INVITE
100 TRYING iProgress report code]

i
1
i

1890 RINGING [Frogress repart code)

200 QK (Suecess- Usar accepted call)

|

ACK (May centain final S0P} |
Caller confirms receipt of success code =l
I
I

_ BYE (Terminates £all)
100 TRYING (Pregoess repart codel
200 OK [Success)

e
.
= I

SIP PHONE A SIP PHONE B

I ntroduction:

The Session Initiation Protocol (SIP) is an application-layer control protocol that can establish, modify and
terminate multimedia sessions or calls. These multimedia sessions include multimedia conferences,
distance learning, Internet telephony and similar applications. SIP can invite both persons and "robots",
such as a media storage service. SIP can invite parties to both unicast and multicast sessions; the initiator
does not necessarily have to be a member of the session to which it is inviting. Media and participants can
be added to an existing session. SIP can be used to initiate sessions as well as invite members to sessions
that have been advertised and established by other means. Sessions can be advertised using multicast
protocols such as SAP, electronic mail, news groups, web pages or directories (LDAP), among others.

Histroy:

SIP has its origins in late 1996 as a component of the Mbone set of utilities and protocols. The Mbone, or
multicast backbone, was an experimental multicast network overlayed on top of the public Internet. It was
used for distribution of multimedia content, including talks and seminars, broadcasts of space shuttle
launches, and IETF meetings. One of its essential components was a mechanism for inviting users to listen
in on an ongoing or future multimedia session on the Internet. Basically - a session initiation protocol.
Since its approval in early 1999 as an official standard, the Session Initiation Protocol has gained
tremendous market acceptance for signaling communications services on the Internet.

Despite its historical strengths, SIP saw relatively slow progress throughout 1996 and 1997. That's about
when interest in Internet telephony began to take off. People began to see SIP as a technology that would
also work for VoIP, not just Mbone sessions. The result was an intensified effort towards completing the
specification in late 1998, and completion by the end of the year. It received official approval as an RFC
(Request for Comments, the official term for an IETF standard) in February and issuarce of an RFC

number, 2543, in March.

ftp://ftp.funet.fi/rfc/rfc2543.txt
ftp://ftp.funet.fi/rfc/rfc2543.txt

From there, industry acceptance of SIP grew exponentially. Its scalability, extensibility, and - most
important - flexibility appealed to service providers and vendors who had needs that a vertically integrated
protocol, such as H.323, could not address. Among service providers MCI (particularly MCl's Henry
Sinnreich, regarded as the Pope of SIP) led the evangelical charge. Throughout 1999 and into 2000, it saw
adoption by most major vendors, and announcements of networks by service providers. Interoperability
bake-offs were held throughout 1999, attendance doubling at each successive event. Tremendous success
was achieved in interoperability among vendors. Other standards bodies began to look at SIP as well,
including ITU and ETSI TIPHON, IMTC, Softswitch Consortium, and JAIN.

Premise:

As an Mbone tool (and as a product of the IETF), SIP was designed with certain assumptions in mind.
First was scalability:

Since users could reside anywhere on the Internet, the protocol needed to workwide-area from day one.
Users could be invited to lots of sessions, so the protocol needed to scale in both directions. A second
assumption was component reuse: Rather than inventing new protocol tools, those already developed
within the IETF would be used. That included things like MIME, URLs, and SDP (already used for other
protocols, such as SAP). This resulted in a protocol that integrated well with other IP applications (such as
web and e-mail).

Interoperability was another key goal, although not one specific to SIP. Interoperability is at the heart of
IETF’s process and operation, as a forum attended by implementers and operational experts who actually
build and deploy the technologies they design. To these practical-minded standardizers, the KISS (Keep It
Simple Stupid) principle was the best way to help ensure correctness and interoperability.

Operation breakdown

establishing connection

adding parties

changing session parameters
terminating multimedia communications

User location: determination of the end system

User capabilities: determination of the media and parameters

User availability: determination of the willingness for communications
Call setup: "ringing", setting call parameters at called and calling party

As the name implies, the session initiation protocol (SIP) is about initiation of interactive communications
sessions between users. SIP also handles termination and modifications of sessions as well. SIP actually
doesn't define what a session is; this is described by content carried in SIP messages. Most of SIP is about
the initiation part, since this is really the most difficult aspect. Initiating a session requires determining

where the user to be contacted is actually residing at a particular moment. A user might have a PC at work,
a PC at home, and an IP desk phone in the lab. A call for that user might need to ring all phones at once.
Furthermore, the user might be mobile; one day at work, and the next day visiting a university. This
dynamic location information needs to be taken into account in order to find the user.

Once the user to be called has been located, SIP can perform its second main function - delivering a
description of the session that the user is being invited to. As mentioned, SIP itself does not know about

the details of the session. What SIP does do is convey information about the protocol used to describe the
session. SIP does this through the use of multipurpose internet mail extensions (MIME), widely used in

web and e-mail services to describe content (HTML, audio, video, etc.). The most common protocol used

to describe sessions is the session description protocol (SDP), described in RFC2327. SIP can also be usec
to negotiate a common format for describing sessions, so that other things besides SDP can be used.

Once the user has been located and the session description delivered, SIP is used to convey the response t
the session initiation (accept, reject, etc.). If accepted, the session is now active. SIP can be used to modify
the session as well. Doing so is easy - the originator simply re-initiates the session, sending the same
message as the original, but with a new session description. For this reason, modification of sessions
(which includes things like adding and removing audio streams, adding video, changing codecs, hold and
mute) are easily supported with SIP, so long as the session description protocol can support them (SDP
supports all of the above).

Finally, SIP can be used to terminate the session (i.e., hang up)

Type of Operation:

SIP is designed as part of the overall IETF multimedia data and control architecture.This multimedia data
and control architecture is currently
incorporating protocols such as

RTP the real-time transport protocol for transporting real-time data and providing QOS feedback,
RTSP the real-time streaming protocol for controlling delivery of streaming media,

SAP the session announcement protocol for advertising multimedia sessions via multicast, and
SDP the session description protocol for describing multimedia sessions.

the functionality and operation of SIP does not depend on any of these protocols!!

SIP is based on the reguyest-resppnse paradigm. To initiate a session, the caller (known as the User Agent
Client, or UAC) sends a request (called an INITE), addressed to the person the caller wants to talk to. In
SIP, addresses are URLs. SIP defines a URL format that is very similar to the popular mailto URL. If the
user’s e-mail address is jdrosen@dynamic-soft.com, their SIP URL would be
sip:jdrosen@dynamicsoft.com. This message is not sent directly to the called party, but rather to an entity
known as a proxy server. The proxy server is responsible for routing and delivering messages to the called
party. The called party then sends a response, accepting or rejecting the invitation, which is forwarded
back through the same set of proxies, in reverse order.

A proxy can receive a single INVITE request, and send out more than one INVITE request to different
addresses. This feature, aptly called forking, allows a session initiation attempt to reach multiple locations,
in the hopes of finding the desired user at one of them. A close analogy is the home phone line service,
where all phones in the home ring at once.

[More detailed description on request - response s¢gheme

Performing Calls

This section explains the basic protocol functionality and operation. Callers and callees are identified by
SIP addresses, described in Sedtion SIPJURL. When making a SIP call, a caller first locates the
appropriate server (Sectipn SERVER) and then sends a SIP request (Section Type of Dperation). The most
common SIP operation is the invitation. Instead of directly reaching the intended callee, a SIP request may
be redirected or may trigger a chain of new SIP requests by proxies. Users can register their location(s)
with SIP servers.

Assuming the caller (jdrosen@dynamicsoft.com) wishes to place a call to joe@columbia.edu. Jdrosen
sends his SIP INVITE message to the proxy for dynamicsoft.com (Step 1). This proxy then forwards the
request out to Columbia, where it reaches the Columbia.edu server (Step 2).

This server is actually not a proxy, but a similar device called a redirect server. Instead of forwarding calls,
a redirect server asks the requestor to contact the next server directly. The Columbia.edu server looks up
Joe in its database, and determines that today, Joe is on sabbatical to foo.com. It therefore sends a special
response, called a redirect, to the dynamicsoft.com proxy, instructing it to instead try joe@foo.com (Step
3).

The dynamicsoft proxy then acts on this response, which means it directly tries to contact joe@foo.com.
So, its sends the INVITE to the foo.com server (Step 4). This server consults its database (Step 5), and
learns (Step 6) that Joe is actually in sales. So, it constructs a new URL, joe@sales. foo.com, and sends the
INVITE to the sales.foo.com proxy (Step 7).

The proxy for the sales department then needs to forward the INVITE to the PC where Jo is currently
sitting. For getting out which PC Joe is currently using, SIP defines another request, called REGISTER,
which is used to inform a proxy of an address binding. In this case, when Joe turned on his SIP client on
his PC, the client would register the binding sip:joe@sales.engineering.com to
sip:;joe@mypc.sales.foo.com. This would allow the proxy to know that Joe is actually at mypc, a specific
host on the network. The bindings registered through SIP are periodically refreshed, so that if the PC
crashes, the binding is eventually removed.

The sales.foo.com proxy consults this registration database, and forwards the INVITE to
joe@mypc.sales.foo.com (Step 8). This INVITE then reaches Joe at his PC. Joe can then respond to it
(thus the request-response model). SIP provides many responses, and these include acceptance, rejection,
redirection, busy, and so on. The response is forwarded back through the proxies to the original caller
(Steps 9,10,11,12). An acknowledgement is sent (another type of request, called ACK) in Step 13, and the
session is established. Media can then flow (Step 14).

SIP addressing:

A SIP URL follows the guidelines of RFC 2396 and has the syntax ghown here. It is described using
Augmented Backus-Naur Form. Note that reserved characters have to be escaped and that the "set of
characters" reserved within any given URI component is defined by that component. In general, a
character is reserved if the semantics of the URI changes if the character is replaced with its escaped
US-ASCII encoding

SIP URLs are used within SIP messages to indicate the originator (From), current destination
(Request-URI) and final recipient (To) of a SIP request, and to specify redirection addresses (Contact). A
SIP URL can also be embedded in web pages or other hyperlinks to indicate that a particular user or
service can be called via SIP. When used as a hyperlink, the SIP URL indicates the use of the INVITE
method. The SIP URL scheme is defined to allow setting SIP request-header fields and the SIP
message-body. This corresponds to the use of mailto: URLSs. It makes it possible, for example, to specify
the subject, urgency or media types of calls initiated through a web page or as part of an email message.

Some examples for use and default values of URL components for SIP headers:

sip:j.doe@big.com
sip:j.doe:secret@big.com;transport=tcp
sip:j.doe@big.com?subject=project
Sip:+1-212-555-1212:1234@gateway.com;user=phone
sip:1212@gateway.com

sip:alice@10.1.2.3

sip:alice@example.com
sip:alice%40example.com@gateway.com
sip:alice@registrar.com;method=REGISTER

SIP URLs are case-insensitive, so that for example the two URLSs sip:j.doe@example.com and
SIP:J.Doe@Example.com are equivalent. All URL parameters are included when comparing SIP URLs
for equality. The Request-URI is a SIP URL or a general URI. It indicates the user or service to which this
request is being addressed. Unlike the To field, the Request-URI MAY be re-written by proxies

Example: SIP Call Flow

Basic Call Flow

User & Prooy 1 Proxy 2 User B

IHWATE F1
———————— —
407 Prawy Autharization F2
ACH F3
________ =
IMWITE F4
_-n—-__ _-U‘f‘!‘-‘ﬂl____ ——— ST INMTE F7
_ 00ImeeFs [e = = =W NMTEFT
(100 Trying) F& —-
________ 180 Ringing FO
PO 180 Ringing F10 — — — =
- 180 Ringing F1 -— — — — = — — — —
S T T T 200 OK F13 oy 2OOWFr2 |
o — — — — — — — —
— — —OOOKFM]
ACHF1S
———————— —-- ACH F16
- T = =, _ACHRIT
- Bioth vay RTP __ -
YE F1
- BEFIB_ | -— - — = = — — — —
g — — — SEEO
I L s S— .
- — = AR 200 Ok F23
———————— —f=

In Figure A, Caller A completes a call to User B using two proxies: Proxy 1 and Proxy 2. The initial

INVITE (F1) does not contain the Authorization credentials that Proxy 1 requires, so an Authorization
response is sent containing the challenge information.A new INVITE (F4) is then sent containing the
correct credentials and the call proceeds. The call terminates when User B disconnects by initiating a BYE
message.

F1 INVITE A -> Proxy 1

The call begins, as always, with an INVITE message that contains information on caller and called party
as well as the session description request (2nd part).

INVITE sip:UserB@ss1.wcom.com SIP/2.0
Via: SIP/2.0/UDP here.com:5060

From: BigGuy

To: LittleGuy

Call-ID: 12345600@here.com

CSeq: 1 INVITE

Contact: BigGuy

Content-Type: application/sdp
Content-Length: 147

v=0

o=UserA 2890844526 2890844526 IN IP4 here.com
s=Session SDP

c=IN IP4 100.101.102.103

t=00
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

F2 407 Proxy Authorization Required Proxy 1 -> User A

SIP always works in a request-response mode and in this example Proxy 1 challenges Caller A for
authentication

SIP/2.0 407 Proxy Authorization Required

Via: SIP/2.0/UDP here.com:5060

From: BigGuy

To: LittleGuy

Call-ID: 12345600@here.com

CSeq: 1 INVITE

Proxy-Authenticate: Digest realm="MCI WorldCom SIP",
domain="wcom.com", nonce="wf84flceczx4lae6cbe5aea9c8e88d359",
opaque="", stale="FALSE", algorithm="MD5"

Content-Length: O

As we move further down the call flow, the actual voice call begins, using Realtime Transport Protocol
(RTP) to move the voice stream.

F17 ACK Proxy 2 -> B

ACK sip: UserB@there.com SIP/2.0

Via: SIP/2.0/UDP ss2.wcom.com:5060
Via: SIP/2.0/UDP ssl.wcom.com:5060
Via: SIP/2.0/UDP here.com:5060

From: BigGuy

To: LittleGuy ;tag=314159

Call-ID: 12345601@here.com

CSeq: 1 ACK

Content-Length: O

Calls are then terminated with a BYE request to the caller.
F18 BYE User B -> Proxy 2

BYE sip: UserA@ss2.wcom.com SIP/2.0
Via: SIP/2.0/UDP there.com:5060
Route: ,

From: LittleGuy ;tag=314159

To: BigGuy

Call-ID: 12345601@here.com

CSeq: 1 BYE

Content-Length: O

Call Forward On Busy

sSIF siFP SIF siE
ser A Proooy 1 Uszear BA Lser B2
Irnsite F 1
"""""" - Ivite F2
- — UETyingFs T T T o =
« — _ f96BusyMeeFs
______ ackes_ |
T &
sz e e snagie ke e o 1BORINGIGER.
- - — - WHume ___ = b 200 0K F9
R U S| NS L., . e—
200 0K F 10
. & R
ACK F11
———————————— - ACKF 12
__________________________ .’-.
Both Way RTP Establisha (A.52) = |
______ By bt g
ByeFH
o merw | >
2000K F 15
ISR e R 2 R
. 2WOKES®_

In this scenario User B wants calls forwarded to another destination if the original line is busy. It is
assumed that the proxy knows where to forward the call.

F1 INVITE A -> Proxy

INVITE sip:UserB@ssl1.wcom.com SIP/2.0

Via: SIP/2.0/UDP here.com:5060

From: BigGuy

To: LittleGuy

Call-ID: 12345600@here.com

CSeq: 1 INVITE

Contact: BigGuy

Proxy-Authorization: DIGEST username="UserA", realm="MCI
WorldCom

SIP", nonce="9137d175c20a0d6eadd7belc863302ae", opaque="",
uri="sip:ssl.wcom.com",
response="cf25aad811c806bde46a369220158cec"
Content-Type: application/sdp

Content-Length: ...

v=0
o=UserA 2890844526 2890844526 IN IP4 client.here.com
s=Session SDP

c=IN IP4 100.101.102.103
t=00

m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

F4 486 Busy Here B1 -> Proxy
User B’s phone responds back with a busy message (486)

SIP/2.0 486 Busy Here

Via: SIP/2.0/UDP ss1.wcom.com:5060;branch=1
Via: SIP/2.0/UDP here.com:5060

From: BigGuy

To: LittleGuy ;tag=123456

Call-ID: 12345600@here.com

CSeq: 1 INVITE

Content-Length: O

F6 INVITE Proxy -> B2

The call is then forwarded to a new location at "THERE.COM." Since the call is going to a new location, a
new INVITE and session description is sent.

INVITE sip:UserB2@ there.com SIP/2.0
Via: SIP/2.0/UDP ssl1.wcom.com:5060;branch=2
Via: SIP/2.0/UDP here.com:5060
Record-Route:

From: BigGuy

To: LittleGuy

Call-ID: 12345600@here.com

CSeq: 1 INVITE

Contact: BigGuy

Content-Type: application/sdp
Content-Length: ...

v=0

o=UserA 2890844526 2890844526 IN IP4 client.here.com
s=Session SDP

c=IN IP4 100.101.102.103

t=00

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

Forwarded on No Answer

SIP SIP SIP Vi
User A Proxy1 User B1 System
Invite F1
————————— ™ Invite F2
A0 Trng)F2 ~————————
———————— i20 Ringing F4
130 RingngF5 M=~~~ ~ ~ '~ —~ ~
~~~~~~~~ {Request Timeout)
Canced FE
200 0K F7
Inwije FS
————————————————— —
200 DK F9
- = = = = = = e e e e e e
200 OKF10
ACKFI
————————— ACHF12
_________________ +
RTP Establigh ed Bolh Ways - Deposit Message for B >
ByeF13 Fi4
_________ AN . b I
F1 200 QK F18
_mookee | KRS

http: /fsearch.ietf .orgfinternet-drafts fdraft-campbell-sip-service-control-00.txt

Here User A attempts to call User B, who does not answer. The call is forwarded to User B’s mailbox, and
the voicemail system plays a message for a ring-no-answer. The call flow then moves from User A to the
voicemail system.

F1

INVITE sip:UserB@wcom.com SIP/2.0

Via: SIP/2.0/UDP here.com:5060

From: TheBigGuy

To: TheLittleGuy

Call-1d: 12345600@here.com

CSeq: 1 INVITE

Contact: TheBigGuy

Proxy-Authorization:Digest username="UserA",

realm="MCI WorldCom SIP",
nonce="ea9c8e88df84flcec434laebcbe5a359", opaque="",
uri="sip:UserB@wcom.com", response= calculated hash goes here>
Content-Type: application/sdp

Content-Length:



v=0

o=UserA 2890844526 2890844526 IN IP4 client.here.com
s=Session SDP

c=IN IP4 100.101.102.103

t=00

m=audio 49170 RTP/AVP 0O

a=rtpmap:0 PCMU/8000

Here B1 rings for, let's say, nine seconds. (This duration is a configurable parameter in the Proxy Server.)
The Proxy sends a Cancel option and proceeds down its internal list of options, eventually selecting a
voicemail URL for "forward no answer."

SIP/2.0 180 Ringing

F5 Via: SIP/2.0/UDP here.com:5060From: TheBigGuy
To: TheLittleGuy ;tag=3145678

Call-Id: 12345600@here.com

CSeq: 1 INVITE

Content-Length: O

Here the voicemail system is ready to set up a RTP session, and record the message by using the 200 OK
signal. The 'contact’ field indicates where the file is being stored.

F9 SIP/2.0 200 OK

Via: SIP/2.0/UDP wcom.com:5060; branch=2
Via: SIP/2.0/UDP here.com:5060
Record-Route:

From: TheBigGuy

To: TheLittleGuy ;tag=123456
Call-1d; 12345600@here.com
CSeq: 1 INVITE

Contact: TheLittleGuyVoiceMalil
Content-Type: application/sdp
Content-Length:

v=0

o=UserB 2890844527 2890844527 IN IP4 vm.wcom.com
s=Session SDP

c=INIP4 110.111.112.114

t=00

m=audio 3456 RTP/AVP 0

a=rtpmap:0 PCMU/8000

Finally User A hangs up on the voicemail system ...but the VM system could have disconnected the call
on its own.



F13 BYE sip:UserB@wcom.com SIP/2.0
Via: SIP/2.0/UDP here.com:5060

Route:

From: TheBigGuy

To: ThelittleGuy ;tag=123456

Call-Id: 12345600@here.com

CSeq: 2 BYE

Content-Length: 0

Characterigtics:

layers

transparently supports name mapping
redirection

transport mode (=text based)

using ABNH

Layers

SIP makes minimal assumptions about the underlying transport and network-layer protocols. The
lower-layer can provide either a packet or a byte stream service, with reliable or unreliable service. In an
Internet context, SIP is able to utilize both and TCP as transport protocols, among others. UDP allows the
application to more carefully control the timing of messages and their retransmission, to perform parallel
searches without requiring TCP connection state for each outstanding request, and to use multicast.
Routers can more readily snoop SIP UDP packets. TCP allows easier passage through existing firewalls.

possibly lower layers:

TCP

ATM AALS
IPX

frame relay
X.25



signaling gquality of service media transport

HA323 SIP REVP RTSP RTCP media
i i '
: : RTP
| |
1 Y \ Y i Y ¥
TCP UDP
¥ ¥ ¥
IPvd, IPv6
¥ ¥ ¥ ¥
PFPP AATAd AALS PPP
¥ ¥ ] ¥ Y
Sonet
SDH ATM Ethernet v.ad
M essaging:

SIP is patterned after HTTP in many ways. HTTP is also request-response. SIP borrows much of the
syntax and semantics from HTTP. The textual message formatting, usage of headers, MIME support, and
many headers are identical. An http expert looking at a SIP message would have difficulty distinguishing
them.

The 1500 bytes accommodates encapsulation within the "typical" ethernet MTU without IP fragmentation.
The next lower common MTU values are 1006 bytes for SLIP and 296 for low-delay PPP (RFC 1191).
Thus, another reasonable value would be a message size of 950 bytes, to accommodate packet headers
within the SLIP MTU without fragmentation.

Text based

if you are missing explanations on setting Bits in specific Bytes to gain a special function you can seek for

a very long time! SIP is not using binary mode messaging for its work.

SIP is text-based, using ISO 10646 in UTF-8 encoding throughout. This allows easy implementation in
languages such as Java, Tcl and Perl, allows easy debugging, and most importantly, makes SIP flexible
and extensible. As SIP is used for initiating multimedia conferences rather than delivering media data, it is
believed that the additional overhead of using a text-based protocol is not significant. Except for the above
difference in character sets, much of the message syntax is and header fields are identical to HTTP/1.1, but
cannot be seen as an extension to HTTP!



ABNF

For infrormation on this topic you can click Here.

Comparing SIP to H.323

There are numerous differences between SIP and H.323. The first is scope;

H.323 specifies a complete, vertically integrated system. Not much room is left for flexibility or different
architectures. SIP, on the other hand, is a single component. It works with RTP, for example, but does not
mandate it. SIP systems can be composed into a variety of architectures, and numerous protocols and
additional systems can be plugged in at the discretion of the service provider. SIP can be considered a
building block, whereas H.323 is a specific system.



H.323

ITU developed H.323.
Version 1 standardized in 1996.

Focus was multimedia communications services for LANs without QoS. H.323 v.1 not targeted

for IP specifically, but any type of packet LAN.

Version 2, released in 1998.
Version 3 has been recently completed, and
Version 4 is now under development.

IETF, origins in late 1996 as a component of the Mbone set of utilities and protocols.
Focus on distribution of multimedia content, including talks and seminars, broadcasts of ¢

pace

h
rt, and

d

SIP shuttle launches, and IETF meetings.
mechanism for inviting users to listen in on an ongoing or
complete, vertically integrated suite of protocols architecture for delivering multimedia
conferencing applications.
includes signaling, registration, admission control, security, interworking requirements wif
H.323 H.320, H.321, and other ITU conferencing systems, inter-domain data exchange, transpg
' codecs.
defines several entities, including terminals (end systems, like PCs), gateways, multipoin
conferencing units, and something called a gatekeeper. A gatekeeper is similar to a SIP proxy, in
that it plays the role of a signaling relay.
single component, works with e.g. RTP but does not mandate it
SIP | SIP systems can be composed into a variety of architectures, and numerous protocols af
additional systems can be plugged in at the discretion of the service provide
H.323 LAN protocol; numerous enhancements (such as FastStart) added to gain behaviour as &
' wide-area protocol
SIP designed as a wide-area protocol, no enhancements needed.




borrows its call-signaling component from existing work done in ITU, namely the Q.931

H.323 protocol, used for user-to-network signaling in ISDN => telephony-centric flavor

borrows much of its concepts from HTTP => web flavor
SIP | allows to integrate with web, e-mail, and other existing IP applications.
KISS (Keep It Simple Stupid) principle => easier to implement and interoperate

extendable by add non-standard elements identified by vendor ID and version change =3

H.323 backward compatible, takes up more room than its predecessor

extended in numerous ways: including adding headers, new methods, new bodies, and

SIP parameters to existing headers
H.323 H.245 contains powerful mechanisms for conference control for distributed multiparty
' conferences. (deny - grant speaking privileges)
kind of control possible within SIP-established conference, but not addressed by SIP itseff,
SIP :
currently no standalone standard protocols that can do this
Connectivity:

SIP transparently supports name mapping and redirection services, allowing the implementation of ISDN
and Intelligent Network telephony subscriber services. The phone identifier is to be used when connecting
to a telephony gateway. Even without this parameter, recipients of SIP URLs MAY interpret the pre-@
part as a phone number if local restrictions on the name space for user name allow it.

Main Advantages:
Services:

SIP transparently supports name mapping and redirection services, allowing the implementation of ISDN
and Intelligent Network telephony subscriber services. These facilities also enable personal mobility. In
the parlance of telecommunications intelligent network services, this is defined as: "Personal mobility is
the ability of end users to originate and receive calls and access subscribed telecommunication

Internet telephony began on the premise that it was cheaper than normal phone calling. Users were willing
to tolerate degraded quality or reduced function for lower cost. However, the cost differentials are rapidly
disappearing. To continue to exist, Internet telephony must find another reason to be. The answer is
services.

Some of the most exciting applications have already found killer status on the Internet, though not (yet) in



the form of multimedia services. Now think of integrating multimedia communications, such as voice,
with web, e-mail, buddy lists, instant messaging, and online games. Whole new sets of features, services,
and applications become conceivable.

SIP is ideally suited here. Its use of URLSs, its support for MIME and carriage of arbitrary content (SIP can
carry images, MP3s, even Java applets), and its usage of e-mail routing mechanisms, means that it can
integrate well with these other applications. For example, it is just as easy to redirect a user to another
phone as it is to redirect a user to a web page.

Scalability:

SIP uses the Internet model for scalability - fast and simple in the core, smarter with less volume in the
periphery. To accomplish this, SIP defines several types of proxy servers. Call-stateful proxies generally
live at the edge of the network. These proxies track call state, and can provide rich sets of services based
on this knowledge. Closer to the core, transaction-stateful (also known as just stateful) proxies track
requests and responses, but have no knowledge of session or call state. Once a session invitation is
accepted, the proxy forgets about it. When the session termination arrives, the proxy forwards it without
needing to know about the session.

Finally, stateless proxies exist in the core. These proxies receive requests, like INVITE, forward them, and
immediately forget. The SIP protocol provides facilities to ensure that the response can be correctly routed
back to the caller. Stateless proxies are very fast, but can provide few services. Call-stateful proxies are
not as fast, but they live at the periphery, where call volumes are lower.

Extensibility:

History has taught Internet engineers that protocols get extended and used in ways they never intended
(e-mail and web are both excellent examples of this). So, they've learned to design in support for
extensibility from the outset. SIP has numerous mechanisms to support extensions. It does not require
everyone to implement the extensions. Facilities are provided that allow two parties to determine the
common set of capabilities, so that a session initiation can always be completed, no matter what.

Flexibility:

SIP is not a complete system for Internet telephony. It does not dictate architecture, usage patterns, or
deployment scenario. It does not mandate how many servers there are, how they are connected, or where
they reside. This leaves operators tremendous flexibility in how the protocol is used and deployed. One
way to think of it is that SIP is a LEGO block; operators can piece together a complete solution by
obtaining other LEGO blocks, and putting them together in the way that they see fit.

Multimedia:

Besides the traditional call-forwarding, follow-me, and do-not-disturb, SIP has the potential for enabling a
whole new class of services that integrate multimedia with web, e-mail, instant messaging, and presence
(meant here as, are you currently online?). The value that the Internet brings to Internet telephony is the
suite of existing applications that can be merged with voice and video communications. As an example, at
the end of a call, a user can transfer the other party to a web page instead of another phone. This transfer
would end the call, and cause the other party’s web browser to jump to the new page. In essence, the value
of VoIP and SIP comes not from integration at the network layer (i.e., run your voice services on top of

your data network), but at the services layer (i.e., combine your voice services with your data services)



Main Drawbacks:

Emerging issues in the Internet could ruin the promise of SIP (as well as H.323) over the long term. The
problem is the increasing shortage of IP v4 numbers and the growing use of network address translators
(NATS). There are similar issues when running SIP and H.323 through firewalls.

NATs break many protocols that act as establishment mechanisms for other protocols, such as SIP. NATs
provide a boundary between the private IP addressing of a network and the public Internet. They aremost
often used if an enterprise is unable to secure access to a sufficient block of IP numbers from their ISP, or
if the enterprise wants the presumed luxury of being able to switch ISPs without having to renumber their
network.

SIP, fundamentally, is a control channel for establishing other sessions (namely, the media sessions).
These kinds of protocols (of which FTP and H.323 are other examples) cause problems for NATS, since
the addresses for the established sessions are in the body of the application layer messages, as we see in
the session description protocol examples shown in the sidebar, SIP Call Flow Examples.

When used with SDP, SIP messages carry the IP addresses and ports to be used for the media sessions.
There may be multiple media sessions within a particular SIP call. Since SDP carries IP addresses and not
host names, the external caller user agent will send media to an IP address that is not globally routable. It
is only a valid IP address within the private network.

A nearly identical problem exists for firewalls. When a user inside the firewall sends media to an address
outside the firewall, it will be dropped by the firewall unless a rule is established to allow it to pass. Since
the media is sent on dynamic ports to dynamic addresses, these rules must be dynamically installed
through application-aware devices, such as proxies.

| nterfacing:

Developing services, of course, requires APIs. What kind of APIs are used to program services delivered
by SIP? There has been significant activity in this area, resulting in numerous new interfaces, each with its
own distinct set of strengths and weaknesses.

The first API that surfaced is the call processing language (CPL). CPL is not actually an API, but rather
an XML-based scripting language for describing call services. It is not a complete programming language,
either. It has primitives for making decisions based on call properties, such as time-of-day, caller, called
party, and priority, and then taking actions, such as forwarding calls, rejecting calls, redirecting calls, and
sending e-mail. CPL is engineered for end-user service creation.

A server can easily parse and validate a CPL, guarding against malicious behavior. The running time and
resource requirements of a CPL can also be computed automatically from the CPL. An interpreter for CPL
is very lightweight, allowing CPL services to execute very quickly. For these reasons, it is possible for an
end user to write a CPL (typically with some kind of GUI tool), upload it to the network, and have it
instantly verified and instantiated in real time.



At the opposite end of the spectrum in SIP is CGI (the common gateway interface). Many web designers
are familiar with HTTP CGl,; it's an interface that allows people to generate dynamic web content using
Perl, Tcl, or any other programming language of choice. Since HTTP and SIP are so similar, it was
recognized that an almost identical interface could be used for SIP. The result is SIP CGlI, which is
roughly 90% equivalent to HTTP CGl. Like HTTP CGil, SIP CGI passes message parameters through
environment variables to a script that runs in a separate process. The process sends instructions back to the
server through its standard output file descriptor. The benefit of SIP CGl is that it makes development of
SIP services work much like the creation of dynamic web content. In fact, for SIP services that contain
substantial web components, development will closely mirror web-only services. The importance of
leveraging web tools for voice service creation is that a much larger class of developers becomes
available.

CGl has substantially more flexibility than CPL (CGI doesn’t even mandate a particular programming
language), but is much more risky to execute. Furthermore, because of its usage of separate processes, SIF
CGIl doesn't scale as well as CPL. Somewhere in the middle are SIP Servlets. HTTP Servlets are in wide
use for developing dynamic web content. Servlets are very similar to the CGI concept. However, instead

of using a separate process, messages are passed to a class that runs within a JVM (Java Virtual Machine)
inside of the server. As a result, Servlets are restricted to Java, but suffer less overhead than SIP CGI. Use
of a JVM for executing servlets means that the Java sandbox concept can be applied to protect the server
from the script. Like SIP CGl, SIP Servlets closely mirror the operation of HTTP Servlets; they simply
enhance the interface to support the wider array of functions a proxy can execute, as compared to an

HTTP origin server

Real Time Transport Protocol

IETF audio-video transport group started to develop RTP in 1993. The aim of the protocol was to provide
services required by interactive multimedia conferences, such as play-out synchronization, demultiplexing,
media identification and active party identification. However, not only

multimedia conferencing applications can benefit from RTP, but also storage of continuous data,
interactive media distribution, distributed simulation, and control applications can utilize RTP

RTP consists of a data and a control part. The latter is called RTCP. Implementation will often be
integrated into application rather than being implemented as a separate protocol layer. In applications RTP
is typically run on top of UDP to make use of its port numbers and checksums. The RTP framework is
relatively "loose" allowing modifications and tailoring depending on application. Additionally, a complete
specification for a particular application will require a payload format and profile specification. The

payload format defines how a particular payload is to be carried in RTP. A payload specification defines
how a set of payload type codecs are mapped into payload formats.



Application Application
RTP Transport RTP
Layer . _ o[~ """7777]

Eacket /

TDP TDFP
Interface

Ir 1P
Phy=ical Physical

RTP session setup consists of defining a pair of destination transport addresses one IP address and UDP
port pair, one for RTP and another for RTCP. In the case of multicast conference the IP address is a class
D multicast address. In multimedia session each medium is carried in a separate RTP session with its own
RTCP packets reporting only the quality of that session. Usually additional media are allocated in
additional port pairs and only one multicast address is used for the conference.

RTP has important properties of a transport protocol: it runs on end systems, it provides demultiplexing. It
differs from transport protocols like TCP in that it (currently) does not offer any form of reliability or a
protocol-defined flow/congestion control. However, it provides the necessary hooks for adding reliability,
where appropriate, and flow/congestion control. (application-level framing). As lower layers are required
to transfer data RTP is not really real time, but provides functionality suited for carrying real-time content,
e.g., atimestamp and control mechanisms for synchronizing different streams with timing properties.

QoS.

Perhaps the most vexing problem in voice-over-1P, in general, has been the issue of quality of service. The
delay in conversations that many VolP users encounter is caused by the jitter and latency of packet
delivery within the Internet itself. It's useful to review some of the basic principles of the Internet to
understand what can be done about the problem, what the IETF’s response has been, and how it impacts
SIP.

Currently, the Internet offers a single service, traditionally referred to as best effort. In other words, all
packets are created equal. There is no difference to the Internet whether a packet is e-mail, FTP, or the
download of a web page. If the Internet gets very busy, packets get dropped or delayed.

Unfortunately, the human ear is extremely sensitive to latency in the delivery of sound. The human ear can
detect delays of 200 milliseconds or greater in voice conversations.

SIP itself does not get involved in reservation of network resources or admission control. This is because
SIP messages may not even run over the same networks that the voice packets traverse. The complete
independence of the SIP path and the voice path enables ASPs to provide voice services without providing
network connectivity. This is an extremely important advantage of the SIP architecture. Given this, SIP



relies on other protocols and techniques in order to provide quality of service.

Encryption:

SIP requests and responses can contain sensitive information about the communication patterns and
communication content of individuals. The SIP message body MAY also contain encryption keys for the
session itself. SIP supports three complementary forms of encryption to protect privacy:

End-to-end encryption of the SIP message body and certain sensitive header fields;
hop-by-hop encryption to prevent eavesdropping that tracks who is calling whom;
hop-by-hop encryption of Via fields to hide the route a request has taken.

Not all of the SIP request or response can be encrypted end-to-end because header fields such as To and
Via need to be visible to proxies so that the SIP request can be routed correctly. Hop-by-hop encryption
encrypts the entire SIP request or response on the wire so that packet sniffers or other eavesdroppers
cannot see who is calling whom. Hop-by-hop encryption can also encrypt requests and responses that have
been end-to-end encrypted. Note that proxies can still see who is calling whom, and this information is

also deducible by performing a network traffic analysis, so this provides a very limited but still worthwhile
degree of protection.

SIP Via fields are used to route a response back along the path taken by the request and to prevent infinite
request loops. However, the information given by them can also provide useful information to an attacker.
End-to-end encryption relies on keys shared by the two user agents involved in the request. Typically, the
message is sent encrypted with the public key of the recipient, so that only that recipient can read the
message. All implementations should support PGP-based encryption and may implement other schemes.

A SIP request (or response) is end-to-end encrypted by splitting the message to be sent into a part to be
encrypted and a short header that will remain in the clear. Some parts of the SIP message, namely the
request line, the response line and certain header fields need to be read and returned by proxies and thus
MUST NOT be encrypted end-to-end. Possibly sensitive information that needs to be made available as
plaintext include destination address (To) and the forwarding path (Via) of the call. The Authorization
header field must remain in the clear if it contains a digital signature as the signature is generated after
encryption, but MAY be encrypted if it contains "basic" or "digest" authentication. The From header field
should normally remain in the clear, but MAY be encrypted if required, in which case some proxies MAY
return a 401 (Unauthorized) status if they require a From field.

Privacy of SIP Responses

SIP requests can be sent securely using end-to-end encryption and authentication to a called user agent
that sends an insecure response. This is allowed by the SIP security model, but is not a good idea.
However, unless the correct behavior is explicit, it would not always be possible for the called user agent
to infer what a reasonable behavior was. Thus when end-to-end encryption is used by the request
originator, the encryption key to be used for the response should be specified in the request. If this were
not done, it might be possible for the called user agent to incorrectly infer an appropriate key to use in the



response. Thus, to prevent key-guessing becoming an acceptable strategy, we specify that a called user
agent receiving a request that does not specify a key to be used for the response should send that response
unencrypted.

Any SIP header fields that were encrypted in a request should also be encrypted in an encrypted response.
Contact response fields MAY be encrypted if the information they contain is sensitive, or MAY be left in
the clear to permit proxies more scope for localized searches.

Known Security Problems

With either TCP or UDP, a denial of service attack exists by a rogue proxy sending 6xx responses.

Although a client SHOULD choose to ignore such responses if it requested authentication, a proxy cannot
do so. It is obliged to forward the 6xx response back to the client. The client can then ignore the response,
but if it repeats the request it will probably reach the same rogue proxy again, and the process will repeat.

The example shows a message encrypted with ASCll-armored PGP that was generated by applying "pgp
-ea" to the payload to be encrypted.

INVITE sip:watson@boston.bell-telephone.com SIP/2.0
Via: SIP/2.0/UDP 169.130.12.5
From: <sip:a.g.bell@bell-telephone.com>
To: T. A. Watson <sip:watson@bell-telephone.com>
Call-ID: 187602141351 @worcester.bell-telephone.com
Content-Length: 885
Encryption: PGP version=2.6.2,encoding=ascii

hQEMAXkp5GPd+j5xAQf/ZDIfGD/PDOM1wayvwdQAKgGgimZWe+MTy9NEX8025Redh0/pyrd/+DV5C2BYs7yzSOSXgjl
C/tTK/4do6rtjhP8QA3vbDdVdaFciwEVAcuXsODXINAVqyDi1RgFC28BJIVQ5KEKPUACKTK7WIRSBc7vNPEA3nyqZGB[T
wWhxXRSbIRRUFEsHSVojdCam4htcgxGnFwD9sksqgs6LIyCFaiTAhWtwcCaN437G7mUYzy2KLcAzPVGq1VQg83b99zPzIxRdIZ
+K7+bAnu8Rtu+ohOCMLV3TPXbyp+errlYiThCZHIuX9dOVj3CMjCP66RSHa/eaOwYTRRNYA/G+kdP8DSUcqYAAAE/hZ
PX6nFIgk7AVnf6IpWHUPTeINUJpzUp50u+q/5P7ZAsn+cSAUF2YWtVjCf+SQmMBR13p2EYYWHoxIA2/GgKADYe4M3J$w
OtqwU8zUJF3FIfk7vsxmSqtUQrRQailhgNyG 7KxJt4YjWnEjFSEWUIPhvyGFMJae QXIyGRYZAYVKKklyAJcm29zLACxU5al
X4M25IHQd9FR9Zmg6JedwbWyvia6cAlfsviZ9IGocmQYF7pcuz5pnczgP+/yvRgFItDGD/v3s++G2R+ViVYJOz/IxGUZaM4IWB
Cf+4DUjNanZM0oxAE28NjalZ0rrldDQmO8VIFtPKdHxkqA5iJP+6vGOFti1Ak4kmEzOvM/Nsv7kkubTFhRIO50iJIGras1Uhen
1Zv9I6RUXSOY/EwH2z8X9N4MhMyXEVuUC9rt8/AUhmVQ===bOW+

Kindsof Servers:

Redirect Server
User Agent Server
Proxy Server
Proxying Requests



Proxying Responses

Stateless Proxy: Proxying Responses
Stateful Proxy: Receiving Requests
Stateful Proxy: Receiving ACKs
Stateful Proxy: Receiving Responses
Stateless, Non-Forking Proxy

Forking Proxy

| nter net Resour ces:

[http://www.cs.columbia.edu/s|p/
[http:/Awww.sipforum.ord/

Additional Facts:
UTF-8:

The UTF-8 encoding allows Unicode to be used in a convenient and backwards compatible way in
environments that, like Unix, were designed entirely around ASCIIl. UTF-8 is the way in which Unicode is
going to be used under Unix, Linux, and similar systems. -> ISO 10646
http://www.cl.cam.ac.uk/~mgk25/unicode.html

SO 10646:

The international standard ISO 10646 defines the Universal Character Set (UCS). UCS is a superset of all
other character set standards. It guarantees round-trip compatibility to other character sets. If you convert
any text string to UCS and then back to the original encoding, then no information will be lost. UCS
contains the characters required to represent practically all known languages. This includes not only the
Latin, Greek, Cyrillic, Hebrew, Arabic, Armenian, and Georgian scripts, but also also Chinese, Japanese
and Korean Han ideographs as well as scripts such as Hiragana, Katakana, Hangul, Devangari, Bengali,
Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Malayalam, Thai, Lao, Khmer, Bopomofo, Tibetian,
Runic, Ethiopic, Canadian Syllabics, Cherokee, Mongolian, Ogham, Myanmar, Sinhala, Thaana, Yi, and
others. For scripts not yet covered, research on how to best encode them for computer usage is still going
on and they will be added eventually. This includes not only Hieroglyphs and various Indo-European
languages, but even some selected artistic scripts such as Tengwar, Cirth, and Klingon. UCS also covers a
large number of graphical, typographical, mathematical and scientific symbols, including those provided
by TeX, Postscript, APL, MS-DOS, MS-Windows, Macintosh, OCR fonts, as well as many word
processing and publishing systems, and more are being added.


http://www.cs.columbia.edu/sip/
http://www.sipforum.org/

ISO 10646 defines formally a 31-bit character set. However, of this huge code space, so far characters
have been assigned only to the first 65534 positions (0x0000 to OxFFFD). This 16-bit subset of UCS is
called the Basic Multilingual Plane (BMP) or Plane 0. The characters that are expected to be encoded
outside the 16-bit BMP belong all to rather exotic scripts (e.g., Hieroglyphics) that are only used by
specialists for historic and scientific purposes. Current plans suggest that there will never be characters
assigned outside the 21-bit code space from 0x000000 to 0x10FFFF, which covers a bit over one million
potential future characters. The ISO 10646-1 standard was first published in 1993 and defines the
architecture of the character set and the content of the BMP. A second part ISO 10646-2 which defines
characters encoded outside the BMP is under preparation, but it might take a few years until it is finished.
New characters are still being added to the BMP on a continuous basis, but the existing characters will not
be changed any more and are stable.

UDP:

User Datagram Protocol RFC 768:

User Datagram Protocol is a Connectionless protocol. It uses IP to send datagrams in a similar way to
TCP, except that like IP, and unlike TCP, UDP does not care if the packets reach their destination. UDP is
used in applications where it is not essential for 100% of the packets to arrive. This may sound strange, but
often you dont need all the packets. You wouldnt use UDP to transmit a program, because if one single bit
was wrong (let alone loosing a whole packet) the file would be absolutely useless. It is up to program
designers to choose what method is most suitable. While TCP is safer, UDP is becoming more common. It
especially favored for Streaming or Real-time applications. More recently, internet applications have used
both UDP and TCP. TCP is used for the essential or Control data, while UDP is used for data for which
losses are acceptable.

ABNF:

A SIP message is either a request from a client to a server, or a response from a server to a client. SIP
header fields are similar to HTTP header fields in both syntax and semantics. In particular, SIP header
fields follow the syntax for message-header as described below.

SIP-message = Request | Response
Request:
Request = Request-Line *( general-header | request-header | entity-header ) CRLF [ message-body ]

Request-Line = Method SP Request-URI SP SIP-Version CRLF



Method = "INVITE" | "ACK" | "OPTIONS" | "BYE" | "CANCEL" | "REGISTER"

INVITE

The INVITE method indicates that the user or service is being invited to participate in a session. The
message body contains a description of the session to which the callee is being invited. For two-party
calls, the caller indicates the type of media it is able to receive and possibly the media it is willing to
send as well as their parameters such as network destination. A success response must indicate in its
message body which media the callee wishes to receive and may indicate the media the callee is
going to send.

ACK

The ACK request confirms that the client has received a final response to an INVITE request. (ACK
is used only with INVITE requests.) 2xx responses are acknowledged by client user agents, all other
final responses by the first proxy or client user agent to receive the response. The Via is always
initialized to the host that originates the ACK request, i.e., the client user agent after a 2xx response
or the first proxy to receive a non-2xx final response. The ACK request is forwarded as the
corresponding INVITE request, based on its Request-URI.

The ACK request MAY contain a message body with the final session description to be used by the
callee. If the ACK message body is empty, the callee uses the session description in the INVITE
request.

OPTIONS

The server is being queried as to its capabilities. A server that believes it can contact the user, such as
a user agent where the user is logged in and has been recently active, may respond to this request
with a capability set. A called user agent MAY return a status reflecting how it would have responded
to an invitation, e.g., 600 (Busy). Such a server SHOULD return an Allow header field indicating the
methods that it supports. Proxy and redirect servers simply forward the request without indicating

their capabilities.

BYE

The user agent client uses BYE to indicate to the server that it wishes to release the call. A BYE
request is forwarded like an INVITE request and may be issued by either caller or callee. A party to a
call should issue a BYE request before releasing a call ("hanging up"). A party receiving a BYE
request must cease transmitting media streams specifically directed at the party issuing the BYE
request.

CANCEL

The CANCEL request cancels a pending request with the same Call-ID, To, From and CSeq
(sequence number only) header field values, but does not affect a completed request. (A request is
considered completed if the server has returned a final status response.)

A user agent client or proxy client may issue a CANCEL request at any time. A proxy, in particular,
may choose to send a CANCEL to destinations that have not yet returned a final response after it has



received a 2xx or 6xx response for one or more of the parallel-search requests. A proxy that receives
a CANCEL request forwards the request to all destinations with pending requests.

The Call-ID, To, the numeric part of CSeq and From headers in the CANCEL request are identical to
those in the original request. This allows a CANCEL request to be matched with the request it cancels.
However, to allow the client to distinguish responses to the CANCEL from those to the original request,
the CSeq Method component is set to CANCEL. The Via header field is initialized to the proxy issuing the
CANCEL request. (Thus, responses to this CANCEL request only reach the issuing proxy.)

Once a user agent server has received a CANCEL, it must not issue a 2xx response for the cancelled
original request.

REGISTER

A client uses the REGISTER method to register the address listed in the To header field with a SIP
server.

A user agent MAY register with a local server on startup by sending a REGISTER request to the
well-known "all SIP servers" multicast address "sip.mcast.net" (224.0.1.75). This request SHOULD
be scoped to ensure it is not forwarded beyond the boundaries of the administrative system. This
MAY be done with either TTL or administrative scopes [25], depending on what is implemented in

the network. SIP user agents MAY listen to that address and use it to become aware of the location of
other local users [20]; however, they do not respond to the request. A user agent MAY also be
configured with the address of a registrar server to which it sends a REGISTER request upon startup.
Requests are processed in the order received. Clients SHOULD avoid sending a new registration (as
opposed to a retransmission) until they have received the response from the server for the previous
one.

The meaning of the REGISTER request-header fields is defined as follows. We define
"address-of-record” as the SIP address that the registry knows the registrand, typically of the form
"user@domain” rather than "user@host". In third-party registration, the entity issuing the request is
different from the entity being registered.

To: The To header field contains the address-of-record whose registration is to be created or updated.
From: The From header field contains the address-of-record of the person responsible for the
registration. For first-party registration, it is identical to the To header field value.

Response:

After receiving and interpreting a request message, the recipient responds with a SIP response
message. The response message format is shown below:

Response = Status-Line *( general-header | response-header | entity-header ) CRLF [ message-body

]

Status-Line = SIP-version SP Status-Code SP Reason-Phrase CRLF

Status-Code = Informational | Success | Redirection | Client-Error | Server-Error | Global-Failure |
extension-code



extension-code = 3DIGIT
Reason-Phrase = *<TEXT-UTFS8, excluding CR, LF>

Ixx:

Informational -- request received, continuing to process the request;
2XX:

Success -- the action was successfully received, understood, and accepted;
3xXX:

Redirection -- further action needs to be taken in order to complete the request;
4xX:

Client Error -- the request contains bad syntax or cannot be fulfilled at this server;
5xx:

Server Error -- the server failed to fulfill an apparently valid request;
6xx:

Global Failure -- the request cannot be fulfilled at any server.

SIP response codes are extensible. SIP applications are not required to understand the meaning of all
registered response codes, though such understanding is obviously desirable. However, applications
must understand the class of any response code, as indicated by the first digit, and treat any
unrecognized response as being equivalent to the x00 response code of that class, with the exception
that an unrecognized response must not be cached.

SIP-MESSAGE

Both Request and Response messages use the generic-message format of RFC 822 for transferring
entities (the body of the message). Both types of messages consist of a start-line, one or more header
fields (also known as "headers"), an empty line (i.e., a line with nothing preceding the carriage-return
line-feed (CRLF)) indicating the end of the header fields, and an optional message-body.

generic-message = start-line *message-header CRLF [ message-body ]

start-line = Request-Line | Status-Line

message-header = ( general-header | request-header | response-header | entity-header




= Accept | Accept-Encoding | Accept-Language | Call-ID | Contact | CSeq | Diate |

general-header Encryption | Expires | From | Record-Route | Timestamp | To | Via

entity-header = Content-Encoding | Content-Length | Content-Type

= Authorisation | Contact | Hide | Max-Forwards | Organization | Priority |
request-header| Proxy-Authorisation | Proxy-Require | Route | Require | Response-Key | Subjéct |
User-Agent

response-header Allow | Proxy-Authenticate | Retry-After | Server | Unsupported | Warning |
P “WwWw-Authenticate

SIP-URL

A SIP URL follows the guidelines of RFC 2396 and has the syntax shown below.It is described using
Augmented Backus-Naur Form. Note that reserved characters have to be escaped and that the "set of
characters reserved within any given URI component is defined by that component. In general, a
character is reserved if the semantics of the URI changes if the character is replaced with its escaped
US-ASCII encoding".

SIP-URL = "sip:" [ userinfo "@" ] hostport url-parameters [ headers ]
userinfo = user [ ":" password ]

user = *(unreserved | escaped | "&" | "=" | "+" | "$" | ",")
password = *(unreserved | escaped | "&" | "="|"+" | "$"|",")
hostport =host [ ":" port ]

host = hostname | IPv4address

hosthame = *( domainlabel "." ) toplabel [ "." ]

domainlabel = alphanum | alphanum *( alphanum | "-" ) alphanum
toplabel = alpha | alpha *( alphanum | "-" ) alphanum

IPv4address = 1*digit "." 1*digit "." 1*digit "." 1*digit

port = *digit

url-parameters =*(";" url-parameter)

url-parameter ;t:]r:rrjzzcr);tr—nparam | user-param | method-param | ttl-param | maddr-param ||
ttl-param = "ttlI="ttl




ttl

= 1*3DIGIT ; 0to 255

transport-param

= "transport="( "udp" | "tcp" )

maddr-param

= "maddr=" host

user-param

= "user=" ( "phone" | "ip")

method-param

"method=" Method

tag-param

"tag=" UUID

uuID

= 1% hex | ")

other-param

= (token | (token "=" ( token | quoted-string )))

headers ="?" header *( "&" header)

header = hname "=" hvalue

hname = 1*uric

hvalue = *uric

uric = reserved | unreserved | escaped

reserved e I A I B B o R I A Il Bl I
digits = 1*DIGIT

telephone-subscribe

r = global-phone-number | local-phone-number

global-phone-numbe

r ="+" 1*phonedigit [isdn-subaddress] [post-dial]

local-phone-number

= 1*(phonedigit | dtmf-digit | pause-character) [isdn-subaddress] [post-di

isdn-subaddress

";isub=" 1*phonedigit

post-dial

= ";postd=" 1*(phonedigit | dtmf-digit | pause-character)

phonedigit

= DIGIT | visual-separator

visual-separator

_qunn

pause-character

= one-second-pause | wait-for-dial-tone

one-second-pause

="p

wait-for-dial-tone

w

dtmf-digit

= " g AT | YB" | "C" | D"

]

used keywords



	
	
	
	Basic Call Flow
	Call Forward On Busy
	Forwarded on No Answer
	Layers
	Messaging:
	Text based
	ABNF
	UTF-8:
	ISO 10646:
	UDP:
	ABNF:




