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Abstract
Single-channel source separation (SCSS) usually uses
pre-trained source-specific models to separate the sources.
These models capture the characteristics of each source and
they perform well when matching the test conditions.

In this paper, we extend the applicability of SCSS. We de-
velop an EM-like iterative adaption algorithm which is capable
to adapt the pre-trained models to the changed characteristics of
the specific situation, such as a different acoustic channel intro-
duced by variation in the room acoustics or changed speaker po-
sition. The adaption framework requires signal mixtures only,
i.e. specific single source signals are not necessary. We consider
speech/noise mixtures and we restrict the adaption to the speech
model only. Model adaption is empirically evaluated using mix-
ture utterances from the CHiME 2 challenge. We perform ex-
periments using speaker dependent (SD) and speaker indepen-
dent (SI) models trained on clean or reverberated single speaker
utterances. We successfully adapt SI source models trained on
clean utterances and achieve almost the same performance level
as SD models trained on reverberated utterances.
Index Terms: single-channel source separation, self-adaptation,
MLLR

1. Introduction
The aim of single-channel source separation (SCSS) is to di-
vide a mixture of two signals into its underlying source sig-
nals. This is in general an ill-posed problem. Implicit models
such as computational auditory scene analysis (CASA) and ex-
plicit models known as under-determined blind source separa-
tion methods are applied [1]. Implicit models try to imitate the
remarkable ability of the human auditory system to recover indi-
vidual sound components in adverse environments. CASA sys-
tems are based on harmonicity as cue for separation. In contrast,
explicit models incorporate prior knowledge, i.e. the individual
source characteristics are learned during a training phase using
source specific data. The two most prominent explicit mod-
els are the factorial-max vector quantization (VQ) [2] and the
factorial-max hidden Markov model [3] which also integrates
time dependencies. Another method for identifying compo-
nents with temporal structure in a time-frequency representation
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is non-negative matrix factorization (NMF) [4, 5]. All these ex-
plicit models usually require sufficient speaker/source specific
data for learning which restricts their applicability to scenarios
with matching training/test conditions and known sources. In
case of model mismatch adaption techniques can be applied.
Some of the most successful approaches for model adaption in
the context of speech recognition are the maximum likelihood
linear regression (MLLR) framework [6, 7], maximum a pos-
teriori (MAP) estimation [8], and rapid adaption in eigenvoice
space [9]. While these approaches assume that adaption data
consists of clean speech, methods for adaption of undistorted
source models from contaminated speech have been also devel-
oped, e.g. in [10]. Rose et al. [11] extended this in terms of a
more general interaction and background noise model based on
Gaussian mixture models (GMMs). In [12], the eigenvoice ap-
proach is generalized to adapt individual speaker models given
a superposition of two speech signals.

In this paper, we develop an algorithm for model adaption
to overcome any mismatch between training and testing condi-
tions in SCSS. The aim is to adapt models to a novel acoustic
environment using only mixture data. In particular, we con-
sider speech/noise mixtures and we restrict the adaption to the
speech model only. Furthermore, we perform self-adaption,
i.e. adaption is performed on the same test mixtures used for
separation. We propose an EM-based iterative algorithm using
MLLR for adaption of the speaker model from the noise/speech
mixtures in spectral domain. The model for the speakers and
the noise is based on GMMs. Model adaption is empirically
evaluated using mixture utterances from the CHiME 2 chal-
lenge using speaker dependent (SD) models, speaker indepen-
dent (SI) models, and models trained on clean data and rever-
berated data. We use the perceptual evaluation of speech quality
(PESQ) measure [13] and metrics of the blind source separa-
tion evaluation (BSS EVAL) toolkit [14] for evaluation. Gen-
erally, the GMMs trained on reverberated data perform better
than the GMMs from clean data. Self-adaption using clean SI
models leads to almost the same PESQ performance as obtained
for SD models trained on reverberated utterances. Furthermore,
self-adaption is more beneficial for mixtures with larger SNRs.
While our model is similar to the model proposed in [11], we
differ in the following aspects: (i) We use MLLR to adapt from
noise signal mixtures. This has the advantage of requiring only
little adaption data. In particular, we tie all Gaussian compo-
nents and use only one global transformation. In [11], a full
re-estimate of speaker model parameters is performed. (ii) We
apply the model for SCSS of speech/noise mixtures what can be
also viewed as model-based speech enhancement. In [11], the
model is applied to speaker identification in noise.

The paper is organized as follows: In Section 2 we intro-



duce the notation, SCSS, the interaction model, and the GMMs.
The model adaption framework is presented in Section 3. In
Section 4 empirical results are reported. Section 5 concludes
with a perspective on future work.

2. Single-Channel Source Separation
Model-based SCSS for separating the observed noisy speech
determines the unknown speech and noise components. Our
approach is based on the mixture-maximization (MIXMAX) in-
teraction model [10], i.e. the observed log-magnitude short-time
Fourier transform (STFT) of the signal mixture y(t) is approxi-
mated by the element-wise maximum of their respective single-
source log-magnitude STFTs of the two sources s(t)1 and s(t)2 ,
i.e. y(t) ≈ max(s

(t)
1 , s

(t)
2 ), where vector s(t)k ∈ RD corre-

sponds toD bins of the log-magnitude STFT of source k at time
frame t and similar y(t) ∈ RD . This approximation is based on
the sparse nature of speech in time-frequency representations
where each bin of a mixture spectrogram is dominated by a sin-
gle source. The log-magnitude STFT s(t)k is modeled as GMM
according to1

p(sk|Θk) =

Mk∑
m=1

αm
k N (sk|θmk ) =

Mk∑
m=1

αm
k N (sk|m,θmk ) ,

(1)
where in the last equality we emphasize that each componentm
is represented as Gaussian, Mk ≥ 1 is the number of mixture
components of source k, and αm

k denotes the weight of compo-
nent m; αm

k ≥ 0 and
∑Mk

m=1 α
m
k = 1. The GMM for source k

is specified by the parameter set Θk = {αm
k ,θ

m
k }Mk

m=1, where
θmk = {µm

k ,Σ
m
k } is the mean and diagonal covariance matrix

of componentm. The parameters of the GMMs are obtained by
the EM-algorithm [15].

At each time frame, the observation y(t) is considered to
be produced jointly by the two single-source emissions s(t)1

and s(t)2 using the MIXMAX model, i.e. p(y(t)|s(t)1 , s
(t)
2 ) =

δ
(
y(t) −max(s

(t)
1 , s

(t)
2 )
)

. We obtain the component-

conditional observation probability p(y|m1,m2) by marginal-
ization over sk, i.e.

p(y|m1,m2) =ˆ ˆ
p(y|s1, s2)p(s1|m1,θ

m1
1 )p(s2|m2,θ

m2
2 )ds1ds2. (2)

This can be solved in closed form using single-component GMMs
p(sk|mk,θ

mk
k ) and the MIXMAX interaction model, i.e.

p(y|m1,m2) = (3)
D∏

d=1

{
N (yd|θm1,d

1 )Φ(yd|θm2,d
2 ) + Φ(yd|θm1,d

1 )N (yd|θm2,d
2 )

}
,

where yd denotes the dth element of y, θmk,d
k is the dth element

of the corresponding mean and variance of the single-speaker
model of speaker k, and Φ(y|θ) :=

´ y
−∞N (x|θ)dx represents

the univariate cumulative normal distribution (details are in [16,
10]).

Given the observation sequence Y =
⋃T

t=1 y
(t), the aim is

to infer the best combination of components m∗1 and m∗2 maxi-

1We omit the explicit dependence of random variables on t, where
appropriate throughout the manuscript.

mizing the conditional distribution, i.e.

{
m
∗,(t)
1 ,m

∗,(t)
2

}
= arg max

m1,m2

p(y(t)|m1,m2). (4)

Hence, the search space for separation of two sources is
O (M1 ·M2) at each t. In [17], we derive bounds for efficient
determination of m∗1 and m∗2.

Once we have found the optimal indices
{
m
∗,(t)
1 ,m

∗,(t)
2

}
for all t, we use the corresponding Gaussian components as ap-
proximation of the speaker and noise log-magnitude STFTs de-
noted by µm∗

1
1 and µm∗

2
2 , respectively. These approximations

enable to derive a softmask G(t, d) in frequency domain, i.e.

G(t, d) =
µ
m

∗,(t)
1

1,d

µ
m

∗,(t)
1

1,d + µ
m

∗,(t)
2

2,d

, (5)

where µ
mk
k,d denotes the dth frequency bin in µ

mk
k . To

re-synthesize time signals, the softmask is multiplied with the
original noisy spectrogram Y and the inverse STFT followed
by an overlap-and-add procedure is applied. The phase of the
noisy signal is used for reconstruction.

3. Model Adaptation
We might encounter different channel conditions during sep-
aration, i.e. the spectral characteristics of each source signal
might have changed due to multi-path propagation in a room
or a different microphone transfer function. Any mismatch be-
tween the source models and the actual condition in a mixture
results in a degraded separation accuracy. Model self-adaption
tunes the available source models to the specific source charac-
teristics and channel conditions present in a previously unseen
recording using only the observed mixture signal. We limit our
adaption framework to the adaption of the speaker model only,
i.e. w.l.o.g. the first GMM Θ1 is assumed to be the speaker
model. We use MLLR to adapt the means of Θ1. Exten-
sions to the covariances are considered in future work. We as-
sume the same affine transform for each component in Θ1, i.e.
µ̂m1

1 = Tξm1
1 , where T is a D × (D + 1) transformation ma-

trix and ξm1
1 = (1,µm1

1 )T is the mean vector and a bias. Since
different GMM components model different characteristics of
speech, it may be reasonable to assume that an improved adap-
tion performance can be achieved if those components model-
ing the same characteristic are tied together and updated with a
separate transformation matrix [6]. We use a global transforma-
tion matrix since the amount of adaption mixture data is limited
to a few seconds.

The transformation matrix is obtained by maximizing the
log-likelihoodLL(T ,Θ1,Θ2) of the transformed speaker GMM,
given a signal mixture Y , i.e.

LL(T ,Θ1,Θ2) =

T∑
t=1

ln p(y(t)|T ,Θ1,Θ2). (6)

This models the joint distribution of Y depending on the trans-
formation matrix T , i.e. ln p(Y|T ,Θ1,Θ2).

The distribution of the observation at one time instance is



(cf. (2))

p(y(t)|T ,Θ1,Θ2) = (7)ˆ ˆ
p(y(t)|s(t)1 , s

(t)
2 )p(s

(t)
1 |T ,Θ1)p(s

(t)
2 |Θ2)ds(t)1 ds(t)2

=

M1∑
m1=1

M2∑
m2=1

αm1
1 αm2

2

ˆ ˆ
p(y(t)|s(t)1 , s

(t)
2 )

× p(s(t)1 |m1,T ,θ
m
1 )p(s

(t)
2 |m2,θ

m
2 )ds(t)1 ds(t)2 . (8)

We apply Jensen’s inequality in (6) to construct a lower
bound, which is in general easier to optimize [18]. For any dis-
tribution q(·), and any joint probability p(a, b), it follows from
Jensen’s inequality that

ln
∑
a

p(a, b) = ln
∑
a

q(a)
p(a, b)

q(a)
≥
∑
a

q(a) ln
p(a, b)

q(a)
,

and equality holds if and only if q(a) = p(a|b). We system-
atically apply Jensen’s inequality to construct the following se-
quence of variational lower bounds on LL(T ,Θ1,Θ2):

LL(T ,Θ1,Θ2) ≥ const +
∑
t

∑
m1

∑
m2

q(m
(t)
1 ,m

(t)
2 )

× ln

ˆ ˆ
p(y(t)|s(t)1 , s

(t)
2 )

× p(s(t)1 |m1,T ,θ
m
1 )p(s

(t)
2 |m2,θ

m
2 )ds(t)1 ds(t)2 , (9)

≥ const +
∑
t

∑
m1

∑
m2

q(m
(t)
1 ,m

(t)
2 )

×
ˆ ˆ

q(s
(t)
1 , s

(t)
2 ) ln p(s

(t)
1 |m1,T ,θ

m
1 )ds(t)1 ds(t)2 , (10)

where ’const’ refers to all terms independent of T . Starting with
an initial guess for T , a local maximum of (6) can be found
using the EM algorithm consisting of the following two steps:
E-Step: The variational distributions are set such that the lower
bound is tight2 at the current parameter estimate, i.e.

q(m
(t)
1 ,m

(t)
2 ) = p(m

(t)
1 ,m

(t)
2 |y

(t),T (old),Θ1,Θ2), and
(11)

q(s
(t)
1 , s

(t)
2 ) = p(s

(t)
1 , s

(t)
2 |y

(t),m1,m2,T
(old),Θ1,Θ2),

(12)

where the posterior of the components in (11) can be obtained
by using Bayes rule in (3) and assuming the MIXMAX interac-
tion model.
M-Step: The lower bound of the LL(·) in (10) also known as
auxiliary function is maximized with respect to the parameter
T , i.e.

T ∗ = arg max
T

Q(T ) = arg max
T

∑
t

∑
m1

∑
m2

q(m
(t)
1 ,m

(t)
2 )

× E
(s

(t)
1 ,s

(t)
2 )

{
ln p(s

(t)
1 |m1,T ,θ

m
1 )
}
, (13)

where the unknown single-speaker spectrum s
(t)
1 has been re-

placed by its conditional expected value where the expectation
E
(s

(t)
1 ,s

(t)
2 )
{·} is with respect to the distribution in (12).

2Up to a term that does not depend on adaption parameters.

In the following, we introduce parameter T in GMM Θ1

and derive the update equations for the M-Step of the EM algo-
rithm. Each mixture component for s(t)1 is of the form

p(s
(t)
1 |m1,T ,θ

m
1 ) = N (s

(t)
1 |Tξ

m1
1 ,Σm1

1 ). (14)

Inserting (14) in the auxiliary function Q(T ) for the speaker
model in (13) results in

Q(T ) =
∑
t

∑
m1

∑
m2

q(m
(t)
1 ,m

(t)
2 )

× E
(s

(t)
1 ,s

(t)
2 )

{
lnN (s

(t)
1 |Tξ

m1
1 ,Σm1

1 )
}
. (15)

Since Q(·) is concave in T , a global optimum can be obtained
by setting the derivative to zero [19], i.e. ∂Q(T )

∂T
= 0, and we

obtain ∑
m1

Am1TBm1 = C, (16)

where

Am1 =
∑
m2

∑
t

q(m
(t)
1 ,m

(t)
2 )(Σm1

1 )−1 (17)

Bm1 = ξm1
1 (ξm1

1 )T (18)

C =
∑
m1

∑
m2

∑
t

q(m
(t)
1 ,m

(t)
2 )

× (Σm1
1 )−1E

{
s
(t)
1 |y

(t),m1,m2,T ,Θ1,Θ2

}
(ξm1

1 )T .

(19)

In (19), E
{
s
(t)
1 |y(t),m1,m2,T ,Θ1,Θ2

}
is the expected single-

speaker spectrum conditioned on the observation at time t and
the components m1 and m2. The dth dimension of this expec-
tation is calculated as

E
{
s
(t)
1,d|y

(t)
d ,m1,m2,T ,Θ1,Θ2

}
=

y
(t)
d Ψm1,d

1 +
(
µm1,d
1 − (σm1,d

1 )2Ψm1,d
1

)
Ψm2,d

2

Ψm1,d
1 + Ψm2,d

2

, (20)

where

Ψ
mk,d
k =

N (yd|θmk,d
k )

Φ(yd|θmk,d
k )

(21)

is the ratio of the normal density and the cumulative normal
distribution of observation yd. For a derivation of (20), we refer
the reader to [20].
The matrix equation in (16) can be solved in closed form [21],
i.e.

vec(T ) =

(∑
m1

(Bm1)T ⊗Am1

)−1

vec(C), (22)

where ⊗ denotes the Kronecker product and vec(T ) is a vector
obtained by sequentially stacking the columns of T .3

The relevant steps of the adaption algorithm can be summa-
rized as follows: During the E-Step, the expectation of the sin-
gle source spectrum and the component posterior are estimated
from the signal mixture based on the current models. During
the M-Step, the expected single source spectrum used as surro-
gate for the unknown single source spectrum and the component
posteriors are employed for determining the adaption parame-
ters T for the speaker.

3Using the Kronecker product, a product of three matrices ATB
can be re-expressed as vec(ATB) = (BT ⊗A)vec(T ) [21].
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Figure 1: Mean performance scores for self-adaption performed
for 1, 2 and 5 concatenated noisy mixtures: (a) clean SD mod-
els, (b) reverb SD models.

4. Experiments
We use the proposed framework to perform self-adaption on
signal mixtures from the small vocabulary track of the CHiME
2 challenge [22]. We use the PESQ measure [13] and the BSS
EVAL toolkit [14]. The PESQ measure returns a mean opinion
score (MOS) between 0.5 and 4.5. The BSS Eval measures are
the signal-to-distortion (SDR) ratio, the signal-to-interference
(SIR) ratio, and the signal-to-artifact (SAR) ratio in [dB]. Both
the PESQ measure and the BSS EVAL toolkit require the true
source signals for score calculation. Hence, only the training
set is applicable for evaluation. The development/test set do not
provide the clean speech and reverberated speech utterances as
reference. Therefore, we divided the training set consisting of
500 utterances for each of the 34 speakers at random into an
actual training set of 400 utterances and a test set consisting of
the remaining 100 utterances.

We learn GMM Θ2 modeling the background noise from a
subset of 30 utterances of the isolated noise data. The speaker
GMMs Θ1 are either learned using all 400 clean (clean) or re-
verberated (reverb) single speaker utterances from their respec-
tive training set. Furthermore, the speaker models are either
trained in an SD way for each of the 34 speakers or in an SI
way on 400 utterances chosen randomly from the training sets
of all but speaker IDs 2, 5, 22, and 23. These speakers are
used for evaluating the SI models. Each GMM consists of 128
components. The features s(t) and y(t) are based on the log-
magnitude of the spectrogram of the signals computed via the
1024 point STFT, using a Hamming window of length 32ms
and step size of 10ms, i.e. D = 513. The sampling frequency
is fs = 16kHz. The noisy mixtures are available with sig-
nal to noise ratios (SNR) ranging from −6dB to 9dB in 3dB
steps. The performance is evaluated for each SNR level sep-
arately. Self-adaption is performed on 1, 2 or 5 concatenated
time-frequency representations of noisy mixtures picked at ran-
dom from the test set of the respective speaker. In particular, for
each SNR level and number of concatenated mixtures we gener-
ate three test utterances. Adaption is applied up to a maximum
of 120 iterations.

Figure 1 show the mean score averaged over the test mix-
tures of all 34 speakers for the self-adaption in the SD case
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Figure 2: Mean performance scores for self-adaption performed
for 1, 2 and 5 concatenated noisy mixtures: (a) clean SI models,
(b) reverb SI models.

starting from clean and reverb models. Mixtures with low SNR
(i.e., those with an SNR below 0dB) do not benefit from self-
adaption. The reverb models show generally a better perfor-
mance. This is due to the superior initial model. For the reverb
models no mismatch between training and testing is present,
i.e. the PESQ and SDR measures do not significantly enhance
with self-adaption. The improvement in terms of SAR is can-
celed out by the deterioration of the SIR. For the clean models,
a slight improvement in terms of SAR is visible which is re-
flected by the PESQ score. The SIR shows a slight degradation,
the SDR is almost constant. The PESQ is not influenced by
the amount of adaption data. Altogether, it seems that on aver-
age one noisy utterance is sufficient for self-adaption in order to
achieve good performance.

Figure 2 show the corresponding results for the SI case,
again for clean and reverb models. The SI models show an
overall slightly inferior performance, nevertheless the same be-
havior as for the SD models can be observed. Again, we reach
results for the adapted speaker independent models compara-
ble to those of the speaker dependent ones. In summary, SCSS
benefits from self-adaption, especially for large SNRs. Further-
more, it can be observed that a small amount of adaption data is
sufficient for the proposed algorithm.

5. Conclusions
We developed an MLLR adaption framework capable of adapt-
ing pre-trained speaker models onto previously unseen condi-
tions using mixture data only. All developed methods are em-
pirically compared using data from the CHiME 2 challenge.
We were able to show that self-adaption improves the PESQ
measure for GMMs trained on clean single speaker utterances.
Using this adaption framework, we are able to achieve with
speaker independent models almost the same performance as
with speaker dependent models. The proposed model adaption
algorithm is able to achieve this with a minimum amount of
adaption data. Furthermore, self-adaption is more useful for
mixtures with larger SNRs. We plan to extend our MLLR-based
adaption framework to additionally adapt the covariances of the
speaker models and the second source model.
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