
1 Gradient descent

Gradient descent is an iterative minimization method. The gradient of the error function always
shows in the direction of the steepest ascent of the error function. Thus, we can start with a
random weight vector and subsequently follow the negative gradient (using a learning rate η)
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Note that we will only find a local minimum, thus it is recommended to repeat the gradient
descent procedure for several random initial states.

1.1 Variants

Impulse term:

∆wt = α∆wt−1 − (1− α)η
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for 0 ≤ α ≤ 1.
Adaptive learning rate: Increase η if error has decreased, decrease η otherwise.

2 Gradient descent for neural networks: The Backpropaga-
tion algorithm

Consider a two-layer neural network with the following structure (blackboard):
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ji being the weight matrix of the hidden layer, the jth row contains all weights of
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The network has d inputs, m hidden neurons and n output neurons. The transfer function of the
network is therefore given by
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or in matrix form
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Calculating the outputs o as a function of the inputs x is also denoted as forward sweep in the
backpropagation algorithm.

2.1 Derivation via matrix derivatives (single training example)

For a single training example 〈x,y〉 the squared error function is given by
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When calculating the derivative w.r.t. the weights w(l)
i of neuron i in layer l, we can use the

chain rule to decompose the derivatives
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as sensitivity or error of neuron i in layer l and δ(l) as error vector of

layer l.
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Hence, the gradient of the error function is always given by the product of the error with the
inputs
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Output layer:
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with
H(2) =
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For a single error δ
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Hidden layer:
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For a single error δ
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j this results in the familiar recursive update equation
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This equation is known as the backwards sweep of backpropagation. Starting at the output
neurons, we calculate the error and propagate the error backwards through the network. As we
can see the iterative equations solely result from the application of the chain rule. Note that the
sum in Equation 17 goes over all error terms δ

(2)
k of the (subsequent) output layer. The weights

w
(2)
kj indicate how much neuron j in the hidden layer has contributed to the output (and hence

the error) of neuron k in the output layer.

2.2 Summary

The weight derivatives are always given by the product of the error δ(l) with the corresponding
inputs
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The error δ(l) can be calculated by:
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2.3 Additional hints

Learning rules for biases

If a neural network has additional constant inputs x0 = 1 and z0 = 1, the derivatives for the
weights w

(2)
k0 and w

(1)
j0 can also be obtained from Eq. 18 and 19, respectively.

Multiple training examples

The performed derivations apply to a single training example 〈x,y〉. For a set of N training
examples 〈xl,yl〉, l = 1 . . . N , the cost function is defined as the sum of individual costs,
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(ol − yl)T (ol − yl) , (22)

(ol denotes the output vector computed by the network for the input xl). The gradient of this
total cost function is then simply the sum of individual gradients,
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3 Practical Issues

3.1 Activation functions

For regression we typically use the sigmoid function h(1)(x) = σ(x) = 1/(1+exp(−x)) as activation
function in the hidden layer and a linear activation function in the output layer h(2)(x) = x.

For classification we can’t directly use the class labels as target values. Instead, we will use
multidimensional target vectors which are obtained from a 1 out of n coding. 1 out of n coding
returns a vector being zero everywhere except for the index of the class label, where the value is
1. For example, if we have 4 classes, and our class label is c = 3, the target vector is given by
y = [0, 0, 1, 0]T . We will again use sigmoid activation functions for the hidden and also sigmoid
activation functions for the output layer. Note that we have K output neurons, where K denotes
the number of classes.

3.2 Model Selection with Cross Validation

Suppose we want to select one model out of M models but we do NOT have a large test set to
calculate the true error of the learned functions. We could use a certain percentage of our training
data as test set, however, in order to have an accurate estimate of the error we need a large test
set. But we also do not want to waste too much of our precious training data just for testing. In
this case we can use cross validation. The principle is simple. Divide the training data into K
disjoint subsets. Now train on K − 1 subsets and test on the remaining subset. This has to be
repeated K times for all training set / test set combinations. The true error of the hypothesis is
then estimated by the average over all test set errors.

3.3 Neural network toolbox

The usage of the toolbox is very simple, we can create a neural network with newff, initialize
the network with init, train the network with train and simulate the network with sim. Consult
the online tutorial on the course website for a more detailed explanation. Note that the toolbox
requires that you provide the training data in a column matrix (i.e. each column is a training
example!).
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3.4 Normalizing the training data

We should always normalize the training data such that each dimension of the input has zero
mean and unit variance. This prevents that dimensions with a high range of values dominate the
output of the network when learning starts. In matlab we can use the mapstd function for this
normalization

• Normalize training data

[x_train_n, ps] = mapstd(x_train);

• Apply the same normalization to test set

[x_test_n] = mapstd(’apply’, x_test, ps);

• Transform into original input space

[x_train] = mapstd(’reverse’, x_train_n, ps);

3.5 Weight decay

Weight decay just denotes the usage of the regularized error function

E = 1/N
∑

i

(o(xi)− yi)2 + α
∑

j

w2
j

Again, the intuition behind this error function is to keep the weights small in order to prevent
overfitting. Hence, we can use a neural network which is too complex (too many neurons), but
regularize the network by setting α. In matlab this error function is implemented by using the
msereg performance function

net.performFcn = ’msereg’;

The exact function used by matlab is given by

E = α1/N
∑

i

(o(xi)− yi)2 + (1− α)
∑

j

w2
j ,

for 0 ≤ α ≤ 1. Hence, for α close to 1.0, no regularization is used.

3.6 Early stopping

Early stopping (ES) is another regularization method. The key idea behind ES is a simple ob-
servation: during training with gradient descent, the error on the training set always decreases,
however, the error on the test set might increase again (due to overfitting). Thus, we just stop
the training where the error on the test set has reached its minimum. Since we usually also start
the algorithm with rather small weights ES also avoids that the weights of the network grow too
large.

In matlab, ES can be easily implemented by searching for the minimum index of the test set
performance during training (the performance during training on a test set is returned by the train
function). Then we can retrain a 2nd neural network for this optimal number of epochs. Note that
the 2nd neural network has to use the same initial weights as the first, because the determined
optimal number of epochs is just valid for this initial weight vector.
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