
Maximum Margin Bayesian Networks
A Conjugate Gradient Based Approach

Franz Pernkopf, Michael Wohlmayr and Sebastian Tschiatschek
{pernkopf,michael.wohlmayr,tschiatschek}@tugraz.at
Signal Processing and Speech Communication Laboratory,

Graz University of Technology,
Austria

August 24, 2011

Abstract

This document briefly describes the usage of the provided MATLAB code for learning Maximum
Margin Bayesian Networks (MMBNs) based on an example. For a description of the underlying
algorithm consider [1].

Contents

1 Capabilities 1

2 Interface 1
2.1 Example Network . 2
2.2 Adjacency Matrix . 2
2.3 Vector of Node Sizes . 2
2.4 Initial Probabilities . 3
2.5 Iterations . 3
2.6 Tuning Parameters . 4
2.7 Maximum Margin Probabilities . 4

3 Example Code 4

1 Capabilities

The provided MATLAB code can be used to discriminatively learn the parameters of fully observed
Bayesian networks (BN) with fixed structure and discrete nodes using the maximum margin cri-
terion. The probabilities in the BN are represented by conditional probability tables (CPTs)
associated with the nodes of the network.

2 Interface

learnCGMMParameters is the main function provided for learning MMBNs. It takes the following
input arguments, that are described in more detail in the next sections:

A Adjacency matrix of the considered BN.

ns Vector of node sizes.

theta initial Initial probabilities.

samples Training samples.
1

iterations Maximum number of conjugate gradient steps.

kappa Tuning parameter.

lambda Tuning parameter.

The function returns the vector theta containing the maximum margin optimized parameters of
the network as the result.

2.1 Example Network

Throughout the explanation of the function learnCGMMParameters the BN presented in Fig. 1(a)
is used as an example. The order of the nodes has to be fixed to use the function. The class node
has to be node 1 by definition. In the following, the order shown in Fig. 1(b) is assumed. Further,
it is assumed that there are 5 different classes and that the cardinality of the nodes X1, X2, X3

and X4 is 3, 4, 2 and 6, respectively.

C

X1 X2 X3 X4

(a) Bayesian network

1

2 3 4 5

(b) Bayesian network with ordered nodes

Figure 1: Example Bayesian Network.

2.2 Adjacency Matrix

The adjacency matrix A of a directed graph G = (V, E), where V = (v1, . . . , vN), is defined by

(aij)i=1,...,N
j=1,...,N

=

(
1 if (i, j) ∈ E,

0 otherwise.
(1)

(We implicitly assumed that the considered graphs must not contain multiple edges between any
pair of nodes.) The parameter A is the adjacency matrix of the considered BN. Hence, in the case
of the example network

A =

266664
0 1 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

377775 .

2.3 Vector of Node Sizes

The vector ns specifies the number of different values every node can take, i.e. the cardinality.
The order of the entries must correspond to the order of the nodes used for the adjacency matrix.

For the considered example:

ns =
`
5 3 4 2 6

´T
.

2

2.4 Initial Probabilities

theta initial is a vector containing the initial probabilities of the BN, i.e. before maximum
margin learning takes place. Typically, theta initial are the maximum likelihood (ML) proba-
bilities of the training samples. The ML parameters can be determined using the provided function
learnMLParameters(. . .).

The organization of the probabilities in the vector is as follows: The CPTs of the nodes in the
BN are represented as vectors theta initial1, . . . , theta initialN and stacked upon each other
in the order of the nodes, i.e.

theta initial =
`
theta initialT

1 . . . theta initialT
N

´T
.

Representation of the Conditional Probability Table of node K0 as the Vector
theta initialK0 . Consider the BN presented in Fig. 2. The node K0 has the parent nodes
K1, . . . , KS . Further, it is assumed that K1 < K2 < . . . < KS and that the nodes K0, . . . , KS can
take |K0|, . . . , |KS | values, respectively. Then, the Ith entry of theta initialK0 , where

I = k0 +
X

j∈{1,...,S}

24(kj − 1)|K0|
Y

j<l≤S

|Kl|

35 , (2)

corresponds to the probability p(K0 = k0|K1 = k1, . . . , KS = kS).
The index I can also be determined using the MATLAB command sub2ind:

I = sub2ind(ns([K0, K1, ..., KS]), k0, k1, ..., ks)

K1
. . . KS

K0

Figure 2: Node of a Bayesian network

Training Samples

The training samples must be supplied as a matrix with each column representing a fully observed
training sample, i.e.

samples =
ˆ
s1, . . . , sM

˜
,

where si is the ith training sample in form of a column vector. Each vector si has N components
corresponding to observations of the nodes in the order used for the adjacency matrix. Remember
that node 1 represents the class variable. The nth entry of the ith training sample must be an
element in {1, . . . , ns(n)}. If this does not hold naturally for your training data apply a suitable
transformation (usually a simple shift of the values).

2.5 Iterations

The parameter iterations is the maximum number of conjugate gradient steps the method is
allowed to perform.

3

2.6 Tuning Parameters

The tuning parameters kappa and lambda are scalars. Their meaning is described in [1].

2.7 Maximum Margin Probabilities

At the end of the training process the function returns the vector theta with the maximum margin
optimized parameters. The entries of this vector are sorted as described in Section 2.4.

3 Example Code

An example demonstrating the provided code can be found in the file run.m and is presented in
Listing 1.

Listing 1: Example usage of the provided MATLAB code (run.m).
% Maximum Margin Bayesian Network C l a s s i f i e r s example s c r i p t
%
% The provided sof tware may be used f r ee of charge for research purposes .
% For other uses and fur ther support p lease contact Franz Pernkopf ,
% pernkopf@tugraz . at .
%
% References :
% F. Pernkopf , M. Wohlmayr , and S . Tschiatschek ,
% ”Maximum Margin Bayesian Network C l a s s i f i e r s ,”
% IEEE Transactions on Pattern Analysis and Machine In t e l l i g ence ,
% vo l . 99 , no . PrePrints , 2011
%
% Authors :
% F. Pernkopf , M. Wohlmayr , and S . Tschiatschek
%
% Version :
% 1.0 August 24th , 2011
%

%% (∗) c l ear environment
clear a l l
c lc

%% Values to use to red i scover Table 1 and Table 2 from
%% TODO: Inser t pub l i ca t i on name

% MNIST
% NB TAN−CMI TAN−OMI−CR TAN−CR
% kappa 0.025 0.075 0.25 0.05
% lambda 0.2 0.1 0.075 0.1
% i t e r (MM) 47 39 33 34
% i t e r (CLL) 43 17 24 21

% USPS
% NB TAN−CMI TAN−OMI−CR TAN−CR
% kappa 0.075 0.05 0.01 0.075
% lambda 0.05 0.07 0.06 0.05
% i t e r (MM) 29 28 17 21
% i t e r (CLL) 33 53 30 43

%% (0) Spec i fy s imulat ion

% datase t to use
datase t = ’USPS ’ ;
%datase t = ’MNIST’ ;

% network s t ruc ture to use
s t r u c tu r e = ’NB’ ;
%struc ture = ’TAN−CMI’ ;
%s t ruc ture = ’TAN−OMI−CR’ ;
%s t ruc ture = ’TAN−CR’ ;

kappa = 0 . 0 7 5 ;
lambda = 0 . 0 5 ;
i t e r = 29 ;
iterCLL = 33 ;

4

% smoothing parameter
ep s i l o n = 1e−5;

%% (1) load t ra in ing and t e s t data
% tra in ing data : USPS Train .mat
% t e s t data : USPS Test .mat
% both contain matrices with samples tha t are organized as f o l l ows :
% each column contains one t ra in ing samples
% each row i s a s p e c i f i c a t t r i bu t e , where the f i r s t−row i s the c l a s s
% var i ab l e

% load t ra in ing se t
load ([’ da ta s e t s / ’ , dataset , ’ Train ’ , ’ . mat ’]) ;
TrainData = Samples ;

% load t e s t s e t
load ([’ da ta s e t s / ’ , dataset , ’ Test ’ , ’ . mat ’]) ;
TestData = Samples ;

%% (2) Spec i fy s t ruc ture of graph ica l network by an adjacency matrix and
%% the number of va lues each a t t r i b u t e can take

s t r u c t f i l e = [’ s t r u c t u r e s / ’ , dataset , ’ ’ , s t ruc ture , ’ . mat ’] ;

% load adjecency matrix
load (s t r u c t f i l e) ;
nrNodes = s ize (A, 1) ;

% se t up node s i z e s ns
ns = max(TrainData , [] , 2) ;

%% dump problem information
nrCPTentries = 0 ;
for n = 1 : nrNodes ,

nrParentStates = prod (ns (l o g i c a l (A(: , n)))) ;
nrCPTentries = nrCPTentries + nrParentStates ∗ns (n) ;

end

fpr int f (1 , ’>> Problem in format ion \n ’) ;
fpr int f (1 , ’ Training Data : %d samples\n ’ , s ize (TrainData , 2)) ;
fpr int f (1 , ’ Test Data : %d samples\n ’ , s ize (TestData , 2)) ;
fpr int f (1 , ’Number o f CPT−e n t r i e s : %d e n t r i e s \n\n ’ , nrCPTentries) ;

%%%
%% ML learning %%
%%%

%% (3) Calcu late ML parameters from tra in ing data
fpr int f (1 , ’>> Learning ML parameters . . . \ n ’) ;
t i c ;
thetaML = learnMLParameters (A, ns , TrainData) ;
% Smooth p r o b a b i l i t i e s and renormalize
thetaML(thetaML == 0) = ep s i l o n ;
thetaML = normal ize (A, ns , thetaML) ;
tp = toc ;
fpr int f (1 , ’<< (took %e s)\n\n ’ , tp) ;

%% (4) c l a s s i f y data using the obtained parameters
fpr int f (1 , ’>> C l a s s i f i c a t i o n us ing ML parameters . . . \ n ’) ;
t i c ;
[CLRateTrain , CLTableTrain] = Class i fyData (A, ns , thetaML , TrainData) ;
[CLRateTest , CLTableTest] = Clas s i fyData (A, ns , thetaML , TestData) ;
fpr int f (1 , ’∗ Training s e t : %3.2 f %%\n ’ , CLRateTrain) ;
fpr int f (1 , ’∗ Test s e t : %3.2 f %%\n ’ , CLRateTest) ;
tp = toc ;
fpr int f (1 , ’<< (took %e s)\n\n ’ , tp) ;

%%%
%% CLL learning %%%
%%%

%% (3) Train the network
t i c ;
fpr int f (1 , ’>> Learning CLL parameters . . . \ n ’) ;
thetaCLL = learnCGCLLParameters (A, ns , thetaML , TrainData , iterCLL) ;
tp = toc ;
fpr int f (1 , ’<< (took %e s)\n\n ’ , tp) ;

5

%% (4) c l a s s i f y data using the obtained parameters
fpr int f (1 , ’>> C l a s s i f i c a t i o n us ing CLL parameters . . . \ n ’) ;
t i c ;
[CLRateTrain , CLTableTrain] = Class i fyData (A, ns , thetaCLL , TrainData) ;
[CLRateTest , CLTableTest] = Clas s i fyData (A, ns , thetaCLL , TestData) ;
fpr int f (1 , ’∗ Training s e t : %3.2 f %%\n ’ , CLRateTrain) ;
fpr int f (1 , ’∗ Test s e t : %3.2 f %%\n ’ , CLRateTest) ;
tp = toc ;
fpr int f (1 , ’<< (took %e s)\n\n ’ , tp) ;

%%%
%% MM learning %%
%%%

%% (3) Train the network
t i c ;
fpr int f (1 , ’>> Learning MM parameters . . . \ n ’) ;
thetaMM = learnCGMMParameters (A, ns , thetaML , TrainData , i t e r , kappa , lambda) ;
tp = toc ;
fpr int f (1 , ’<< (took %e s)\n\n ’ , tp) ;

%% (4) c l a s s i f y data using the obtained parameters
fpr int f (1 , ’>> C l a s s i f i c a t i o n us ing MM parameters . . . \ n ’) ;
t i c ;
[CLRateTrain , CLTableTrain] = Class i fyData (A, ns , thetaMM , TrainData) ;
[CLRateTest , CLTableTest] = Clas s i fyData (A, ns , thetaMM , TestData) ;
fpr int f (1 , ’∗ Training s e t : %3.2 f %%\n ’ , CLRateTrain) ;
fpr int f (1 , ’∗ Test s e t : %3.2 f %%\n ’ , CLRateTest) ;
tp = toc ;
fpr int f (1 , ’<< (took %e s)\n\n ’ , tp) ;

References

[1] F. Pernkopf, M. Wohlmayr, and S. Tschiatschek, “Maximum margin bayesian network classi-
fiers,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 99, no. PrePrints,
2011.

6

