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Abstract

We propose a probabilistic factorial sparse coder model for sin-

gle channel source separation in the magnitude spectrogram do-

main. The mixture spectrogram is assumed to be the sum of

the sources, which are assumed to be generated frame-wise as

the output of sparse coders plus noise. For dictionary training

we use an algorithm which can be described as non-negative

matrix factorization with ℓ0 sparseness constraints. In order to

infer likely source spectrogram candidates, we approximate the

intractable exact inference by maximizing the posterior over a

plausible subset of solutions. We compare our system to the

factorial-max vector quantization model, where the proposed

method shows a superior performance in terms of signal-to-

interference ratio. Finally, the low computational requirements

of the algorithm allows close to real time applications.

Index Terms: source separation, sparse coding, sparse NMF

1. Introduction

Single channel source separation (SCSS) aims to extract several

source signals from a single mixture recording. Since at least

two sources are interfering, the SCSS problem is ill-posed and

standard source separation methods (e.g. [1]) can not be applied.

Although sound sources may overlap in time, they rarely inter-

fere in a time-frequency representation. This fact has been used

in computational auditory scene analysis [2, 3], inspired by the

human ability to organize the perceived time-frequency repre-

sentation according to likely sources. Roweis [4] introduced the

refiltering framework which uses so-called spectrogram masks

in order to attenuate spectrogram parts which do not belong to

the desired sources. To estimate these mask signals, he pro-

posed the factorial-max vector quantizer (VQ) model, which

assumes that the magnitude-log source spectrograms are gen-

erated by vector quantizers plus a noise term. In order to train

speaker specific code-books and to estimate the noise variances

he applied k-means to source specific spectrograms. Hence,

max-VQ explicitly models the sources in a training stage.

In this paper, we extend the factorial-max VQ model by re-

placing the vector quantizers with sparse coders. A sparse coder

can be seen as a generalization of a vector quantizer, since it

represents data with a linear combination of up to L so-called

atoms (L being a parameter to chose), while a vector quantizer

uses a single, non-scalable code-word. Consequently, we call

our system factorial sparse coder model (factorial SC). In or-

der to train speaker specific dictionaries, we use a non-negative

matrix factorization algorithm with ℓ0-sparseness constraints on

the coefficient matrix (NMFℓ0).

The paper is organized as follows: In Section 2 we review the

factorial-max VQ system. In Section 3 we discuss NMFℓ0, our

training algorithm for non-negative dictionaries. In Section 4

we introduce the factorial sparse coder model and its inference

method. Experimental results are discussed in Section 5. Fi-

nally, Section 6 concludes the paper.

2. Factorial-Max VQ Model

The factorial-max VQ model [4], here discussed for the case

of two interfering sources, usually works in the log magnitude

spectral domain. We assume that the spectrogram frames are

independent of each other over time, i.e. we work in frame-

wise manner. Let x, s
1 and s

2 be spectrogram frames of

the mixture and the sources, respectively. The observation

model of the speech mixture x is given as p(x|s1, s2) =
N (x; max(s1, s2),Σ), whereN is the normal distribution and

Σ is a covariance matrix. The mixed signal x is assumed to

be the element-wise maximum of the source log-spectra s
1 and

s
2 plus an additive Gaussian noise term. The sources are mod-

eled with vector quantizers with speaker specific code-books

W
1 and W

2. The hidden variables z1 and z2 select the source

spectra from the code-books, i.e. sm = w
m
zm , where w

m
zm is

the zm th column of W
m, m ∈ {1, 2}. According to Bayes

theorem, the posterior probability is given as p(z1, z2|x) =
p(x|s1,s2) p(z1) p(z2)

p(x)
. The code-books W1 and W

2 are trained

by applying k-means to speaker specific spectrograms. Addi-

tionally, the noise covariance matrix Σ and the prior distribu-

tions p(z1) and p(z2) are estimated from the output of k-means.

In the separation step the combination of indices z1 and z2,

which maximizes the posterior, is inferred. The corresponding

code-words s
1 = w

1
z1 and s

2 = w
2
z2 are approximations of

the source spectrograms, which are used to calculate the spec-

trogram masks.

3. Non-negative Matrix Factorization with
ℓ
0 Constraints

Aharon et al. [5] proposed the K-SVD algorithm for dictionary

training for sparse coders. A sparse coder aims to approximate a

D-dimensional vector x using a linear combination of maximal

L so-called signal atoms, which are stored in the columns of a

D×K dictionary matrix W, where usually L≪ K. Extending

the problem to a set of input vectors arranged in the columns of

a data matrix X, we can define the task as minimization of the

objective

E = ‖X−W H‖2
F
, s.t. L0(hi) ≤ L, ∀i (1)

with respect to the coefficient matrix H, where hi is the ith col-

umn of H, ‖ · ‖F is the Frobenius norm and L0(·) denotes the

ℓ0-pseudo-norm, i.e. the number of non-zero entries in the argu-

ment vector. Unfortunately, the sparse coding problem is NP-

hard [6], so that we have to resort to approximate solutions such



as orthogonal matching pursuit (OMP) [7], basis pursuit (BP)

[8] or the focal under-determined system solver (FOCUSS) [9].

K-SVD and its nonnegative variant [5] are iterative two stage

algorithms which alternate between a sparse coding stage and

a dictionary update stage. Similar to K-SVD we proposed a

two stage algorithm which we call non-negative matrix factor-

ization with ℓ0-sparseness constraints (NMFℓ0) [10]. For the

sparse coding stage we proposed non-negative matching pursuit

(NMP), a non-negative variant of OMP, which is shown in Algo-

rithm 1. Without loss of generality, we assume that the columns

Algorithm 1 Non-negative Matching Pursuit (NMP)

1: z = [ ]
2: c = [ ]
3: r← x

4: for l = 1 : L do

5: a = W
T
r

6: z∗ = argmax a

7: c∗ = max a

8: if c∗ ≤ 0 then

9: Terminate

10: end if

11: z← [z, z∗]
12: c← [c, c∗]
13: for j = 1 : J do

14: c← c⊗
(WT

z
x)

(WT
z
Wz c)

15: end for

16: r← x−Wzc

17: end for

of W are normalized to unit length. The algorithm starts with

empty index and coefficient vectors z and c, and assigns the

data vector x to the residual r. In step 6 we select the index z∗

of the atom which approximates the residual best, using a most

probably positive coefficient c∗. However, for the case that c∗

is negative, the algorithm terminates. In steps 13-15 the data

x is approximated using the sub-dictionary Wz containing the

atoms indexed by z. For this task we use the non-negative ma-

trix factorization (NMF) update rule for the coefficient matrix

(see [11] and Eq. (2), left). Note that this step delivers non-

negative least-squares coefficients c, given that the number of

NMF iterations J is sufficiently large. In order to obtain the co-

efficient matrix H (with L0(hi) ≤ L, ∀i), Algorithm 1 has to

be repeated for each column in X. The corresponding columns

in H are built by setting the entries depicted by z to the values

stored in c, and setting all other entries to zero.

In the dictionary update step we use several iterations of non-

negative matrix factorization (NMF) proposed by Lee and Se-

ung [11]:

H← H⊗
(WT

X)

(WTWH)
, W←W ⊗

(XH
T )

(WHHT )
. (2)

The symbols ⊗ and ···
···

in Eq. (2) denote element-wise mul-

tiplication and division, respectively. Lee and Seung showed

that the update rules achieve a local minimum of the objective

‖X−WH‖2F , and that non-negativity is maintained. Further,

these update rules also have a property which we call sparse-

ness maintenance. Since the updates consist of element-wise

multiplications, an entry in W or H, which is zero before an

update, is also zero afterwards. Therefore, we simply can use

several iterations of the rules in Eq. (2), without destroying the

sparse structure of H. NMFℓ0 is summarized in Algorithm 2,

Algorithm 2 NMFℓ0

1: Initialize W randomly

2: for i = 1 : I do

3: H ← sparsely code X with W using NMP

4: for j = 1 : J do

5: W←W ⊗ (XH
T )

(WHHT )

6: wk ←
wk

‖wk‖
, k = 1, . . . ,K

7: H← H⊗ (WT
X)

(WT WH)

8: end for

9: end for

where I and J denote the number of overall iterations and NMF

updates. The dictionary matrix W is initialized with randomly

selected and normalized data vectors out of X. For the case that

an atom is not used at all, i.e. when the corresponding row in

H contains only zeros, we re-initialize this atom using the data

vector with largest approximation error.

4. Factorial Sparse Coder Model

The factorial sparse coder (SC) model is a generalization of

factorial-max VQ, where we work in the linear magnitude spec-

trogram domain. As in max VQ, we assume that the spectro-

gram columns are independent of each other over time. The

factorial SC model is shown in Figure 1 for the case of two in-

terfering sources, although it can be easily extended to more

sources. The mixture spectrogram is assumed to be the sum of

SC1

W
1

ŝ
1

+

n
1

s
1

SC2

W
2

ŝ
2

+

n
2

+
s
2

x

Figure 1: Factorial Sparse Coder Model.

the sources, which are modeled as the output of sparse coders

plus noise terms:

x =

2
∑

m=1

s
m =

2
∑

m=1

(ŝm + n
m). (3)

The output of the mth sparse coder is given as

ŝ
m =

L
∑

k=1

h
m
zm
k
w

m
zm
k

= W
m
zm h

m
zm = W

m
h
m
, (4)

where W
m is a source specific dictionary, h

m is the corre-

sponding coefficient vector and z
m is an index vector indicating

the selected atoms. The right hand side of Eq. (4) holds, since

all entries in h
m not addressed by z

m are zero. The dictionaries

are obtained by applying NMFℓ0 to source specific spectrogram

data. In order to perform source separation, we have to infer

coefficient vectors h
m for the given mixture x, m ∈ {1, 2}.

To simplify the problem, we assume that the coefficient values



are given by a non-negative least-squares approximation of the

speech mixture, using the selected atoms of all sources:

(

h
1
z1

h
2
z2

)

= argmin
h

∥

∥x−
(

W
1
z1 W

2
z2

)

h
∥

∥

2
, ∀i : hi ≥ 0.

(5)
(

W
1
z1

W
2
z2

)

is the concatenation of the sub-dictionaries, and

on the left hand side of Eq. (5) we have the corresponding

stacked coefficients. In this way, the separation algorithm is re-

duced to a search problem, in order to find suited atoms for each

source (i.e. the index vectors zm, or the locations of the “non-

zeros” in h
m). The non-negative least-squares approximation

of x is given as

x̂ =
(

W
1
z1 W

2
z2

)

(

h
1
z1

h
2
z2

)

=
2

∑

m=1

ŝ
m
, (6)

and further, with Eq. (3) we see that

x = x̂+
2

∑

m=1

n
m
. (7)

We assume Laplacian distributed noise in our model, since we

observed that the residual error of NMFℓ0 is distributed accord-

ing to a Laplace distribution in each frequency bin [10]. The

Laplacian form factors λm = (λm
1 , λm

2 , . . . , λm
D), m ∈ {1, 2}

can be estimated from the residual error in the training stage,

where D denotes the number of frequency bins. Since the over-

all noise is the sum of the individual noise terms in Eq. (7),

the probability density function (pdf) of the overall noise is the

convolution of the individual pdfs. Therefore, assuming inde-

pendence among all frequency bins, the dth bin of the mixture

is distributed according to a convolution of two Laplacian pdfs

with mean value x̂d (see [10] for a derivation):

p(xd|x̂d, λ
1
d, λ

2
d) =

1

2







λ1
d e

−|xd−x̂d|

λ1

d

(λ1
d)

2 − (λ2
d)

2
+

λ2
d e

−|xd−x̂d|

λ2

d

(λ2
d)

2 − (λ1
d)

2






.

(8)

Using Eq. (8), the likelihood of x is given as

p(x|z1, z2,λ1
,λ

2) =

D
∏

d=1

p(xd|x̂d(z
1
, z

2), λ1
d, λ

2
d), (9)

where x̂d(z
1, z2) indicates that x̂ is a function of z

1 and z
2

(see Eq. (6)). We approximate the prior probability p(zm) with

a Markov chain according to

p(zm) = p(zm1 , . . . , z
m
L ) ≈ p(zm1 )

L
∏

k=2

p(zmk |z
m
k−1), (10)

where the factors p(zm1 ) and p(zmk |z
m
k−1) can be estimated from

the coefficient matrix returned by NMFℓ0. Using Bayes theo-

rem and assuming independent sources, the posterior probabil-

ity of the index vectors z1 and z
2 for a given mixture spectrum

x is given as

p(z1, z2|x) =
p(x|z1, z2,λ1,λ2)p(z1) p(z2)

p(x)
. (11)

Hence, source separation is achieved by finding z
1 and z

2

which maximize Eq. (11), where the normalization term p(x)
can be neglected in optimization.

However, maximization of Eq. (11) is not easy, and brute-

force search would consider
(

K

L

)2
combinations, assuming that

each dictionary comprises K atoms. Therefore, we propose a

multi-hypotheses variant of matching pursuit which constricts

the considered solutions to a plausible sub-set. Our inference

method is described in Algorithm 3. First, we concatenate the

Algorithm 3 Factorial SC - Inference

1: Ξ← {〈[ ], [ ],x〉}
2: for l = 1:L do

3: Ξ∗ ← ∅
4: for ∀ξ ∈ Ξ do

5: 〈z, c, r〉 ← ξ

6: [a∗,aidx] = selectBestAtoms(B,W, z, r)
7: for b = 1 : |a∗| do

8: z̃← [z,aidx(b)]
9: c̃← [c,a∗(b)]

10: for j = 1 : J do

11: c̃← c̃⊗
(WT

z̃
x)

(WT

z̃
W

z̃
c̃)

12: end for

13: r̃← x−Wz̃c̃

14: Ξ∗ ← Ξ∗ ∪ 〈z̃, c̃, r̃〉
15: end for

16: end for

17: Ξ← Ξ∗

18: if l > T then

19: Prune Ξ to the BT best solutions

20: end if

21: end for

source specific dictionaries: W :=
(

W
1
W

2
)

. A solution is

defined as a triplet ξ = 〈z, c, r〉, where z contains the indices

of the selected atoms out of W, c are the corresponding coeffi-

cients and r is the residual. The set of all solutions is denoted as

Ξ. Starting with a single trivial solution ξ = 〈[ ], [ ],x〉, in every

iteration each solution is extended with up to B atoms, selected

by the function selectBestAtoms. In selectBestAtoms, we

calculate a = W
T
r. Atoms with negative values in a, and

atoms which would make the prior probability (Eq. (10)) to

zero, are discarded, where the prior probabilities are calculated

according to the original dictionaries W1 and W
2. When R is

the number of remaining atoms, min(R,B) atoms with largest

values in a are selected. The inner products and the indices of

the selected atoms are returned in the vectors a
∗ and aidx. In

lines 10-12, we perform NMF for the coefficient vector c̃, which

approximates Eq. (5).

Continuing in this manner, the solution set comprises up to

Bl solutions in iteration l. After T + 1 iterations, we start

to prune the solution set to the BT best solutions in every it-

eration, i.e. we select the BT solutions with highest posterior

(Eq. (11)), where the probabilities p(z1) and p(z2) are eval-

uated according to the original dictionaries. When the algo-

rithm has stopped, we select the solution with maximal poste-

rior out of the final solution set and build the coefficient ma-

trix H, which is split according to the original dictionaries:

H =: H
1 ∪ H

2. The approximations of the source spectro-

grams are then given as Ŝm = W
m
H

m. We calculate a mask

for each source according to M
m = Ŝ

m

Ŝ1+Ŝ2
, m ∈ {1, 2}. Fi-

nally, approximations of the source signals are given by the in-

verse short term Fourier transform (ISTFT) of the masked mix-

ture: ŝm(t) = ISTFT(Mm ⊗ X̄), where X̄ is the original

complex mixture spectrogram.
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Figure 2: Separation results in SIR of factorial max-VQ

(dashed) and factorial SC (solid). Each interfering speaker is

marked with a specific color and marker.

5. Experiments

We selected two female and two male speakers from the SCSS

database by Cooke et al. [12]. We refer to the speakers as Fe-

male1, Female2, Male1, and Male2. For each speaker we use 3

minutes of speech as training data, with a sampling frequency

of 16kHz. The magnitude spectrograms were calculated using a

1024 samples hamming window and 512 samples overlap. Ad-

ditionally, the logarithm was applied for factorial-max VQ. For

both training methods (k-means and NMFℓ0) 25 iterations were

used. For NMFℓ0, we used J = 30 NMF updates. For sep-

aration we selected 10 utterances of each speaker, which were

not used for training. We mixed all possible combinations of

files and speakers with a signal-to-interference ratio (SIR) of

0dB. This gives 100 mixture utterances for each speaker pair.

We executed factorial-max VQ and factorial SC with varying

dictionary (or code-book) sizes. For our method we also tried

different values for the maximal allowed number of atoms L,

where a value of L = 3 achieved good results. For infer-

ence (Algorithm 3) we used parameters B = 4 and T = 2.

Figure 2 shows the mean achieved SIR after source separation

for both methods as a function of the dictionary (code-book)

size K. The SIR was calculated in the magnitude spectrogram

domain in order to neglect phase distortions from resynthesis:

SIR = 10 log10
‖Sm‖2

F

‖Sm−Ŝm‖2
F

, where Sm is the magnitude spec-

trogram of the mth source, and Ŝ
m is the spectrogram of its

approximation. We see that our method performs better than

factorial-max VQ in the different-gender case, and that the per-

formance is approximately the same in the same-gender case.

All experiments have been conducted on the same PC and the

execution time needed for separation has been measured. Fig-

ure 3 compares the mean execution time for both methods as a

function of the dictionary size. We see that the computational

costs of factorial-max VQ increase dramatically with larger dic-

tionaries, since in principle a full search over all codeword com-

binations is performed [4]. The computational effort for our

method is dominated by the inference parameters B and T and

increases only linear with K.

6. Conclusion

In this work we presented a probabilistic factorial sparse coder

model for single channel source separation. In our model, the

sources are modeled as the output of sparse coders plus Lapla-
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Figure 3: Mean execution time of factorial-max-VQ (dashed)

and factorial SC (solid). The ordinate is in logarithmic scale.

cian noise terms. To train the source-specific dictionaries and

model parameters, we use non-negative matrix factorization

with ℓ0-sparseness constraints (NMFℓ0). Further, we derived

the posterior probability of the sparse-coder-atom selections for

given mixture data. Since inference via exhaustive search is

intractable, we restrict the set of considered solutions using a

multi-hypotheses variant of matching pursuit. We compared

separation performance to the factorial-max VQ system on the

database provided by Cooke et al. [12]. Systematic separation

experiments show the superior performance of the proposed al-

gorithm in terms of signal-to-interference ratio. Finally, the al-

gorithm is suitable for close to real time applications due to its

low computational requirements.
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