Scatterer and Virtual Source Detection for Indoor UWB Channels

Markus Froehle

Signal Processing and Speech Communication Laboratory

UWB Forum, May 4, 2011
Outline

Introduction
 Motivation
 Problem Definition
 Indoor Measurements

Algorithm for MPC-Extraction
 Method Description
 Extension for Estimation VAs

Performance Results
 Estimated Scatterer and VA Locations

Outlook

Conclusion
Intro – Motivation

Due to their large bandwidth UWB signals offer among others:

- a fine delay resolution
- robustness in harsh environments

which makes them promising candidates for e.g. indoor localization.

Indoor UWB channel:

- Multipath propagation is prevalent
- Many individual paths are recognizable and resolvable in the measurements

Localization can be done by e.g. an multipath aided indoor localization approach (Meissner et al.), which needs an algorithm for extraction of multipath components (MPCs).
Intro – Problem Definition

Santos et al. proposed an algorithm for MPC extraction in an outdoor environment. MPCs are:

- Extracted from the channel impulse responses (CIRs) measured along a trajectory
- Assigned to scatterer points in spatial domain

We present:

- An extension to also estimate virtual sources
- Apply it to measurement data gained in an indoor environment
Intro – Indoor Measurement Scenario

- Indoor hallway
- Frequency range of 6 – 8GHz, 1MHz spacing
- 200 mobile station (MS) positions, 10cm spacing
Intro – Scatterer Points and Virtual Anchors

2 different delays τ:

- **Scatterer Point (SP):** $\tau_{SP} = \frac{d(\text{MS}, \text{SP}) + d(\text{SP}, \text{BS})}{c}$

- **Virtual Anchor (VA):** $\tau_{VA} = \frac{d(\text{VA}, \text{MS})}{c}$
Algorithm – System Model

Simplified UWB channel impulse response:
\[
x(\tau) = \sum_{k=1}^{L} \alpha_k \delta(\tau - \tau_k)
\]

Algorithm tries to identify path of peaks along the MS positions and assign them to scatterer points in spatial domain.

Limitation:

- Consider single reflections only
- 2-dimensional search space
Algorithm – Method Description

3 steps:
1. High resolution peak search in time domain
2. Weighting all candidate scatterers in spatial domain
3. Detection and cancellation of strongest scatterer

Figure: taken from [SKA⁺10]
Algorithm – Step II: Spatial Weighting

3 intermediate steps:

- Assign amplitude peaks to all candidate scatterers
 - Extension for Estimation VAs

- Weighting of all candidate scatterers
 - Use ASW to estimate scatterer birth and death location along MS trajectory
 - Compute weight

- Select candidate scatterer with highest weight
Algorithm – Step II: Extension for Estimation VAs

FORALL $\tau_l \in \{\tau_{l_{SP}}, \tau_{l_{VA}}\}$

- Assign amplitude peaks to all candidate scatterers:
 - L . . . number of candidate scatterers
 - K . . . number of estimated peaks in step I
 - τ_{res} . . . inverse of measurement bandwidth

FORALL $k \in K, l \in L$

 IF $|\tau_l - \tau_k| < \tau_{res}$
 store amplitude according to MS position
 ENDIF

ENDFOR

ENDFOR
Algorithm – Step II: Extension for Estimation VAs

FORALL $\tau_l \in \{\tau_{l_{\text{SP}}}, \tau_{l_{\text{VA}}}\}$

- Assign amplitude peaks to all candidate scatterers:
 - L … number of candidate scatterers
 - K … number of estimated peaks in step I
 - τ_{res} … inverse of measurement bandwidth

FORALL $k \in K, l \in L$

IF $|\tau_l - \tau_k| < \tau_{\text{res}}$

store amplitude according to MS position

ENDIF

ENDFOR

Weighting of all candidate scatterers

ENDFOR

Select candidate scatterer with highest weight
Results – Estimated Scatterer and VA Locations

- BS, metal pillars beside the BS and the strongest VAs have been found
Results – Step I: High Resolution Peak Search

IDTFT vs. IDFT:

Estimated peaks above threshold \(\mu = -99dB \):

- Hi-Res peak search is important in order to estimate the exact delay of a peak within a CIR
- Despite the dense multipath indoor scenario VAs have a long lifetime along MS trajectory
Results – Step II: Spatial weighting

Lifetime VA:
- **Geometrically:** MS position 30 – 160
- **Algorithm:** MS position 1 – 173

- Estimated scatterer life-time is severely overestimated caused by the high density of scatterers in our indoor scenario or by diffuse multipath components
Results – Step II: Spatial weighting cont’d

- Ambiguous point at $[4.2, -1.0]^T$

- Ambiguous scatterer points occur if MS trajectory is a straight line, because algorithm compares its delay with the delay of the peaks exceeding the threshold in all CIRs.
RESULTS – Step III: Detection and Cancellation

CIRs [dB], Original

- **MS position**
 - 20
 - 40
 - 60
 - 80
 - 100
 - 50
 - 100
 - 150
 - 200

- **τ [ns]**
 - 20
 - 40
 - 60
 - 80
 - 100
 - 50
 - 100
 - 150
 - 200

CIRs [dB], Iteration 16

- **MS position**
 - 20
 - 40
 - 60
 - 80
 - 100
 - 50
 - 100
 - 150
 - 200

- **τ [ns]**
 - 20
 - 40
 - 60
 - 80
 - 100
 - 50
 - 100
 - 150
 - 200

LOS component:
- Highest amplitude and shortest delay
- First to be removed from the channel

Artefacts with a smaller delay than the LOS are caused by the rectangular windowing

- Paths of peaks associated with the first 16 scatterer positions are removed from the channel
Challenges

- Ambiguity of scatterer points
 - Wrong scatterer weight estimation, especially if MS trajectory is straight line
- Estimation of scatterer life-time
 - High density of MPCs
 - Exploitation of the different amplitude characteristics in blocked and visible regions
- Computational effort
 - High resolution peak search in step I
 - Grid search in step II
 - Incorporating floor plan
CONCLUSION

- Localization of VAs works very well
- Concept of VAs implicitly resolves higher-order reflections
- Extension to estimate virtual sources allows to apply the algorithm in scenarios with a high density of diffuse MPCs
CONCLUSION

-Localization of VAs works very well
-Concept of VAs implicitly resolves higher-order reflections
-Extension to estimate virtual sources allows to apply the algorithm in scenarios with a high density of diffuse MPCs

THANKS!
References

J. Kunisch and J. Pamp.
An ultra-wideband space-variant multipath indoor radio channel model.

UWB sequential Monte Carlo positioning using virtual anchors.

A.F. Molisch.
Ultra-Wide-Band Propagation Channels.

Paul Meissner, Christoph Steiner, and Klaus Witrisal.
UWB positioning with virtual anchors and floor plan information.

Scatterer Detection by Successive Cancellation for UWB - Method and Experimental Verification.

T. Santos, J. Karedal, P. Almers, F. Tufvesson, and A. Molisch.
Modeling the ultra-wideband outdoor channel: Measurements and parameter extraction method.

Yuan Shen and M.Z. Win.
On the use of multipath geometry for wideband cooperative localization.