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Introduction

Graphical Models (GMs)

“Graphical models are a marriage between probability theory and graph theory.
They provide a natural tool for dealing with two problems that occur
throughout applied mathematics and engineering – uncertainty and complexity
– ...” [Jordan, 1999]
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Representations

Directed GMs
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Representations

Directed GMs: Bayesian networks

◮ Represent a joint distribution P over some set of random variables
Z = {Z1, . . . , ZN}.

◮ Explicit representation of P is hard.

◮ A Bayesian network is a directed acyclic graph G = (Z , E) which
represents factorization properties of the distribution.

◮ Each node Zj is represented as conditional distribution given its parents
ZΠj

, i.e. p(Zj |ZΠj
).

◮ Joint distribution:

P (Z) =

N
Y

j=1

P (Zj |ZΠj
)

◮ Application: Hidden Markov model, expert systems, ...
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Representations

Example

◮ P (Z1:6) = P (Z1)P (Z2|Z1)P (Z3|Z1)P (Z4|Z2)P (Z5|Z3)P (Z6|Z2, Z5)

Graph

Z2

Z1

Z3

Z4

Z5

Z6

SPSC Lab page 6/21



Representations

Conditional independence

Definition: d-separation [Pearl, 1988]

Zi and Zj (i 6= j) are d-separated if for all paths between Zi and Zj there is
an intermediate variable Zk (i 6= j 6= k) such that

◮ the connection is serial or diverging and the state of Zk is known.

◮ the connection is converging and neither the state of Zk nor the state of
any descendant of Zk is known.
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Representations

Canonical examples

Serial connection

Zi Zk Zj

◮ Zi ⊥ Zj |Zk

◮ P (Zi, Zk, Zj) = P (Zi)P (Zk|Zi)P (Zj |Zk)

◮

P (Zj |Zi, Zk) =
P (Zi, Zk, Zj)

P (Zi, Zk)
=

P (Zi)P (Zk|Zi)P (Zj |Zk)

P (Zi)P (Zk|Zi)
= P (Zj |Zk)
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Representations

Canonical examples

Diverging connection

Zi

Zk

Zj

◮ Zi ⊥ Zj |Zk

◮ P (Zi, Zk, Zj) = P (Zk)P (Zi|Zk)P (Zj |Zk)

◮

P (Zj , Zi|Zk) =
P (Zi, Zk, Zj)

P (Zk)
=

P (Zk)P (Zi|Zk)P (Zj |Zk)

P (Zk)
= P (Zi|Zk)P (Zj |Zk)
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Representations

Canonical examples

Converging connection

Zi

Zk

Zj

◮ Zi ⊥ Zj

◮ P (Zi, Zk, Zj) = P (Zk|Zi, Zj)P (Zi)P (Zj)

◮

P (Zj , Zi) =
X

Zk

P (Zi, Zk, Zj) = P (Zi)P (Zj)

◮

P (Zj , Zi|Zk) =
P (Zi, Zk, Zj)

P (Zk)
=

P (Zk|Zi, Zj)P (Zi)P (Zj)

P (Zk)

◮ Explaining away phenomenon
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Representations

Undirected GMs
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Representations

Undirected GMs: Markov networks

◮ Represent a joint distribution P over some set of random variables
Z = {Z1, . . . , ZN}.

◮ A Markov network is an undirected graph G = (Z , E) which represents
factorization properties of the distribution.

◮ Application: Markov random field (image segmentation/denoising),
Conditional random field, Ising model, ...
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Representations

Conditional independence

Definition

Any two subsets of variables are conditionally independent given a separating
subset: ZA ⊥ ZB |ZC , where every path from a node in set A to a node in set
B passes through set C.

Example

ZA ZC ZB
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Representations

Factorization of joint distribution

Definition: Clique

A clique C is a subset of nodes ZC in G such that there exists an edge between
all pairs of nodes in the subset.

Definition: Maximal clique

A maximal clique C̃ is a clique C such that adding any other node in the graph
makes it no longer a clique.

Example

Z2

Z1 Z3

Z4
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Representations

Factorization of joint distribution

◮ Joint distribution is a product of potential functions ΨC̃(ZC̃) over
maximal cliques of G

P (Z) =
1

W

Y

C̃

ΨC̃(ZC̃).

◮ Partition function: W =
P

Z

Q

C̃
ΨC̃(ZC̃)
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Representations

Examples

Some UGMs can not be represented by DGMs

Z1

Z2 Z3

Z4

Z1 ⊥ Z4| {Z2, Z3}

Z2 ⊥ Z3| {Z1, Z4}

Z1

Z2 Z3

Z4

Z1 ⊥ Z4| {Z2, Z3}

Z2 ⊥ Z3| {Z1}

Z2 ⊥/ Z3| {Z1, Z4}

Some DGMs can not be represented by UGMs

Z1 Z2

Z3

Z1 ⊥ Z2

Z1 Z2

Z3

Z1 ⊥ Z2|Z3

SPSC Lab page 16/21



Representations

Convert DGM to UGM

◮ Add edges between all pairs of parents of each node Zi (moralization).

◮ Drop the arrows on the original edges.

◮ Initialize each clique potential to 1.

◮ Multiply each conditional distribution of the DGM into one of the clique
potentials.

Example

Z1

Z2 Z3

Z4

Directed GM

Z1

Z2 Z3

Z4

Undirected GM (Moral Graph)
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Representations

Factor Graphs
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Representations

◮ Undirected GMs and directed GMs can be formulated as factor graph.

◮ Aim: Capturing factorizations between variables.

◮ A factor graph is a bipartite undirected graph.

◮ Consists of a set of F factor nodes Fj(·) ∈ F and variables nodes
Z = {Z1, . . . , ZN}.

◮ Each factor Fj(·) depends on a subset of variable nodes Zj ⊆ Z .

◮ Joint distribution is a product of factor nodes Fj(·)

P (Z) =
1

W

|F|
Y

j=1

Fj(Zj).

◮ Normalization constant: W =
P

Z

Q|F|
j=1

Fj(Zj)
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Representations

Example: Markov chain
◮ P (Z1:4) = P (Z1)P (Z2|Z1)P (Z3|Z2)P (Z4|Z3)

Directed GM

Z1 Z2 Z3 Z4

Undirected GM

Z1 Z2 Z3 Z4

Factor graph

Z1 Z2 Z3 Z4

F1(Z1,Z2) F2(Z2,Z3) F3(Z3,Z4)
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Representations

Research challenges for GMs:

◮ Learning

◮ Inference
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Representations
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