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ABSTRACT

In this paper, we present a new method to de-noise speech
in the complex spectral domain. The method is derived from
kernel principal component analysis (kPCA). Instead of ap-
plying PCA in a high-dimensional feature space and then go-
ing back to the original input space by using a solution to
the pre-image problem, only the pre-image step is applied for
de-noising. We show that the de-noised audio sample is a
convex combination of the noisy input data and that the re-
sulting algorithm is closely related to the soft k-means algo-
rithm. Compared to kPCA, this method reduces the compu-
tational costs while the audio quality is similar and speech
quality measures do not degrade.

Index Terms— Speech enhancement, kernel PCA, pre-
image problem

1. INTRODUCTION

Subspace methods, one class of speech enhancement algo-
rithms, are based on the assumption that the noisy speech
signal lives in a signal space that can be separated in a speech
plus noise and in a noise subspace. For de-noising, sub-
space methods try to retrieve the components only living in
the speech (plus noise) subspace, with additional filtering
to attenuate the noise components. This is usually done by
the application of the principal component analysis (PCA) or
equivalently the Karhunen-Loève-transform (KLT). Subspace
methods have been developed for white [1] and colored noise
[2].

Recently, we used kernel PCA, which is a non-linear ex-
tension to PCA, for speech de-noising [3]. Our approach,
however, differs from the standard PCA approaches in sev-
eral points. We apply kernel PCA on feature vectors extracted
from the complex coefficients of the short-term Fourier trans-
form (STFT) while standard PCA is applied in the time do-
main. Furthermore, standard PCA uses the covariance matrix
and kernel PCA is applied on the kernel matrix. Complex-
valued data can be easily handled by using a Gaussian kernel.
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Kernel PCA implicitly performs a non-linear transforma-
tion of the data to a higher-dimensional feature space, where
PCA is executed. For speech de-noising the data has to be
transformed back to input space to get the de-noised audio
samples. This inverse transformation is not straight-forward.
Several solutions have been proposed to solve this so-called
pre-image problem. For Gaussian kernels, the solution is
commonly computed iteratively. The de-noised sample is
determined as weighted sum of noisy samples where the
weights depend on the kPCA and the kernel [4]. This pre-
image method can be refined by additional normalization [5]
or by regularization [6].

Previous experiments on synthetic data and real audio
data have shown that the applied pre-image method can cru-
cially influence the outcome of the de-noising process [7].
In this paper, we go one step beyond: We drop the kPCA
altogether and only rely on the pre-image method to de-noise
speech.

This paper is organized as follows: Section 2 describes
the motivation and the implementation of our approach. Sec-
tion 3 presents the experiments, the evaluation and the results.
Section 4 concludes the paper.

2. FROM KERNEL PCA TO PRE-IMAGE
DE-NOISING

Principal component analysis decomposes data into compo-
nents assigned to different directions in the transformation
space according to their variance. Decomposition is done by
eigenvalue decomposition (EVD) of the covariance matrix,
where the eigenvectors span the transformation space and the
eigenvalues indicate the amount of variance in each direction.
For de-noising, components into directions of small variance
are assumed to contain information about noise only. There-
fore, they are neglected and the data is projected onto the
eigenvectors corresponding to the largest eigenvalues. The
number of projection components determines the degree of
de-noising.

We empirically observed that the number of used com-
ponents had only a minor, almost no, effect on the outcome
of the de-noising process when using kPCA on spectral data.



The de-noising quality was rather the same whether projec-
tion was performed on one or more components. However,
besides the chosen variance of the kernel, the applied pre-
image method heavily influenced the results [7]. Therefore,
we further investigated the contribution of the projection and
the pre-image reconstruction on the de-noising process.

When a Gaussian kernel is used, the pre-image z of a sam-
ple in feature space Φ(z) can be computed iteratively by

zt+1 =
∑M
i=1 γik(zt,xi)xi∑M
i=1 γik(zt,xi)

, (1)

where γi are the weighting coefficients derived from the pro-
jection of the kPCA,

k(xi,xj) = exp(−‖xi − xj‖2/c) (2)

is the Gaussian kernel with its variance c, t denotes the iter-
ation index, and M is the number of samples. (For more de-
tails see [4, 5, 6].) Note that the pre-image is always a linear
combination of the (noisy) input samples xi. The Gaussian
kernel serves as similarity measure between two samples. If
the samples are equal, it is one, if they are very distinct, it is
close to zero. The variance c is used as parameter to define
the extent to which samples are judged to be similar. In [3],
we initialize z0 to the noisy sample x0 and iterate (1) until
convergence.

Since the influence of the number of components is only
minor, we neglect the weighting coefficients γi, i.e., set them
to one, and compute the preimage z – the de-noised sample
– by a linear combination of noisy samples that only depends
on the kernel function. As no EVD for the kPCA has to be
computed the computational costs are reduced. The applied
equation can be reformulated as

zt+1 =
M∑
i=1

k̃(zt,xi)xi, (3)

where

k̃(zt,xi) =
k(zt,xi)∑M
j=1 k(zt,xj)

. (4)

As the kernel function can only take values between zero and
one, k̃(., .) is also constrained to values within the interval
[0, 1]. Furthermore it is normalized such that

∑M
i=1 k̃(zt,xi) =

1. Due to these constraints, the pre-image z can be seen as a
convex combination of the training samples xi [8]. In other
words the de-noised sample lies in a convex hull spanned by
the noisy samples.

Another interesting aspect of this approach is its close re-
lation to the soft k-means algorithm [9]. The soft k-means
algorithm is used for clustering. The mean of one cluster is
defined as

mk =

∑M
i=1

exp(−βd(mk,xi))
Ni

xn∑M
i=1

exp(−βd(mk,xi),)
Ni

(5)
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Fig. 1. Spectral detail of the clean utterance /t a sh e/. Left
hand side: Extraction of frequency bands with hopsize 4.
Right hand side: Extraction of 12 × 12 patches with hopsize
2 within a frequency band.

where

Ni =
K∑
l=1

exp(−βd(ml,xi)). (6)

d(ml,xi) is the distance between the two points ml and xi,
β is the so-called stiffness parameter and K is the number of
clusters. When the squared Euclidean distance is used, the
exponential term is equivalent to the Gaussian kernel, where
c = 1/β. So the soft k-means update of the cluster mean
is the same as the update of the pre-image z apart from the
normalization factor Ni, (which is different for every xi).

Besides the proposed pre-image iteration we extended (1)
with an additional regularization [6], that simplifies to

zt+1 =
2
c

∑M
i=1 k(zt,xi)xi + λx0

2
c

∑M
i=1 k(zt,xi) + λ

(7)

when the weighting coefficients γi are neglected. Here, λ is
the regularization parameter which determines the trade-off
between the noisy sample x0 (of which the pre-image should
be found) and the convex combination.

3. EXPERIMENTS

In the previous application of kernel PCA for speech enhance-
ment we extracted the feature vectors from the sequence of
STFT coefficients. For the experiments using only the pre-
image iteration we used the same features. First the STFT
is computed with a frame length of 256 samples, an over-
lap of 50% and the application of a Hamming window. The
resulting time-frequency representation is split on the time
axis to reduce computational cost, and on the frequency axis
to compensate for different energy levels (see Figure 1, left
side). The retrieved frequency bands are split into overlapping
patches of size 12 × 12 with overlap 11 (see Figure 1, right
side). The height of the frequency bands is chosen to equal 8
patches with an overlap of 4 patches between adjacent bands.
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Fig. 2. Comparison of the pre-image iteration method
(Pre-image) to kernel PCA (kPCA), kernel PCA with com-
bined pre-imaging (kPCA co.), linear PCA (lin. PCA), and
spectral subtraction (SpecSub) using the perceptual evalua-
tion of speech quality (PESQ) measure, the log-likelihood
ration (LLR), and the frequency-weighted segmental SNR
(fwsegSNR). For the kPCA and the pre-image implementa-
tion the values for c are 3, 2, 0.5, and 0.25 for 2.5, 5, 10, and
15 dB SNR, respectively. The regularization parameter λ is
set to 0.5 for the pre-image method.

This configuration of patches and bands led to good results in
previous work [3]. In previous experiments, windowing of the
patches was beneficial, so a 2D Hamming window is applied
and then the patches are rearranged to vectors. These vectors
are used for the pre-image method, that is applied on each fre-
quency band independently, i.e., all pre-image estimates are
only based on linear combinations of samples retrieved from
the same frequency band.

For resynthesis, patches at the same time frequency po-
sition but from overlapping frequency bands are averaged.
Patches are rearranged using the overlap-add method with
weighting as described in [10] generalized for the 2D do-
main. The overlapping time segments are averaged, the in-
verse Fourier transform is applied and the audio signal is syn-
thesized with the weighted overlap-add method [10].

The method relying on the pre-image iteration only was
compared to previous results in [3] using the kernel PCA and
the pre-image method of [5] (called kPCA) and another im-
plementation using a combination of pre-image methods [7]
(labeled as kPCA co.). The first approach suffers from a buzz-
like artifact that could be significantly reduced by the second
approach. The major advantage of both approaches is that
they are free from musical noise. The enhanced signal of
the approach presented in this paper sounds very similar to
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Fig. 3. Comparison of the pre-image iteration method (Pre-
image) to kernel PCA (kPCA), kernel PCA with combined
pre-imaging (kPCA co.), linear PCA (lin. PCA), and spec-
tral subtraction (SpecSub) using a variant of the frequency-
weighted segmental SNR that separately evaluates the speech
quality (SIG), the background intrusion (BAK), and the over-
all quality (OVL).

kPCA co. but is computationally more efficient.1 It is faster
by a factor of 1.5. For additive white Gaussian noise of 10 dB
SNR almost no difference can be heard. Visual inspection of
the spectrogram revealed that the new approach has a slightly
higher low pass behavior and that a little more residual noise
is left. With additional regularization in (7) (see [6]), the au-
dio signal sounds similar as without regularization but with
slightly more background noise that changes with the value
of λ.

In the following, we evaluated the new approach on a
database consisting of recordings from six speakers (3 male,
3 female). Each uttered 20 sentences which leads to 120 sen-
tences in total. Recording was performed with a close-talk
microphone and 16kHz sampling frequency. White Gaussian
noise was added at 2.5, 5, 10, and 15 dB SNR. For evaluation,
we used speech quality measures that were reported to have
high correlation with results of subjective listening tests [11].
The used measures are: the perceptual evaluation of speech
quality measures (PESQ), the log-likelihood ratio (LLR), the
frequency-weighted segmental SNR (fwsegSNR), and a vari-
ant of the frequency-weighted segmental SNR (fwsegSNR-
var), that separately evaluates the signal quality (SIG), the
background intrusion (BAK), and the overall quality (OVL).

In addition, we compared our algorithm to the linear PCA
method (lin. PCA) of Hu and Loizou [2] and with spectral
subtraction (SpecSub) as described in [12] and provided in

1Audio examples are provided on http://www2.spsc.
tugraz.at/people/chrisl/audio/.



[13]. We found that the method with regularization in (7)
scores significantly better than (3), so experiments are limited
to this approach. Fig. 2 and 3 show the performance results in
terms of PESQ, LLR, fwsegSNR, and fwsegSNRvar. It can be
seen that the results of the kernel PCA related algorithms lie
in the range of the results achieved by linear PCA and spec-
tral subtraction. The pre-image iteration with regularization
achieves similar results as the kPCA approaches, although the
used resources are significantly reduced. This outcome sup-
ports the conjecture that when using complex spectral data
the projection in kPCA is of minor importance and that the
main contribution for de-noising stems from the pre-image it-
eration, i.e. the convex combination of noisy samples, as well
as averaging effects due to the feature extraction approach.

4. CONCLUSION AND FUTURE WORK

In this paper, we derived a new method for speech de-noising
from kernel PCA that is applied in the spectral domain. Ker-
nel PCA is equivalent to PCA applied in a high-dimensional
feature space using a non-linear mapping. The problem of in-
verse transformation that is necessary for de-noising is known
as the pre-image problem. We showed that solutions to this
problem can be also used for speech de-noising even when the
information from kPCA, namely the projection coefficients, is
neglected.

The de-noised samples of the new algorithm are convex
combinations of the noisy samples, in other words they lie
in the convex hull spanned by the noisy samples. This is in-
tuitively meaningful as vectors that live in a region spanned
by speech vectors are likely to represent speech vectors as
well. Furthermore, this algorithm is closely related to the
soft k-means algorithm. This leads to the interpretation that
the noise is averaged out by forming a linear combination of
noisy samples.

The method was tested on audio data corrupted by addi-
tive white Gaussian noise at different SNRs. The audio qual-
ity is similar to results from a previous kernel PCA imple-
mentation, however, the computation is faster by a factor of
1.5. For evaluation, speech quality measures were computed
and compared to other kPCA implementations, standard PCA
and spectral subtraction. With the proposed method, similar
results are achieved, however, it is not affected by musical
noise, as is the case for linear PCA and spectral subtraction.

In future, we plan to evaluate several modifications related
to the pre-image iteration approach. First, we want to test
whether an additional processing of the samples used for the
convex combination, such as smoothing, improves the result.
Second, we aim to evaluate a supervised method where the
de-noised samples are constructed from clean speech samples
from a database. For this method, the speaker identity has to
be known and clean speech has to be available.

As objective quality measures cannot fully replace a sub-
jective evaluation, we plan to do a subjective listening test.

Furthermore, we want to extend the experiments to scenar-
ios with different noise types such as babble noise and per-
form experiments on a publicly available database like the
NOIZEUS database.
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