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With the frequency-response masking technique it is possible to design sharp and
linear phase FIR filters. Therefore a model filter and its complementary filter is
generated and then each delay of these filters is replaced by M delays, which results
in periodic, complementary model filters with much sharper transition bands. Fi-
nally two masking filters extract the desired bands to generate low-pass, high-pass,
bandpass or bandstop filters with arbitrary bandwidth.
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1 Introduction

Frequency-response masking filters are a technique to design sharp low-pass, high-pass, band-
pass and bandstop filters with arbitrary passband bandwidth, as first proposed by Lim in [4].
Furthermore this technique generates linear phase FIR filters, which have advantages such as
guaranteed stability and are free of phase distortion.

However, usually the problem with FIR filters is the high complexity for sharp filters, there-
fore the frequency-response masking technique results in filters with very sparse coefficients.
Since only a very small fraction of its coefficient values are nonzero, its complexity is very
much lower than the infinite wordlength minimax optimum filter (see [1]). With an additional
multiplierless design method the complexity can be reduced to a minimum.

This report is structured in five sections. In the rest of this Introduction some general
principles of filters preserving phase are shown. Section 2 presents the general idea behind the
frequency-response masking technique and Section 3 shows some optimization methods for its
parameters. Finally examples are presented in Section 4 and some final remarks are given in
Section 5.

1.1 Filters Preserving Phase

Linear Phase FIR filters have the following properties (according to [6]):

• in linear phase FIR filters phase is a linear function of frequency

• they have a symmetric impulse response

• the phase delay (−phase
ω ) is constant (N−1

2 ) at every frequency

• also the group delay (− d
dωphase) is constant (N−1

2 )

A special case of linear phase filters are zero phase filters, where the phase delay is zero.
The impulse response of such a filter is even about time 0

h(n) = h(−n)

therefore a zero phase filter cannot be causal (see figure 1). A real, even impulse response also
corresponds to a real, even frequency response.

Symmetric Linear Phase Filters are derived from a delayed zero-phase filter to be causal,
therefore they are symmetric about the midpoint:

h(n) = h(N − 1− n), n = 0, 1, ..., N − 1

If HZP is a zero-phase filter and N is odd, the following relationships are valid for the symmetric
linear phase filter H(z):

hZP (n) = h(n− N − 1
2

), n = 0, 1, ..., N − 1

H(z) = z−
N−1

2 HZP (z)

H(ejωT ) = e−jω N−1
2

THZP (ejωT )
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Figure 1: Impulse and frequency response of an non causal, length 11 zero phase FIR lowpass
filter, both are real and even.

2 Frequency Response Masking

2.1 Narrow Band Filter Design

In the basic frequency masking principle a linear phase model filter is used and each delay
of this filter is replaced by M delays (which corresponds to an up sampling). This results in
a periodic filter, the model and its images, with much sharper transition bands. Finally a
masking filter extracts the desired band.

Figure 2 illustrates this concept: A low-pass filter Ha(z) with transition width ∆a is used as
a model filter. Then each delay of Ha(z) is replaced by M delays to get a periodic filter with
sharper transition bands: Hb(z) = Ha(zM ).
If one uses the masking filter Hc(z) the resulting frequency response Hd(ejω) = Hb(ejω)Hc(ejω)
can be generated with transition width ∆a/M .
If the masking filterHe(z) is used the resulting frequency response will beHf (ejω) = Hb(ejω)He(ejω),
which is a bandpass filter.

With this method it is possible to derive sharp filters (transition width ∆a/M) from filters
with much wider transition band (transition width ∆a). The advantages are, that only a few
coefficients in the model filter are nonzero, so the overall complexity is very low.
However, this is only suitable for narrow-band filters, because the passband bandwidth is
reduced by the same factor.

2.2 Arbitrary Bandwidth Filter Design

To extend this idea to an arbitrary bandwidth design, we construct an additional complemen-
tary filter to the model filter Fa.

Consider a filter Fc complementary to the model filter Fa. The z-transform of the symmetric
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Figure 2: Frequency-response masking principle for narrow band filters. Description in the
text.

linear phase filter Fa is
Fa(z) = z−

N−1
2 Fa,ZP (z)

where Fa,ZP (z) is a zero-phase filter and N is odd.
The complementary filter Fc can be written as

Fc(z) = z−
N−1

2 (1− Fa,ZP (z))

which results in
Fc(z) = z−

N−1
2 − Fa(z)

Therefore we can implement the complementary filter Fc by subtracting the output of Fa from
a delayed version of the input (see figure 3).

This can be realized without using extra delays, when we reuse the delays in Fa as illustrated
in figure 4.

If now two masking filters, FMa and FMc for Fa and Fc, are used, it’s possible to design
wide-band sharp filters as shown in figure 5. Then we get the following filter F (z):
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Figure 3: Realization of the complementary filter Fc.

Figure 4: Realization of the complementary filter Fc reusing the delays of Fa.

F (z) = Fa(zM )FMa(z) + (z−
N−1

2 − Fa(zM ))FMc(z)

Figure 5: General structure of frequency-response masking filters.

The whole concept is explained again according to figure 6: A model filter Fa with cutoff
frequencies θ and φ and its complementary filter Fc is used. Replacing each delay of Fa and
Fc by M delays results in periodic, complementary model filters.
In the first example the masking filters FMa and FMc are used and one gets a resulting frequency
response F (ejω) with band edges ωP and ωS .
In the second example the masking filter results in a different frequency response F (ejω).

Here it is possible to distinguish between two cases:

• Case1: the frequency response of F near the transition band is determined mainly by Fa

(as in the first example of figure 6), then pass- and stopband is defined by

ωP =
2mπ + θ

M
,ωS =

2mπ + φ

M

5



Figure 6: Frequency-response masking principle for arbitrary bandwidth filters. Description
in the text.

where m is an integer, indicating the images of the model filter.

• Case2: the frequency response of F near the transition band is mainly determined by Fc

(as in the second example of figure 6), then pass- and stopband is defined by

ωP =
2mπ − φ

M
,ωS =

2mπ − θ
M

If one wants to synthesize a frequency-response masking filter, the parameters ωP and ωS are
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given and m,M,θ,φ must be determined. M should be chosen that the overall complexity of the
filter is minimized: for increasing M the masking filters must be sharper (higher complexity)
and the model filters can be broader (lower complexity). Therefore this leads to an optimization
problem, which is the topic of the next section.

3 Parameter Optimization

3.1 Ripples of F

An other important issue are the ripples of the overall filter F (ejω). In order to choose the
right parameters we have to analyze the influence of the model and masking filters on the
ripples.

Let G(ω) be the desired value and δ(ω) the deviation from this value for each filter. Then
we can express the filter F (ejω) with G and δ of the individual filters:

G(ω) + δ(ω) = (GMa(ω) + δMa(ω))(Ga(ω) + δa(ω))

+(GMc(ω) + δMc(ω))(1−Ga(ω)− δa(ω))

We will now examine the effects of the parts of this formula for three different frequency ranges.

Frequency Range 1: GMa(ω) = GMc(ω) = 1, so we are in the passband of F . In this range
G(ω) = 1 and δ only depends on the masking filters:

G(ω) = 1

Ga(ω) = 1, δ(ω) ≈ δMa(ω)

Ga(ω) = 0, δ(ω) ≈ δMc(ω)

Frequency Range 2: GMa(ω) = GMc(ω) = 0, which is the stopband of F . Here G(ω) = 0
and δ is the same as in Range 1:

G(ω) = 0

Ga(ω) = 1, δ(ω) ≈ δMa(ω)

Ga(ω) = 0, δ(ω) ≈ δMc(ω)

Therefore, as a result from analyzing Range 1 and 2, FMa and FMc could be interpreted as
low-pass filters with don’t care bands within their pass- and stopbands (see figure 7), because
F only depends on δMa(ω) if Ga(ω) = 1 or on δMc(ω) if Ga(ω) = 0. These don’t care bands
help to reduce the complexity of the masking filters.

Frequency Range 3: GMa(ω) 6= GMc(ω), this is the transition band of F . Here δ(ω) is a
more complex function of δa(ω), δMa(ω) and δMc(ω). However, it is possible to design the
filter Fa such that δa(ω) partially compensates δMa(ω) and δMc(ω) in the transition band, as
described in 3.2.
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Figure 7: Don’t Care bands of the masking filters.

3.2 Optimizing F

As already said, Fa has to be designed to compensate for δMa(ω) and δMc(ω), therefore a linear
equation relating δ(ω) and Fa must be obtained.
According to [4] the following relation can be used:

δ(ω) = Fa,ZP (Mω)(GMa(ω) + δMa(ω)−GMc(ω)− δMc(ω))

+GMc(ω) + δMc(ω)−G(ω)

Now the minimization of |δ(ω)| in the transition band is a linear programming filter design
problem and can be solved by a standard mathematical programming package as described in
[3].

3.3 Optimizing M

There is no closed-form analytic expression for finding the optimum value of M (in [4]).
Therefore a good choice of M can be obtained by estimating the filter complexity for each M
(the number of nonzero multipliers) and then selecting the M which corresponds to the lowest
estimate.

However, many more recent papers address the right selection of the parameter M and
suggest optimized designs (e.g. in [5]).

3.4 Multistage Frequency Response Masking

The model and masking filters may again be synthesized using the frequency response masking
technique, producing a multistage frequency response masking design. In figure 8 a two-stage
design is shown, replacing the model filter with another frequency-response masking filter.
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Figure 8: Multistage Frequency Response Masking: the model filter is replaced with another
frequency-response masking filter.

More details to find the right parameters for multistage frequency-response masking filters
can be found in [5].

3.5 Powers-of-Two Design Technique

The complexity of the filter may be further reduced by constraining all the coefficient values
to be a sum or difference of two powers-of-two using the powers-of-two design technique as
described in [2].
In this case, all the multiplications can be performed just by using shifts and adds.

4 Examples

4.1 Single-Stage Design

In this example a single-stage frequency-response masking filter, using the power-of-two design
technique is designed (taken from [4]).
The synthesized filter should meet the following specifications:

• bandedges at 0.3 and 0.305 sampling frequencies

• a maximum passband deviation of 0.1 dB

• a minimum stopband attenuation of -40 dB

The frequency response of the synthesized filter is shown in figure 9.
This filter requires 202 shift-add operations per sampling interval, whereas the infinite pre-

cision minimax optimum design requires 383 multiply and 382 add operations.

4.2 Multi-Stage Design

The next example uses a multi-stage design technique (taken from [5]).
The synthesized filter should meet the following specifications:

• bandedges at 0.2 and 0.2001 sampling frequencies

• a maximum passband deviation of 0.05 dB
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Figure 9: Synthesized, single-stage frequency-response masking low-pass filter as described in
the text. Left the whole frequency response, right zoomed into the passband.

• a minimum stopband attenuation of -50 dB

The frequency response of the synthesized filter is shown in figure 10.

Figure 10: Synthesized, multi-stage frequency-response masking low-pass filter as described in
the text. Left the whole frequency response, right zoomed into the passband.

In this example a five stage design was used with M1 = M2 = M3 = M4 = 4 and M5 = 3.
The total number of multipliers is 125, whereas the infinite precision minimax optimum design
requires 12055 multiplications (!).

5 Conclusion

In the frequency-response masking technique a model filter and its complementary filter is
generated, as first proposed in [4]. Then each delay of these filters is replaced by M delays,
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which results in periodic, complementary model filters with much sharper transition bands.
Finally two masking filters extract the desired band.

So it is possible to design sharp low-pass, high-pass, bandpass and bandstop linear phase
filters with arbitrary passband bandwidth and the complexity of the resulting filter is very
low, because only a small fraction of its coefficients are nonzero. With additional optimization
methods (like multiplierless or multi-stage design), which is subject of many recent papers, it
is possible to reduce the complexity to a minimum.
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