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Abstract

In this paper, we introduce a novel pitch tracking database
(PTDB) includingground truthsignals obtained from a laryn-
gograph. The database, referenced as PTDB-TUG, consists of
2342phonetically richsentences taken from the TIMIT corpus.
Each sentence was at least recorded once by a male and a fe-
male native speaker. In total, the database contains 4720 record-
ings from 10 male and 10 female speakers. Furthermore, we
evaluated two multipitch tracking systems on a subset of speak-
ers to provide a benchmark for further research activities.The
database can be downloaded at http://www.spsc.tugraz.at/tools.
Index Terms: pitch tracking database, multipitch tracking

1. Introduction
The estimation of pitch is important for a number of speech
applications such as prosody analysis, speech coding, speaker
identification, speech enhancement, or speech recognition–
particularly for tonal languages. Over the last decades, many
different algorithms for pitch tracking have been proposed,
where the best performing algorithms for single pitch estima-
tion are YIN [1] and RAPT [2]. The termpitch is usually used
in psychoacoustics to describe a perceptual quality. Thefun-
damental frequencywhich denotes the inverse of the smallest
period of a quasi-periodic speech signal often correspondsto
the perceived pitch, however perceptual phenomena, e.g. pitch
doubling, can only be explained sufficiently in the field of psy-
choacoustics. Since in most of the literature the term pitchis
used for the fundamental frequency, we also maintain this tra-
dition within this article.

There are two databases available, namely the Mocha-
TIMIT [3] and the Keele [4] corpus, which also include laryn-
gograph recordings of the spoken utterances. The Mocha-
TIMIT data consists of 460 English sentences from a male and
a female speaker sampled at 16kHz. The Keele corpus consists
of five male and five female speakers reading the same phonet-
ically balanced text of about 40 seconds duration.

In [5], we developed a fully probabilistic model for multi-
pitch tracking which includes a speaker interaction model and
a factorial hidden Markov model (FHMM). Details about the
model are provided in Section 3. All parameters of the model
can be learned from data either in a speaker dependent (SD) or
a speaker independent (SI) fashion. SD modeling means that in
case of known speaker identities and available training material
we can learn the models specifically for those speakers. Learn-
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ing this FHMM model using SD or SI data in a statistically ro-
bust manner requires both, sufficiently available trainingdata
and recordings from many individuals. Both existing databases
are lacking in these aspects, i.e. Mocha-TIMIT provides data
for only two speakers, whereas the Keele corpus is restricted in
the amount of data provided for each speaker.

In this paper, we introduce a new corpus, called PTDB-
TUG, composed of 2342 phonetically rich English sentences
taken from the TIMIT corpus. Each utterance was recorded
at least once by a male and a female speaker. The database
contains 4720 audio and laryngograph recordings. The refer-
ence pitch values were extracted from the laryngograph record-
ings using the RAPT method [2]. Beforeground truthex-
traction a Kaiser high pass filter is applied to the raw laryn-
gograph signals to remove artefacts caused by larynx move-
ment. Additionally, we provide a comparison of two state-of-
the-art multipitch tracking algorithms using a subset of speak-
ers of PTDB-TUG. The algorithms are our probabilistic ap-
proach based on FHMMs and speaker interaction models [5]
and the method of Wu et al. [6] which is based on the audi-
tory model of pitch perception using correlograms. The SD op-
timized FHMM-based approach significantly outperforms the
correlogram-based method. Speaker independent FHMMs are
only slightly better compared to [6]. Similar observationshave
been reported for other datasets in [5]. In particular, the main
difference between both methods is that SD information can be
easily incorporated which improves the speaker assignmentof
the pitch trajectories.

The paper is organized as follows: Section 2 outlines the
specification of the PTDB-TUG corpus including the recording
setup and post-processing. In Section 3, we compare two multi-
pitch tracking approaches on a subset of speakers from PTDB-
TUG. Section 4 concludes the paper.

2. PTDB-TUG Corpus
Due to the above mentioned limitations of Mocha-TIMIT and
the Keele corpus, we decided to record a larger dataset includ-
ing ∼230 utterances from each of the 20 individuals. In the
following, we outline the technical specifications, the recording
setup, the post-processing, and availability information. Further
details can be found in [7].

2.1. Specifications

The PTDB-TUG contains the audio recordings and laryngo-
graph signals of 20 English native speakers – 10 female and
10 male speakers – as well as the extracted pitch tracks as a
reference. The text material consists of 2342 phoneticallyrich
sentences, which are taken from the TIMIT corpus [8]. Each
sentence was read at least once by both a female and a male



speaker. In total this database consists of 4720 recorded utter-
ances. Details about the speakers (age, mother tongue, home
country) are provided in [7].

The TIMIT corpus consists of two dialect sentences (la-
beled assa), 450 phonetically-compact sentences (labeled as
sx), and 1890 phonetically-diverse sentences (labeled assi). Ta-
ble 1 illustrates the distribution of these sentences amongspeak-
ers in PTDB-TUG. The twosasentences were read by all 20
speakers. Additionally, each speaker read 45 of thesxsentences
and 189 of thesi sentences. Each sentence was spoken by at
least one female and one male speaker.

Sentence type sa sx si Total

# sentences 2 450 1890 2342
# speakers / sentence 20 1 M + 1 F 1 M + 1 F

Total # utterances 40 900 3780 4720
# sentences / speaker 2 45 189 236

Table 1: Distribution ofsa, sx, andsi sentences among the male
(M) and female (F) speakers for the PTDB-TUG corpus.

2.2. Recording Setup

In order to produce high quality recordings in a defined acous-
tical environment with the possibility to control and modify
this process immediately, the appropriate setup for this speech
corpus was a supervised on-site recording in a recording stu-
dio. The studio room was equipped with two seats and screens
for the supervisor and the speaker separated by an absorbing
wall to reduce the background noise. The supervisor controlled
and monitored the recording procedure with the help of the
recording softwareSpeechRecorder[9] and headphones. The
uttered sentences were recorded with a headset. Additionally,
the speaker had to carry a neck band with the laryngograph elec-
trodes. The test persons had to speak the sentences displayed on
the screen. Both, microphone signals and laryngograph signals,
were sampled at 48 kHz with 16 bit resolution.

2.3. Post-processing

The database contains the recorded signals from the micro-
phone and the laryngograph. Furthermore, we provide ex-
tracted reference pitch trajectories from the laryngograph sig-
nals. However, users of the database may also derive their own
reference signals from the raw laryngograph data. The laryn-
gograph signals exhibit high frequency oscillations whichare
directly linked to the vocal folds vibrations. However, lowfre-
quency disturbances are present too which are mainly caused
by the vertical movement of the larynx. We decided to filter
the raw laryngograph signals with a high pass filter in order to
suppress these artifacts during extraction of the reference sig-
nals using the RAPT method [2]. Empirically we observed that
a Kaiser filter with a cut-off frequency of 25Hz and 15Hz for
females and males, respectively, is sufficient to remove thelow
frequency components from the larynx movement.

2.4. Corpus Validation and Availability

The database was validated by an external validator who was
not involved in the specification and recording process. The
validation included inspection of the signal files with respect to
format, sound length, clipping, and DC offset. Furthermore, a
small set of randomly chosen transcriptions ( 1%) was manually

compared with their corresponding signal files for accuracyand
completeness. The PDTB-TUG database and documentation is
available for download at http://www.spsc.tugraz.at/tools.

3. Multipitch Tracking
Multipitch tracking estimates the pitch of multiple concurrent
speakers. A potential application is single channel speechsepa-
ration [5] or automatic transcription of music. We evaluatetwo
multipitch tracking algorithms on a subset of speakers provided
in PTDB-TUG. In the following, we shortly summarize both
tracking approaches.

3.1. Correlogram-based Algorithm

This method is based on the unitary model of pitch percep-
tion [10]. Wu et al. [6] introduced several improvements which
results in a probabilistic representation of the periodicities in
the signal. First, the input signal is decomposed into 128 sub-
bands using a gammatone filterbank, and the amplitude enve-
lope is extracted for high-frequency channels (center frequency
above 800 Hz). The normalized autocorrelation function is de-
termined framewise on each channel. Furthermore, channels
with unreliable periodicity because of noise are removed. Low-
frequency channels are selected in cases where the maximum
peak at nonzero lags is above a threshold. High-frequency chan-
nels are selected if the periodicity information is consistent with
the autocorrelation at a larger time frame. Additionally, apeak
selection routine is applied. Finally, the set of peaks selected
from all channels serves as basis for a probabilistic represen-
tation of zero, one or two pitch periodicity values at each time
frame. Basically, a likelihood of pitch periodicities under the
given observation for the hypothesis of one and two pitch values
is determined. Subsequently, these likelihoods are modeled by
a hidden Markov model which leads to semi-continuous pitch
trajectories. This model is able to provide an excellent perfor-
mance in terms of pitch estimation accuracy, however, the as-
signment of speakers to the pitch estimates is inaccurate, i.e. it
is not possible to correctly link each pitch estimate to its source
speaker.

3.2. FHMM-based Algorithm

In [5], we proposed to use a statistical model using speech mix-
ture spectograms as observations. This approach is quite differ-
ent from the auditory-based methods as proposed above [6]. We
do not require any heuristics such as peak or channel selection.
These are implicitly included in the statistical model. However,
we do need to parameterize this model, i.e. we have to learn the
parameters using training data. The specification of the model
parameters can be done either in SD or SI manner. Our multip-
itch tracking method consists of the following modules:
1) Gaussian mixture models (GMMs) are used to model the
spectrogram of each single speaker. The number of Gaus-
sian components is determined using the minimum description
length (MDL) criterion. GMMs can be either trained on a large
set of different speakers, or if prior knowledge about the speaker
identities is available, the GMMs can be optimized for single
speaker data. This results in SI or SD models, respectively.In
Section 3.3, we provide results for both, SI and SD models.
SD models are usually more accurate and offer the advantage
of correct assignment of pitch trajectories to the corresponding
speakers. This is important for e.g. single-channel speechsep-
aration.
2) We use the MIXMAX speaker interaction model [11] to ob-



tain a probabilistic representation of the observed speechmix-
ture of both speakers. The fundamental assumption of the MIX-
MAX model is that speech is sparse in time-frequency repre-
sentations, i.e. each particular time-frequency bin of a speech
mixture spectrogram is dominated by one speaker. Hence, the
log-spectrum of two speakers can be approximated by the el-
ementwise maximum of two single speaker log-spectra. This
MIXMAX model is related to the concept of binary masks in
computational auditory scene analysis (CASA) [12]. In [5],an
alternative linear interaction model is also considered.
3) The statistical speaker interaction model for the speech mix-
ture is used within the framework of FHMMs [13]. FHMMs
enable tracking the pitch trajectories of both speakers. Each
hidden Markov process of the FHMM models the pitch trajec-
tory of a particular speaker, where the available observations are
considered as a joint effect of all individual Markov processes.
The explicit factorial nature among the various Markov chains
allows to use more efficient inference algorithms compared to
an equivalent HMM. Here, we use exact inference mechanisms
to extract the pitch trajectories.

Recently, we significantly improved the computational effi-
ciency of FHMM-based multipitch tracking [14]. We show that
the tracking performance is almost unaffected when discarding
up to 99.5% of the smallest likelihood values in the observation
model. Following this observation, we proposed two methods
to efficiently find the largest likelihood entries. This results in
significant time savings for likelihood computation as wellas
for tracking by making use of sparse likelihood matrices.

3.3. Results on PTDB-TUG

We evaluate both algorithms, i.e. the correlogram-based and the
FHMM-based approaches (abbreviated as CORR and FHMM,
respectively), in terms of tracking performance. We selected
two male speakers (M04 and M10) and two female speakers
(F01, F07) from the set of 20 speakers. For each speaker we
select 224 utterances from thesx andsi sentences to train the
speaker dependent FHMM model, whereas the remaining 10
sentences were used for performance evaluation. Since speech
mixtures for each speaker pair (male-male, male-female, and
female-female) and utterance are produced, we have in total
600 test mixtures (i.e. 100 mixtures for each of the six speaker
pairs). The speakers are mixed at 0dB signal-to-signal ratio.
The reference pitch trajectories are extracted as described in
Section 2.3. Speaker independent FHMM models are optimized
on all sentences of the following speakers: M01, M05, M06,
M07, M08, M09 F02, F04, F05, F06, F08 and F10. The test
mixtures remain the same as for the speaker dependent case.
Furthermore, long silence intervals at the beginning and the end
of the utterances have been removed, i.e. the utterances arecut
at 70ms before the first and 70ms after the last occurrence of
pitch values.

The correlogram-based approach requires as input the
speech mixture in time-domain, whereas the FHMM-based
method relies on the log-spectrogramy of the speech mixture.
First, we resample the signals of the database to a sampling rate
of 16kHz and compute a log-spectrogram using a 1024-sample
FFT of 32ms Hamming windowed segments and a 10ms step
size. Each observation vector is composed as magnitude of the
spectral bins 2-65, which corresponds to a frequency range up to
1000 Hz. During tracking we use the likelihood pruning mech-
anisms as proposed in [14].

We measure the performance of both algorithms in terms of
the error measurēETotal which also accounts for speaker as-

signment errors. This measure slightly deviates from the error
measure proposed in [6]. Each of the two estimated pitch trajec-
toriesf̃1

0 [t] andf̃2

0 [t] is assigned to the reference trajectory pro-
vided in the database, i.e.f1

0 [t] or f2

0 [t]. Basically, there are two

assignments possible, either
(

f̃1

0 [t] → f1

0 [t]; f̃
2

0 [t] → f2

0 [t]
)

or
(

f̃1

0 [t] → f2

0 [t]; f̃
2

0 [t] → f1

0 [t]
)

. We select the assignment

with the smaller quadratic error over all time instances. Note
that this assignment is performed globally and not locally for
each individual time frame.

The total error is composed as̄ETotal = E01+E02+E10+
E12 +E20+E21+ ĒGross+ ĒFine + ĒPerm, whereEij de-
notes the percentage of time frames, wherei ∈ {0, 1, 2} pitch
points are missclassified asj ∈ {0, 1, 2} pitch points,i 6= j.
ĒPerm measures the percentage of frames, where the voicing
decision is correct, but the pitch values are not assigned tothe
correct speakers.̄EGross is the percentage of frames with cor-
rect voicing decision and no permutation error, where at least
one detected pitch value deviates more than20% from the ref-
erence. The frequency deviation is determined as

∆f
i
0[t] =

|f̃ i
0[t]− f i

0[t]|

f i
0
[t]

.

ĒFine is composed of̄E1

Fine+Ē2

Fine, whereĒi
F ine repre-

sents the frequency deviation for speakeri in percent, averaged
over frames where no voicing, no gross and no permutation er-
rors are present.

Figure 1 shows the total error̄ETotal and its standard devi-
ation for each speaker pair on all 600 test speech mixtures for
CORR, speaker independent FHMMs, and speaker dependent
FHMMs, respectively. Thex-axis represents the corresponding
speaker pairs.
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Figure 1: Total error for each speaker pair of 600 test speech
mixtures using correlogram-based multipitch tracking (CORR)
and speaker dependent and independent FHMM-based multip-
itch tracking (SD-FHMM and SI-FHMM, respectively).

SI FHMMs slightly outperform CORR on most speaker
pairs. Speaker dependent FHMMs have a significantly lower
ĒTotal compared to CORR. Looking at individual speech mix-
ture examples (one example is shown in Figure 2) it turns out
that the main factor for the superior FHMM-based multipitch
tracking performance is an improved speaker assignment forthe
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Figure 2: Tracking example for a speech mixture; (i) Log-spectrogram of speech mixture with reference pitch trajectories; (ii) Estimated
pitch trajectories with reference using SD-FHMMs (ĒTotal = 9.9677); (iii) Estimated pitch trajectories with reference usingSI-
FHMMs (ĒTotal = 24.0397); (iv) Estimated pitch trajectories with reference using CORR (ĒTotal = 28.5585).

respective pitch trajectories. This was already observed for dif-
ferent datasets in [5]. One advantage of CORR is that it can be
applied to a test speech mixture without any training phase.The
FHMM-based models require parameter learning.

4. Conclusions
We introduced a new pitch tracking corpus containing 4720 au-
dio and laryngograph recordings from 10 male and 10 female
speakers. Existing databases either do not have a sufficientva-
riety of speakers or do not contain enough recorded materialper
speaker for serious training. Furthermore, we provide reference
pitch tracks extracted from the laryngograph recordings.

Additionally, we apply two multipitch tracking approaches
on a subset of speakers from PTDB-TUG. The probabilistic ap-
proach based on FHMMs and speaker interaction models can
be learned on speaker dependent (SD) and speaker independent
(SI) data whereas the correlogram-based approach does not re-
quire any training. The SI FHMM approach is slightly better
that the correlogram-based method. The SD optimized FHMM-
based method significantly outperforms both approaches. Simi-
lar observations for other datasets are reported in [5]. Themain
benefit of the SD-FHMM-based method is that it improves the
speaker assignment of the pitch trajectories.

In future, we aim to adapt speaker independent FHMM-
based models to speaker specific characteristics during multip-
itch tracking in an expectation-maximization-like manner.
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