Supplement:
Random Variables and Lebesgue Decomposition

Bernhard Geiger

Graz University of Technology

Winter Term 2017/18
Review

- Probability Space
- Random Variables
- Three Types of Distributions
- Lebesgue Decomposition
Probability Space

- Sample space Ω
- σ-algebra \mathcal{F}
- Probability measure $\mathbb{P}: \mathcal{F} \rightarrow [0, 1]$
Random Variable

- It's a function (measurable): \(X: \Omega \to \mathbb{R}^N\)
- We call its alphabet \(\mathcal{X} \subseteq \mathbb{R}^N\)
- It induces a new probability space \((\mathcal{X}, \mathcal{B}(\mathcal{X}), P_X)\) where

\[
\forall A \in \mathcal{B}(\mathcal{X}): \quad P_X(A) = \mathbb{P}(X^{-1}(A))
\]
Volume (Lebesgue Measure)

\(\lambda^N(A) \) is the volume of \(A \subset \mathbb{R}^N \)

Intuition:
- \(\lambda^1 \) is length
 - \(\lambda^1([a, b]) = b - a \)
- \(\lambda^2 \) is area
 - \(\lambda^2([a, b] \times [c, d]) = (b - a)(d - c) \)
 - \(\lambda^2([a, b] \times \{y\}) = 0 \)
- \(\lambda^3 \) is 3D-volume
- . . .

If \(A \subset \mathbb{R}^N \) is countable, then \(\lambda^N(A) = 0 \).
Three Types of Distributions

Support \(\mathcal{X} \subseteq \mathbb{R}^N, \ x \in \mathcal{X} \)

<table>
<thead>
<tr>
<th>Type</th>
<th>(\lambda^N(\mathcal{X}))</th>
<th>(P_X({x}) > 0)</th>
<th>(H(X))</th>
<th>(h(X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disc. (P_X^d)</td>
<td>= 0</td>
<td>> 0</td>
<td>OK</td>
<td>(-\infty)</td>
</tr>
<tr>
<td>Cont. (P_X^{ac})</td>
<td>> 0</td>
<td>= 0</td>
<td>(\infty)</td>
<td>OK</td>
</tr>
<tr>
<td>(D-C-Mixt.)</td>
<td>> 0</td>
<td>> 0</td>
<td>(\infty)</td>
<td>?</td>
</tr>
<tr>
<td>Sing. (P_X^{sc})</td>
<td>= 0</td>
<td>= 0</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Joint Distribution Between Input and Output

X is zero-mean, unit variance Gaussian, $Y = X^2$.
Cantor-Distribution

“Uniform distribution on the Cantor set \mathcal{C}”; $\lambda(\mathcal{C}) = 0$. The CDF is continuous, but its derivative is zero a.e.
"Double-Scroll Attractor" of Chua's Circuit

\[\text{(CC-BY-SA-3.0 www.chuacircuits.com)}\]
Lebesgue-Decomposition

Let X be a RV with probability distribution P_X, where

$$P_X(A) = \mathbb{P}(X \in A)$$

Every P_X can be decomposed into the three types from the table:

$$\forall A \subseteq \mathcal{X}: \quad P_X(A) = P_X^d(A) + P_X^{ac}(A) + P_X^{sc}(A)$$