectrum 

 0( ) 2 ( )j T j T
Z hS e N S eω ω= . (7) 

At this point the calculation of probability density functions of the received estimates Pk is 
laborious because the noise in this model is not white and therefore the random variables Pk 
are not independent. 
Therefore the colorization from the matched filter has to be compensated. This can be 
achieved by spectral factorization of  

 2( ) ( ) (1/ )hS z M z M zγ ∗ ∗= . (8) 

Then min( ) ( ) ( )h apS z H z H z= can be decomposed to a minimal phase filter and an allpass filter 

where 2
min ( ) ( )H z M zγ= . So adding the inverse minimal phase filter to the matched filter 

compensates the transfer function to constant attenuation of all frequencies as in Figure 1-5. 

 
Figure 1-4

 
Figure 1-5 



Maximum Likelihood Sequence Detection  Klaus Dums 
  9655278 

Advanced Signal Processing WT 2004     Page 5 of 18 

Therefore a new channel model is obtained where 02( )N
NS z
K

= is the variance of the now 

Gaussian noise process Nk and Uk is the received symbol distorted by ISI. 

2 Detection 
The general approach to deriving optimal receivers is to model the relationship between the 
transmitted and received signals by joint probability distributions. Based on a noisy 
observation (the received signal plus noise), we wish to estimate or detect the input signal. 
The term estimation is used when the transmitted signal is a continuous-valued random 
variable and the term detection when the transmitted signal is discrete-valued (even if the 
received signal is continuous-valued). So the first case refers to analog and the second to 
digital communication systems. 
In this section the following model will be used. 

The deterministic portion of the channel is called signal generation and the random 
component the noise generation. 
The input Xk is a discrete-time and discrete-valued random process and has only a finite 
number of possible values. 

2.1 Terms 
• Alphabet A:  

the set of symbols those are available for transmission. A = {-1,+1,-j,+j} 
• Symbol ak, Ak :  

k-th symbol from the alphabet. a1=-1 
• Size of the alphabet M:  

number of symbols in the alphabet. M = 4 
• Sample space of the Alphabet ΩA 
• Symbol of the sample space â 

 

 
Figure 1-6 

 
Figure 2-1 
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2.2 Maximum Likelihood Detection of a Single Symbol 
In order to decide about the received data symbol, knowledge about the noise generator is 
needed. The noise generator is completely specified by the discrete distribution of Y 
conditioned in the knowledge of the data symbol | ( | )Y Ap y â .  
The maximum likelihood (ML) detector chooses Aâε Ω  to maximize the 
likelihood | ( | )Y Ap y â , where y is the observation of Y.  
The ML detection is a special case of maximum a-posteriori probability detection for the 
simplifying assumption that all the possible inputs ( )Ap â are equally likely. 

 |
|

( | ) ( )
( | )

( )
Y A A

AY
Y

p y â p â
p â y

p y
=  (9) 

Example: 
Suppose that we have additive discrete noise N, so that Y = A+N. Assume A and N 
are independent and take on values zero and one according to the flip of two fair coins. 
There are three possible observations, y = 0, 1, or 2.  
The likelihoods | ( | )Y Ap y â  for the observation y=0 are: 

|

|

(0 | 0) 0.5

(0 |1) 0
Y A

Y A

p

p

=

=
 

 
So if the observation is y=0, the ML detector selects â = 0. If the observation is y=1, 

then the likelihoods are equal 
| |(1| 0) (1|1) 0.5Y A Y Ap p= =  

and therefore the ML detector selects either zero or one. If the observation is y = 2, the 
ML detector selects â = 1. 

 

The probability of error Pr[ ] Pr[ ]error â a= ≠  is a measure of the quality of the detector. 
 

Example: 
From the previous example Y=A+N takes on values in {0, 1, 2} with probabilities 

{0.25, 0.5, 0.25}, respectively. If the observation is y = 0 or y = 2 the ML detector 
does not make errors. If the observation is y = 1, however, the detector is unsure and 
chooses for example at random. Then the detector will be wrong half the time. 
Since (1) 0.5Yp = , the total probability of error is Pr[ ] 0.25error = . 
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2.3 Maximum Likelihood Detection of a Signal Vector 
Since the goal in this paper is the detection of a sequence of symbols it is convenient to 
extend the ML detection of a single symbol to a vector of symbols. 
Here the signal generator accepts an input X and maps it into a vector signal S with dimension 
M. The observation is a vector Y with the same dimension as the signal. The noise generator 

is specified by the conditional distribution of the observation given the signal | ( | )fY S y s .  

A common characteristic of the noise generator is independent noise components 

 | |
1

( | ) ( | )
k k

M

Y S k k
k

f f y s
=

=∏Y S y s  (10). 

The ML detector chooses the signal vector ŝ  from all the possibilities in order to maximize 
the conditional probability | ˆ( | )fY S y s , which is given directly from the noise generator. 

For additive Gaussian noise with variance 2σ and independent noise components 
 | |ˆ ˆ ˆ ˆ( | ) ( | ) ( )f f f= − = −Y S N S Ny s y s s y s  (11). 

Hence the ML detector selects ŝ  to maximize 

 2
/ 2 2

1 1ˆ ˆ( ) exp
(2 ) 2M Mf
π σ σ

⎛ ⎞− = − −⎜ ⎟
⎝ ⎠

N y s y s  (12)  

where M is the dimension of the vectors and fN is the PDF of the Noise. Maximizing this is 
equivalent to minimizing ˆ−y s , the Euclidian distance between the received vector y and the 
signal vector ŝ . 

 
Figure 2-2 
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2.4 ML Detection with Intersymbol Interference 
Consider a situation where the input to the signal generator is a single data symbol A, and the 
signal generator is a linear time-invariant filter with impulse response ,0kh k M≤ ≤ , assumed 
to be finite in extent.  

This filter represents the dispersion of the data symbol in time. A single isolated discrete-time 
impulse kδ amplitude modulated by an isolated data symbol A is transmitted. The noise is 
independent additive and Gaussian generated. The observation kY is only considered within 
the range 0 k M≤ ≤ , since there are no signal components outside. Thus the observation may 
be written in vector notation as A= +Y h N . 
If the single data symbol A from alphabet AΩ , the ML detector selects Aâε Ω to minimize the 
Euclidian distance between the vectors âh and observation y. Thus the ML detector computes  

 2 2 2 22 ,â â â− = − +y h y y h h  (13) 

and chooses â for which this is the minimum. 
Since 2y does not depend on the decision, the ML detector equivalently selects â to 
maximize 

 2 22 , â â−y h h . (14) 

The term  

 [ ] 0
, *m m k k k

m
y h y h− =

= =∑y h  (15) 

may be computed using a correlator or a matched filter as depicted in Figure 2-4. 

Example: 
Suppose that a symbol A from the alphabet { }0,1AΩ = is transmitted through the LTI 

system with impulse response 10.5k k kh δ δ −= + . 

In this case M=1 and 2 1.25=h , so the ML detector can be implemented like in Figure 
2-5.  

 

 
Figure 2-3 

 
Figure 2-4 
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In practice, however, this solution would be unacceptable due to its excessive complexity. 
In fact, for a message of K M-ary symbols, MK matched filters might be necessary, with 
about MK comparisons to be performed to select their largest sampled output. 

2.5 Sequence Detection 
To overcome the problems of the last section A. Viterbi of UCLA in 1967 proposed an 
algorithm for digital communication problems that can be formulated as suitable Markov 
chains. This algorithm selects the most likely symbol sequence in a number of computations 
and memory size that grow only linearly with respect to the message length K. 

2.5.1 Markov Chains 
A discrete-time Markov process { }kΨ  is a random process that satisfies 

 ( ) ( )1 1 1| , ,... |k k k k kp p+ − +Ψ Ψ Ψ = Ψ Ψ . (16) 

In words, the future sample 1{ }k+Ψ is independent of past samples 1 2, ,...k k− −Ψ Ψ if the present 
sample is known. 
A Markov chain is called homogenous if the conditional probability ( )1|k kp −Ψ Ψ is not a 
function of k. A homogenous Markov chain is therefore a kind of stationary or time 
invariance. 
A Markov chain can be visualized by a state transition diagram as shown in Figure 2-6. 

 
Figure 2-6 

 
Figure 2-5 
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Another valuable visualization is called the Trellis diagram, first suggested by D. Forney.  

Figure 2-7 shows the possible progression of states over time. Each small circle is called a 
node of the trellis, and corresponds to the Markov chain being a particular state at a particular 
time. Each arc is called a branch, and corresponds to a particular state transition at a particular 
time. The branches may be labeled like the state transitions of the transition diagram. 
A collection of branches from the beginning to the terminal node is called a path.  

2.5.2 Markov Chain Signal Generator 
Let kΨ be a sequence of a homogenous Markov chain. The sample space of each state kΨ is 
finite. For the signal generator of interest, the signal samples are a function of the Markov 
chain state transitions 1( , )k k kS g ψ ψ +=  where ( , )g ⋅ ⋅  a memory less function as in Figure 2-8. 

The ML detector has to detect the sequence of states given an observation sequence Yk , 
which is Sk passed through a noise generator  with independent noise components. 
 
If hk is a finite impulse response, than the inter symbol interference model that was previously 
developed in (see Figure 2-3) is an example of a shift-register process, where the observation 
function is  

 1 1
0

( , )
M

k k i k
i

g h Aψ ψ + −
=

=∑ . (17) 

The state of the Markov chain is 

  [ ]1 2, ,...,k k k k MX X X− − −Ψ =  (18) 

where M is the length of the shift-register. 
 

 
Figure 2-7 

 
Figure 2-8 
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Example: 
Consider a discrete-time channel with impulse response 10.5k k kh δ δ −= + . 

Using the notation from the shift-register process this is depicted in Figure 2-9 (a). If the 
input symbols are independent identically distributed (i.i.d.), the observation Yk is a noisy 
observation of the Markov chain with state diagram (b). Assuming binary inputs Ak, there 
are only two states in (b) corresponding the two possible previous values for  
Ak-1. The arcs are labeled with the input/output (Ak,Sk) of the signal generator. 

The Trellis diagram looks as follows: 

 

2.5.3 The Viterbi Algorithm 
Every possible path in a trellis has a one-to-one correspondence with an input 
sequence ,0kX k K≤ ≤ . The goal of a detector, based in the observation Sk corrupted by 
noise, is to decide the sequence of inputs. Deciding the sequence of inputs is equivalent to 
deciding the path through the trellis diagram.  

Recall that there is a signal sk associated with each branch and each stage k of the trellis. For 
each stage k there is also an observation yk. After observing yk, we can assign to each branch 
of the trellis a numerical value called the branch metric that is low if yk is close to sk and high 
otherwise. For the Gaussian case the correct branch metric is 
 2

k kbranch metric y s= −  (19) 

Then for each path through the trellis, the path metric, which is the sum of the branch metrics, 
is calculated. The preferred path is the one with the lowest path metric. 
This is nothing else than minimizing the Euclidian distance ˆ−y s  between the received 
vector y and the decision ŝ , as in section 2.3. 
Unfortunately the number of paths through the trellis grows exponentially with the message 
length K and therefore the computation time and memory usage, too.  

 
Figure 2-9 

 
Figure 2-10 
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The Viterbi algorithm is a clever way of reducing this exponential growth to linear. 
Consider one node of the trellis an all paths through the trellis that pass through this node. 
There are a large number of paths through this node, but all these paths follow just one of four 
routs routes through this node AB, AD, BC or BD as in Figure 2-11. 

The path metric of a path through this node is the sum of the partial path metrics of the 
portion of the path on the right side of the node and on the left side of the node. Among all the 
partial paths to the left of the node, the detector picks the one with the smallest partial path 
metric, which is called the survivor path for that node. If any other partial path would be 
chosen the overall path metric would be grater than the one with the survivor path, and 
therefore would not be the smallest path. So every other partial path but the survivor path to 
the left may be thrown away. 
The Viterbi algorithm finds the path with the minimum path metric by sequentially moving 
through the trellis and at each node retaining only the survivor paths. At each stage of the 
trellis it cannot be determined at which node the optimal path passes through, so one survivor 

path for each and every node must be retained.  
In a case where there are only two incoming branches to a given node at time k like in Figure 
2-12, the two possibilities for the survivor path to the node at time k are consisting of the 
survivor paths at time k-1 plus the branches to time k. To decide the survivor the partial path 
metrics for each of those two paths are determined by summing the partial path metric of the 
survivor at time k-1 and the branch metric. The survivor path at that node is chosen as the 
path with the smaller partial path metric. 
 
Example: 

The trellis shown below is marked with branch metrics corresponding to the observation 
sequence {0.2, 0.6, 0.9, 0.1} of a discrete-time channel with impulse 
response 10.5k k kh δ δ −= +  and additive Gaussian noise as in the previous example. 

The possible state transitions are the following. 

 

 
Figure 2-11 

 
Figure 2-12 

 
Figure 2-13 
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The branches are labeled with their corresponding branch metrics 2
k ky s− .  

Also the survivor paths for each node and the partial path metrics of each surviving path 
are shown in Figure 2-14. 

A symbol by symbol ML detector would have decided, that the transmitted bits were {0, 
1, 1, 0} whereas the ML sequence detector decides for {0, 1, 0, 0} taking into account 
knowledge of the ISI. 

 
The computational complexity of the Viterbi algorithm is the same at each time increment, 
and hence the total complexity is proportional to the length of K. 
Yet there is a practical problem remaining. The algorithm does not determine the optimal path 
until the terminal code of the trellis.  
Since in digital communication systems state sequences may be very long this may result in a 
very long delay and a very big memory consumption which is generally not affordable. 
Occasionally all the survivor paths at some time k coincide up to some time k-d, then the 
partial paths have merged at depth d, and a decision can be made to all the inputs or states up 
to time k-d.  
Unfortunately this depends on good fortune and therefore the algorithm is slightly modified to 
force a decision at time k for all transitions prior to time k-d, for some truncation depth d. 
Usually all the partial path metrics of the N partial paths at time k are compared and the 
smallest path is picked. This path represents all the inputs or states until time k-d and the node 
corresponding to this path is chosen to be the input or state at time k-d for further 
computation. 
If d is chosen to be large enough, this modification will have negligible impact on the 
probability of detecting the correct sequence. 
 

 
Figure 2-14 
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3 Error Probability Calculation 
The sequence error probability is the probability that the path chosen through the trellis does 
not correspond to the actual state sequence, or in other words the probability that one or more 
states are in error. As the length of the message K increases this probability usually 
approaches unity. Fortunately the concern is normally with the probability of a single symbol 
or bit error, or the probability of a sequence error for a relatively short sequence. 
This implies that it would be better to optimize for single symbol error, but there are two 
reasons not to do this. 
First, it is much more complicated to implement and in fact the best known algorithms for bit-
by-bit decision have exponential complexity in K. Secondly, the performance of the ML 
sequence detector is almost identical at high SNR to the detector that minimizes the bit or 
symbol error probability. 

3.1 Error Event  
It turns out useful to introduce the concept of an error event for the purpose of determining 
the symbol error probability. 
Let { }kΨ be the actual state sequence and { }ˆ

kΨ be selected by the Viterbi algorithm. Each 

error event starts when the actual path and the selected path start to diverge and ends when 

they remerge. The length of an error event is the number of incorrect nodes in the path. 
So the error event in Figure 3-1 (a) has a length of one and in (b) a length of two. 
An error event yields in one ore more detection errors, which are incorrect symbols or bits as 
a result from taking an incorrect path through the trellis.  
The distance of the error event to the actual path is calculated in the following way. 
Assume an actual state sequence, and label each branch in the trellis with its squared distance 
form the corresponding branch of the actual state sequence as in Figure 3-2. The actual state 
sequence will have branch metrics that are zero, and normally all the branches off the actual 
path sill have a non-zero branch metric.  
The path metric of each path through the trellis is now the square of the Euclidian distance of 
that path from the correct all-zero path. Using the 2

k kbranch metric y s= −  the distance can 

easily be obtained to be 1.25  for (a) and 3.5  for (b) in Figure 3-2. 

 
Figure 3-1 

 
Figure 3-2 
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3.2  Symbol Error Probability 
Now let E denote the set of all error events starting at time i. Each element e of E is 
characterized by both a correct path Ψ and an incorrect path Ψ̂ that diverge and remerge 
sometime later.  
Pr[e] is assumed stationary that is Pr [e] is independent of i, the starting time of the error 
event.  
The approximation is accurate if the trellis is long relative to the length of the significant error 
events.  
Each error event causes one or more detection errors, where a detection error at time k means 
that Xk at stage k of the trellis is incorrect. For the ISI example, each Xk is a symbol Ak, so a 
detection error is the same as a symbol error.  
Function (20) characterizes the sample times corresponding to detection errors in error event 
e. 

 
1;  if e has a detection error in position m (from the start i)
0; otherwisemc ⎧

= ⎨
⎩

 (20) 

The probability of a particular error event e starting at time i and causing a detection error at 
time k is ( ) Pr[ ]k ic e e− . 

 

Of cause, if one error event occurs no other can occur. Therefore the error Events in E are 
disjoint so  

 Pr[detection error at time k] Pr[ ] ( ) Pr[ ] ( )
k k

k i k i
i e E e E i

e c e e c e
ε ε

− −
=−∞ =−∞

= =∑∑ ∑ ∑  (21). 

The definition of the total number of detection errors  

 
0

( ) ( ) ( )
k

k i m
i m

w e c e c e
∞

−
=−∞ =

= =∑ ∑  (22) 

yields 
 Pr[detection error] Pr[ ] ( )

e E

e w e
ε

= ∑ . (23) 

Hence, the probability of a detection error is equal to the expected number of detection errors 
in all error events starting at any fixed time i. 

The probability of the error event Pr[e] is depends on the probabilities of both the correct and 
incorrect paths Ψ and Ψ̂  that make up e,  
 [ ] ˆPr[ ] Pr Pre ⎡ ⎤= Ψ Ψ Ψ⎣ ⎦ . (24) 

Since it is usually difficult to extract expressions for ˆPr ⎡ ⎤Ψ Ψ⎣ ⎦ , only bounds are derived.  
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3.2.1 Upper Bound of Detection Error 
Suppose that Ψ is the actual trajectory, corresponding to signals s in Figure 3-3 (a). 

The region corresponding to the detection of Ψ̂ is shown in (b). The probability of the noise 
carrying the observation in this region is very difficult to calculate, but it is easy to find an 
upper bound by using a larger decision region  as in (c) which ignores the possibility of any 
trajectory other than Ψ and Ψ̂ . 

For the additive white Gaussian noise model, the probability of region in (c) is 

  ( )ˆ ˆPr | ( , ) / 2Q d σ⎡ ⎤Ψ Ψ ≤ Ψ Ψ⎣ ⎦  (25)  

with Q(.) is defined as  

 
2 / 21( ) Pr[ ] 1 ( )

2X
x

Q x X x F x e dα α
π

∞
−= > = − = ∫  (26)  

If Q(x) is defined like that for a Gaussian random variable 2( , )X N µ σ∼  it becomes

 Pr[ ] xX x Q µ
σ
−⎛ ⎞> = ⎜ ⎟

⎝ ⎠
. (27) 

Here ˆ( , )d Ψ Ψ  is the Euclidean distance between transmitted signal ŝ and s corresponding to 
the state trajectoriesΨ̂ and Ψ . 

Hence the probability of a detection error can be written as  

 ( )ˆPr[detection error] ( ) Pr[ ] ( , ) / 2
e E

w e Q d
ε

σ≤ Ψ Ψ Ψ∑  (28) 

If only the set B of error events with minimal distance dmin are considered 

 ( )minPr[detection error] ( ) Pr[ ] / 2 other terms
e E

w e Q d
ε

σ≤ Ψ +∑  (29) 

 the other terms become insignificant at high SNR.  

This probability approaches  

 min( / 2 )RQ d σ  (30)  

where  

 ( ) Pr[ ]
e B

R w e
ε

= Ψ∑ . (31) 

Figure 3-3 
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Example: 
Here the error event e1 with w(e1)=1 and the distance 1.25  is considered as depicted 
in Figure 3-4. This is the minimum distance.  
 
For a trellis with two states there are eight error events where each of them has also 
w(e)=1. 

So ( ) Pr[ ]
e B

R w e
ε

= Ψ∑  becomes 1Pr[ ]
e B

R
ε

= Ψ∑ . If all of these error events are equally 

likely then 1*1/ 8 1
e B

R
ε

= =∑  and  

( )Pr[detection error] 1.25 / 2 other terms
e E

Q
ε

σ≤ +∑ . 

3.2.2 Lower Bound of Detection Error 
To obtain the lower bound the decision region of (d) can be used. This is the decision region 
where any error event conditioned on the actual state sequence Ψ is shown.  
The probability of any error event is clearly lower bounded by calculating the smaller 
decision region shown in (c).  

Since ( ) 1w e ≥  for all error events e the probability of a detection error can be written as  

 Pr[detection error] Pr[ ] Pr[an error event]
e E

e
ε

≥ =∑ . (32) 

For one particular path through the trellis let min ( )d Ψ denote the distance of the minimum 
distance error event. Let mind be the minimum distance error event over all possible actual 
state sequences Ψ . Then min min( )d dΨ ≥ . To make the bound strongest, obviously the closest 
error event toΨ  has to be chosen, which is one of those at distance min ( )d Ψ . 
Than the probability of any error event becomes 

 minPr[an error event | ] ( ( ) / 2 )Q d σΨ ≥ Ψ . (33) 

 
Figure 3-5 

 
Figure 3-4 

Figure 3-6 
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Consequently the probability of a detection error can be written as 

 minPr[detection error | ] ( ( ) / 2 )Q d σΨ ≥ Ψ . (34) 

And using the total probability this is  

 minPr[detection error] Pr[ ] ( ( ) / 2 )Q d σ
Ψ

≥ Ψ Ψ∑ . (35) 

It is save to omit some terms here because all terms are positive. So consider only those state 
sequences Ψ  for which min min( )d dΨ = .  

 minPr[detection error] Pr[ ] ( ( ) / 2 )
A

Q d
ε

σ
Ψ

≥ Ψ Ψ∑  (36) 

Here A is the set of actual paths Ψ that have the minimum distance error event, and mind is 
that minimum distance. 
Define the probability that a randomly chosen Ψ has an error event starting at any fixed time 
with distance mind  as  

 Pr[ ]
A

P
εΨ

= Ψ∑ . (37) 

Than the lower bound can be expressed as  

 minPr[detection error] ( ( ) / 2 )PQ d σ≥ Ψ . (38) 

3.2.3 Upper and Lower Bounds of Detection Error 
Combining upper an lower bounds,  

 min min( / 2 ) Pr[detection error] ( ( ) / 2 )PQ d RQ dσ σ≤ ≤ Ψ  (39), 

where the upper bound is approximate since some terms were thrown away. 
 
To conclude, at high SNR  

 minPr[detection error] ( / 2 )CQ d σ≈  (40)  

for some constant C between P and R. 
 
Example: 

From the previous example note that P=R=1. Hence Pr[detection error] ( 1.25 / 2 )Q σ≈ . 
Here each detection error causes exactly one bit error, so 
Pr[detection error] Pr[bit error]= . Hence, with this sequence detector approximately the 
same probability of error is obtained as for an isolated pulse and a matched filter receiver. 

In general a single detection error may cause more than one bit error. Suppose each input of 
the Markov chain Xk is determined by n source bits (hence the alphabet has size 2n). Then 
each detection error causes at least one and at most n bit errors.  

  1 Pr[detection error] Pr[bit error] Pr[detection error]
n

≤ ≤  (41) 

 
The typical assumption is pessimistic:  

 Pr[detection error] Pr[bit error]≈  (42) 


