

Graphical Models

Franz Pernkopf

Signal Processing and Speech Communication Laboratory Graz University of Technology Austria

Outline

Introduction

Representations

Directed GMs Undirected GMs Factor Graphs

Graphical Models (GMs)

"Graphical models are a marriage between probability theory and graph theory. They provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering – uncertainty and complexity – ..." [Jordan, 1999]

Directed GMs

Directed GMs: Bayesian networks

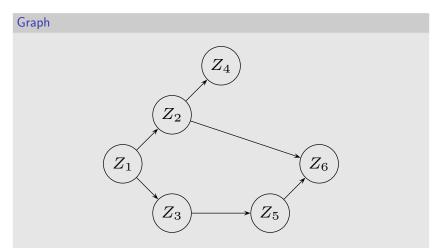
- ▶ Represent a joint distribution P over some set of random variables Z = {Z₁,..., Z_N}.
- Explicit representation of *P* is hard.
- ▶ A Bayesian network is a directed acyclic graph $\mathcal{G} = (\mathbf{Z}, \mathbf{E})$ which represents factorization properties of the distribution.
- Each node Z_j is represented as conditional distribution given its parents Z_{Π_j} , i.e. $p(Z_j|Z_{\Pi_j})$.
- Joint distribution:

$$P(\mathbf{Z}) = \prod_{j=1}^{N} P(Z_j | Z_{\Pi_j})$$

Application: Hidden Markov model, expert systems, ...

Example

 $P(Z_{1:6}) = P(Z_1)P(Z_2|Z_1)P(Z_3|Z_1)P(Z_4|Z_2)P(Z_5|Z_3)P(Z_6|Z_2,Z_5)$



Conditional independence

Definition: d-separation [Pearl, 1988]

 Z_i and Z_j $(i \neq j)$ are *d*-separated if for all paths between Z_i and Z_j there is an intermediate variable Z_k $(i \neq j \neq k)$ such that

- the connection is serial or diverging and the state of Z_k is known.
- the connection is converging and neither the state of Z_k nor the state of any descendant of Z_k is known.

Canonical examples

Serial connection

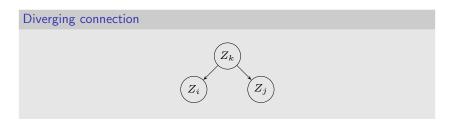
$$\overbrace{Z_i} \longrightarrow \overbrace{Z_k} \longrightarrow \overbrace{Z_j}$$

$$\triangleright Z_i \perp Z_j | Z_k$$

$$P(Z_i, Z_k, Z_j) = P(Z_i)P(Z_k|Z_i)P(Z_j|Z_k)$$

$$P(Z_j|Z_i, Z_k) = \frac{P(Z_i, Z_k, Z_j)}{P(Z_i, Z_k)} = \frac{P(Z_i)P(Z_k|Z_i)P(Z_j|Z_k)}{P(Z_i)P(Z_k|Z_i)} = P(Z_j|Z_k)$$

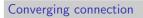
Canonical examples

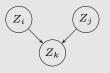


•
$$Z_i \perp Z_j | Z_k$$

• $P(Z_i, Z_k, Z_j) = P(Z_k) P(Z_i | Z_k) P(Z_j | Z_k)$
• $P(Z_j, Z_i | Z_k) = \frac{P(Z_i, Z_k, Z_j)}{P(Z_k)} = \frac{P(Z_k) P(Z_i | Z_k) P(Z_j | Z_k)}{P(Z_k)} = P(Z_i | Z_k) P(Z_j | Z_k)$

Canonical examples





$$\blacktriangleright Z_i \perp Z_j$$

$$P(Z_i, Z_k, Z_j) = P(Z_k | Z_i, Z_j) P(Z_i) P(Z_j)$$

$$P(Z_j, Z_i) = \sum_{Z_k} P(Z_i, Z_k, Z_j) = P(Z_i)P(Z_j)$$

$$P(Z_j, Z_i | Z_k) = \frac{P(Z_i, Z_k, Z_j)}{P(Z_k)} = \frac{P(Z_k | Z_i, Z_j) P(Z_i) P(Z_j)}{P(Z_k)}$$

Explaining away phenomenon

Undirected GMs

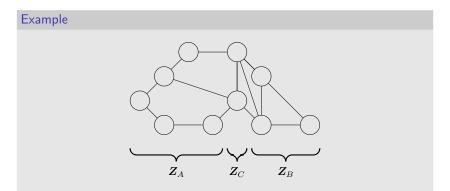
Undirected GMs: Markov networks

- ▶ Represent a joint distribution P over some set of random variables Z = {Z₁,..., Z_N}.
- A Markov network is an undirected graph $\mathcal{G} = (\mathbf{Z}, \mathbf{E})$ which represents factorization properties of the distribution.
- Application: Markov random field (image segmentation/denoising), Conditional random field, Ising model, ...

Conditional independence

Definition

Any two subsets of variables are conditionally independent given a separating subset: $Z_A \perp Z_B | Z_C$, where every path from a node in set A to a node in set B passes through set C.



Factorization of joint distribution

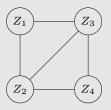
Definition: Clique

A clique C is a subset of nodes Z_C in ${\cal G}$ such that there exists an edge between all pairs of nodes in the subset.

Definition: Maximal clique

A maximal clique \tilde{C} is a clique C such that adding any other node in the graph makes it no longer a clique.

Example



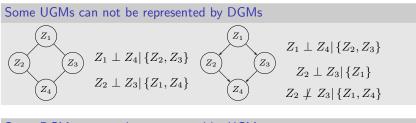
Factorization of joint distribution

▶ Joint distribution is a product of potential functions $\Psi_{\tilde{C}}(Z_{\tilde{C}})$ over maximal cliques of G

$$P(\mathbf{Z}) = \frac{1}{W} \prod_{\tilde{C}} \Psi_{\tilde{C}}(\mathbf{Z}_{\tilde{C}}).$$

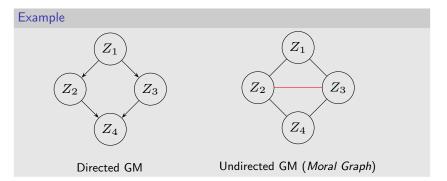
• Partition function: $W = \sum_{Z} \prod_{\tilde{C}} \Psi_{\tilde{C}}(Z_{\tilde{C}})$

Examples



Convert DGM to UGM

- Add edges between all pairs of parents of each node Z_i (moralization).
- Drop the arrows on the original edges.
- Initialize each clique potential to 1.
- Multiply each conditional distribution of the DGM into one of the clique potentials.



Factor Graphs

- Undirected GMs and directed GMs can be formulated as factor graph.
- Aim: Capturing factorizations between variables.
- A factor graph is a bipartite undirected graph.
- Consists of a set of \mathcal{F} factor nodes $F_j(\cdot) \in \mathcal{F}$ and variables nodes $\mathbf{Z} = \{Z_1, \ldots, Z_N\}.$
- Each factor $F_j(\cdot)$ depends on a subset of variable nodes $Z_j \subseteq Z$.
- Joint distribution is a product of factor nodes $F_j(\cdot)$

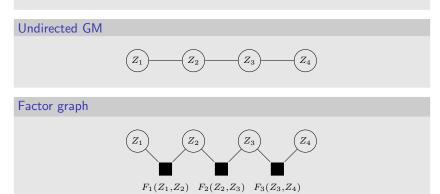
$$P(\boldsymbol{Z}) = \frac{1}{W} \prod_{j=1}^{|\mathcal{F}|} F_j(\boldsymbol{Z}_j).$$

• Normalization constant: $W = \sum_{\boldsymbol{Z}} \prod_{j=1}^{|\mathcal{F}|} F_j(\boldsymbol{Z}_j)$

Example: Markov chain

• $P(Z_{1:4}) = P(Z_1)P(Z_2|Z_1)P(Z_3|Z_2)P(Z_4|Z_3)$

Directed GM



Research challenges for GMs:

- ► Learning
- Inference

Representations

