Fundamentals of Digital Communications
Class 2: Geometric Representation of Signal Waveforms

Stefan Grebien

Signal Processing and Speech Communication Laboratory

October 23, 2017
SCHEDULE – to master Digital Communications

Demodulation and Detection Theory

Class 7
Class 8

Signal Spaces

Class 1
Class 2

Signals and Systems

Class 3
Class 4

Stochastic

Class 5
Class 6
SCHEDULE – to master Digital Communications

Demodulation and Detection Theory

Class 8

Class 7

Class 2

Class 1

Signals and Systems

Class 4

Class 3

Stochastic

Class 6

Class 5
Goals:

- understand Gram-Schmidt-orthogonalization
- understand subspaces and the projection onto them
- understand signal and vector spaces (a little geometry)
- compute the distance between two signal waveforms
Problem 2.1

Given:

\[s_1(t) \]

-1 \[\quad \] 1 \[\quad \] 2 \[\quad \] 3 \[\quad \] 4 \[\quad \] t

\[s_2(t) \]

-2 \[\quad \] -1 \[\quad \] 0 \[\quad \] 1 \[\quad \] 2 \[\quad \] t

\[s_3(t) \]

-2 \[\quad \] -1 \[\quad \] 0 \[\quad \] 1 \[\quad \] 2 \[\quad \] t

\[s_4(t) \]

-2 \[\quad \] -1 \[\quad \] 0 \[\quad \] 1 \[\quad \] 2 \[\quad \] t
Problem 2.1 (cont’d)

Question:

- find coefficient vectors p_i in 4-D space $\mathcal{P} = \text{span} \{\phi_1(t), \ldots, \phi_2(t)\}$
- use Gram-Schmidt orthogonalization to find dimensionality N and basis q_j, $j = 1, \ldots, N$ for $\mathcal{S} = \text{span} \{p_1, \ldots, p_4\}$
- sketch corresponding orthonormal basis functions $\{\psi_j(t)\}_{j=1}^N$ for $\mathcal{S} = \text{span} \{s_1(t), \ldots, s_4(t)\}$
- determine s_i for signal space \mathcal{S}
- distance between signals $s_1(t)$ and $s_2(t)$:
 1. directly,
 2. from their vectorial representation in \mathcal{P}, and
 3. from their vectorial representation in \mathcal{S}.
Problem 2.2

Given:

\[u_1(t) = \sqrt{\frac{2E_b}{T}} \cos(2\pi f_1 t) \quad 0 \leq t \leq T \]

\[u_2(t) = \sqrt{\frac{2E_b}{T}} \cos(2\pi f_2 t) \quad 0 \leq t \leq T \]

Question:

- Find and maximize the distance between the waveforms

\[d = \|u_2(t) - u_1(t)\| \]

as a function of the frequency spacing

\[\Delta f = f_2 - f_1. \] Assume \(f_1, f_2 \gg \frac{1}{T} \)
Problem 2.2

Sinus Cardinalis

\[\text{sinc}(2\Delta f) \]

\(X: 0.715 \)
\(Y: -0.2172 \)
Questions

- How can you determine the dimension of a signal space?
- What does the projection theorem state?
- Explain the Gram-Schmidt procedure?
QUESTIONS

- How can you determine the dimension of a signal space? via Gram-Schmidt
- What does the projection theorem state? projection error is orthogonal to subspace
- Explain the Gram-Schmidt procedure?
 1. Choose one vector, normalize it → first basis.
 2. Project next vector onto current basis. If projection error is zero, no new basis. Otherwise normalize projection error (orthogonal to current basis) → next basis.
 3. Repeat step 2 for all remaining vectors.
Orthonormal Basis (cont’d)

Gram-Schmidt orthogonalization

- find the $N \leq M$ orthonormal basis functions

 - $\psi_1(t) = \frac{s_1(t)}{\|s_1(t)\|}$

 $S_1 = \text{span} \{ \psi_1(t) \}$

 - $\hat{s}_2(t) = c_{21} \psi_1(t)$

 $\psi_2(t) = \frac{s_2(t) - \hat{s}_2(t)}{\|s_2(t) - \hat{s}_2(t)\|}$

 $S_2 = \text{span} \{ \psi_1(t), \psi_2(t) \}$

 - projection of $s_2(t)$ onto S_1

 - \vdots

 - $\psi_k(t) = \frac{s_k(t) - \hat{s}_k(t)}{\|s_k(t) - \hat{s}_k(t)\|}$

 $\hat{s}_k(t) = \sum_{i=1}^{k-1} c_{ki} \psi_i(t)$

 $S_k = \text{span} \{ \psi_1(t), \psi_2(t), \ldots, \psi_k(t) \}$

 - projection of $s_k(t)$ onto S_{k-1}

 - no basis function, if $s_k(t) - \hat{s}_k(t) = 0$