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Homework 2: Backpropagation and Neural Networks

[Points: 20 , Issued: 2012/05/04 , Deadline: 2012/05/25 , Tutor: Christian Knoll 2; Infohour:
TBA , , ; Einsichtnahme: TBA , , ;]

1 Backpropagation [12 + 10* points]

1.1 Backpropagation for a simple network [12 points]

Consider a 2-layer neural network with 2 inputs, 4 hidden neurons and 1 output unit. In both
layers the sigmoid activation function

σ(x) =
1

1 + exp(−x)

is used (Note that σ′(x) = (1−σ(x))σ(x)). In addition to the weights for the inputs, each neuron
j has an offset weight wj0. Hence, the whole network has 4 ∗ 3 + 5 = 17 weights. Your task is to
implement the backpropagation algorithm for this network.

• Implement the function

function [output, z, a1, a2] = feedforwardNN(w, x)

which, given the weight vector w and the (2-dimensional input) x, returns the output of the
neural network as well as the outputs of the hidden layer (z, 4-dimensional).

• Implement the function

function [dw] = backpropNNSingle(w, x, y)

which calculates the gradient of the squared error of a single example x and y.

• Implement the function

function [dw] = backpropNNFull(w, X, Y)

which calculates the gradient of the squared error of N examples which are stored in the
matrices X and Y (each row corresponds to an example).

• Use these functions to implement a gradient descent algorithm with an adaptive learning
rate. Train your network using the dataset backprop.mat, use an initial learning rate of 1.0
and 1000 iterations. Create your initial weight vector w0 by using a normal distribution
(randn(17, 1)).

• Repeat the training for 10 different initial weight vectors and plot the evolution of the error
function for each of these weight vectors (in the same plot). Do you get different local
minima?

• Create a surface plot of the learned function after 0, 10, 100, 300 and 1000 iterations for the
worst and for your best learning trial.
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1.2 Backpropagation for RBF networks[10 *points]

Consider the following 2-layer feedforward neural network with a 2-dimensional input, K outputs
a M hidden units. The kth output is given by :

ok(x) = h(
M∑

j=1

wkj exp((x− µj)
2/b2

j )),

where h is sigmoid function σ(x). Your task is to derive a weight update rule for the weights
wkj , µj and bj using the backpropagation algorithm. Only consider the mean squared error (mse)
of a single example (x,y). Always use the same formalism and notation as discussed in the
lecture/practical course.

• Define the neuron input a
(1)
j (input to the activation function), the layer output z

(1)
j and the

activation function of the neurons h
(1)
j in the hidden layer.

• Define the neuron input a
(2)
k and the layer output ok and the activation function. Use the

definitions from the hidden layer to simplify your equations.

• Calculate δ
(2)
k for the output neurons and the resulting weight update ∆wkj for the weights

in the output layer.

• Calculate δ
(1)
j for the hidden neurons and the resulting weight updates ∆µj and ∆bj for the

parameters in the hidden layer [6* points up to here].

• Implement your rule in matlab using the same set of functions as defined in 1.1. Use K = 1
and M = 4. Also use the same dataset as in 1.1. Note that bj is the bandwidth of the RBF
centers which should not get smaller than 0.05. Just fix bj at this value if it gets smaller
than this value.

• Repeat the training for 10 different initial weight vectors and plot the evolution of the error
function for each of these weight vectors (in the same plot). Do you get different local
minima? Compare to 1.1.

• Create a surface plot of the learned function after 0, 10, 100, 300 and 1000 iterations for the
worst and for your best learning trial.

2 Regression with Neural Networks [8 points]

2.1 Simple Regression with Neural Networks [3 points]

In this task a simple 1-dimensional function should be learned with feed-forward neural networks.
Use the same dataset ( linearregression homework.mat) as for Homework 1.

• Train a neural network with n = [1, 2, 3, 4, 6, 8, 12, 20, 40] neurons. Use the training algorithm
’trainscg’, train for 700 epochs.

• Plot the mean squared error of the training and of the test set for the given number of
neurons. For the test set, plot the mean squared error (mse).

• Interpret your results. What is the best value of n?

• Plot the error on the test set and on the training set for n = 2, n = 8 and n = 40 during
training (you already get this plot as output of the neural network toolbox, or you can get
the relevant data from the performance structure returned by the train function). Interpret
your result, is the error on the training and test set always decreasing?
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• Plot the learned functions for n = 2, n = 8 and n = 40. Interpret your results, refer to
results from the previous plots!

• Compare the results to Homework 1. Is there any connection of n and the degree of the
polynomial?

2.2 Regularized Neural Networks [5 points]

Now we want to investigate different regularization methods for neural networks, i.e. weight decay
and early stopping. Use the same data-set as before.

• Weight Decay: Train a neural network with n = 40 hidden neurons. Use the training
algorithm ’trainscg’, train for 700 epochs. Use the regularized error function msereg as
net.performFcn. This performance function is equivalent to the standard loss function used
for weight decay:

msereg = αmse + (1− α)
∑

i

w2
i

Use different regularization factors (α resp. net.performParam.ratio in matlab) of α =
[0.9, 0.95, 0.975, 0.99, 0.995, 1.0];

• Plot the mean squared error of the training and of the test set for the given regularization
factors.

• Interpret your results, i.e. explain the course of both plots. What is the best value of α?

• Compare your results to the regularization term used in Homework 1! Is there any relation
between these regularization terms (also compare the equations)?

• Plot the learned functions for the lowest, the highest and the best value of α.

• Early Stopping: Now we want to test the performance of early stopping. Again train
a neural network with 40 hidden neurons, use the standard mse function as performance
function. Train a neural network for 700 epochs and determine at which epoch epochES the
error on the test-set reaches the minimum. Retrain a second neural network starting from
the same initial weights as the first network, but this time only train for epochES epochs.

• Determine the error on the test set and plot the learned function. Compare the error and
the plotted function to the fully trained network.

• Compare the performance (error on the testset) and the learned functions for early stopping,
weight decay and for the different number of hidden neurons. Which type of regularization
would you prefer? What are the advantages/disadvantages of these methods ?

2.3 Hints

• You can easily use the training record tr returned by the train function to get the error on
the training set. If you supply the test set to the train function via the TV parameter, i.e.
train(net,P,T,[],[],[],TV), you will also find the error on the test set in that structure.
See doc train for more info.

• For weight decay you can’t use the performance structure returned by the train function
because it returns the regularized error function and not the mse. Instead, you need to
determine the mse explicitely (e.g. you can use the function mse(errorvector)).

• Always normalize your training data to zero-mean and unit variance (use the function map-
std).
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