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Abstract

Belief propagation (BP) is an iterative method to perform approximate inference on
arbitrary graphical models. Whether BP converges and if the solution is a unique
fixed point depends on both, the structure and the parametrization of the model. To
understand this dependence it is interesting to find all fixed points. In this work,
we formulate a set of polynomial equations, the solutions of which correspond to
BP fixed points.
To solve such a nonlinear system we present the numerical polynomial-homotopy-
continuation (NPHC) method. We apply the proposed method to obtain all BP
fixed points on binary Ising models. Further we compare the accuracy of the corre-
sponding marginals to the exact marginal distribution. Contrary to the conjecture
that uniqueness of BP fixed points implies convergence, we find graphs for which
BP fails to converge, even though a unique fixed point exists. Moreover, we show
that this fixed point gives a good approximation, and the NPHC method is able to
obtain this fixed point.

1 Introduction

Performing exact inference on general probabilistic graphical models with many random variables
(RVs) is computational intractable. Belief propagation (BP) is an efficient method to approximate
the marginal distribution on graphs with loops. Despite the lack of guarantee for convergence, BP
has been successfully used for models with many loops, including applications in computer vision,
medical diagnosis systems, and speech processing [18, 1, 19]. However, instances of graphs do
exist where BP fails to converge. A deeper understanding of the reasons for convergence of BP, and
whether and how its non-convergence relates to the number of fixed points may therefore be crucial
in understanding BP.

Results that relate accuracy and convergence rate are available for small grid graphs and graphs with a
single loop [8, 22]. Sufficient conditions for uniqueness of fixed points were refined by accounting for
both, the potentials as well as the structure of the model [7, 17]. Still the precise relation among the
uniqueness of fixed points, convergence rate, and accuracy is yet to be theoretically understood [17].

In this work we aim to find all fixed points of BP to get deeper insights into the behavior of BP. If BP
converges it does only provide a single fixed point, whereas the recently proposed approximation of
survey propagation [21] represents distributions over BP messages. However, in order to find all fixed
points – including unstable ones, we reformulate the update rules of BP as a system of polynomial
equations.



There are indeed several methods to solve such a system of polynomial equations. Numerical solvers
(e.g., Newton’s method) are well established, but their ability in obtaining the solutions strongly
depends on the initial point. Moreover, such methods only find a single solution at a time. Symbolic
methods, on the other hand, are guaranteed to find all solutions. The Gröbner basis method [4, 5] is
widely used, but it is inefficient if the system has irrational coefficients. Furthermore it suffers from
fast growing run time and memory complexity, and has a limited scalability in parallel computation. In
this paper, we present the numerical polynomial homotopy continuation (NPHC) method [11, 20] that
overcomes all the above mentioned problems of both iterative and symbolic methods, yet guarantees
to find all solutions of the system. Over the last few decades, this class of methods has been proven
to be robust, efficient, and highly parallelizeable.

We apply the NPHC method to different realizations of the Ising model. On these graphs we
obtain all BP fixed points and show how the number of fixed points changes at critical regions (i.e.,
phase transitions) in the parameter space. We further use the obtained fixed points to estimate the
approximation of the marginal distribution which we compare to the exact marginal distribution. Our
main (empirical) observations are: (i) on loopy graphs BP does not necessarily converge to the best
possible fixed point, (ii) on some graphs where BP does not converge we are able to show that there
is a unique fixed point, and (iii) if we enforce convergence to this unique fixed point the obtained
marginals still give a good approximation.

2 Belief Propagation (BP)

We consider a finite set of N discrete random variables X = {X1, . . . , XN}with the corresponding
undirected graph G = (X,E), where X = {X1, . . . , XN} is the set of nodes and E is the set of
edges. The joint distribution takes the form of the product P (X = x) = 1

Z

∏L
l=1 ΦCl

(Cl), where
the potentials ΦCl

are specified over the maximal cliques Cl and Z ∈ R∗+ is a positive normalization
constant [18, p.105]. When applying BP all potentials are restricted to consist of at most two variables:
then, the joint distribution is factorized according to the normalized product

P (X = x) =
1

Z

∏
(i,j) : ei,j∈E

ΦXi,Xj
(xi, xj)

N∏
i=1

ΦXi
(xi). (1)

The first product runs over all edges and the second product runs over all nodes; pairwise potentials
and local evidence are denoted as ΦXi,Xj and ΦXi respectively. The marginals are approximated by
recursively updating messages between all RVs. At iteration n+ 1 the message between Xi and Xj

for state xj is given according to the update rule:

µn+1
i,j (xj)=αn

i,j

∑
xi∈S

ΦXi,Xj
(xi, xj)ΦXi

(xi)
∏

Xk∈Γi,j

µn
k,i(xi), (2)

where Γi,j = {Xk ∈ X\{Xi, Xj} : ei,j ∈ E}. Loosely speaking BP collects all messages sent to
Xi, except from Xj , and multiplies this product with the local potential ΦXi

(xi) and the pairwise
potential ΦXi,Xj

(xi, xj). The sum over both states of Xi is sent to Xj . In practice the messages are
often normalized by αn

i,j ∈ R∗+ so as to sum to one [9].

The set of all messages at iteration n is given by µn = {µn
i,j(xj) : ei,j ∈ E}. In a similar

manner we collect all normalization terms in αn. Let the mapping of all messages induced by
(2) be denoted as µn+1 = BP{µn}. If all successive messages show the same value (up to some
predefined precision), then BP is converged and returns the approximated marginals P̃ (Xi =
xi) = 1

Zi
ΦXi

(xi)
∏

Xk∈∂(Xi)
µ∗k,i(xi), where Xk are the neighbors of Xi, i.e., ∂(Xi). We refer to

converged messages and the associated normalization terms as fixed points (µ∗, α∗).

3 Solving BP Fixed Point Equations

To find all fixed points of BP we are naturally interested in conditions such that BP{µn} = µn.
Considering binary RVs, we estimate the residual, i.e., the difference between two successive message
values. Therefore, we formulate the following system of polynomial equations, whose solutions are
the fixed points of BP.
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F(µ, α) =


−µn

i,j(xj)+αn
i,j

∑
xi∈S

ΦXi,Xj (xi, xj)ΦXi(xi)
∏

Xk∈Γi,j

µn
k,i(xi)

−µn
i,j(x̄j)+αn

i,j

∑
xi∈S

ΦXi,Xj
(xi, x̄j)ΦXi

(xi)
∏

Xk∈Γi,j

µn
k,i(xi)

µn
i,j(xj) + µn

i,j(x̄j)− 1.

(3)

Let the set of solutions over complex variables, without accounting for multiplicity, be V (F) =
{(µ, α) ∈ C : fm(µ, α) = 0 for all fm ∈ F(µ, α)}. In practice we are only interested in strictly
positive solutions: V ∗R+

(F) ⊂ V (F). If (3) equates to zero, i.e., (µ, α) ∈ V (F), if follows that
BP{µ} = µ. Consequently all positive real solutions obtained by solving (3) constitute fixed points
of BP.

Whether such systems can be solved in practice depends largely on the chosen method. A great
variety of approaches have been developed to solve systems of nonlinear polynomial equation, such
as iterative solvers, symbolic methods, and homotopy methods.

One basic method for solving systems of nonlinear equations is Newton’s method which is an
iterative solver that progressively refines an initial guess to reach a solution. However, this method
may diverge or even exhibit chaotic behavior. Moreover, it is difficult, to obtain the full set of
solutions. Consequently iterative solvers are not useful in the current setting since we are interested
in the entire set of positive real solution V ∗R+

(F). From a completely different point of view, the
symbolic methods [4, 5] rely on symbolic manipulation of the equations and successive elimination
of variables to obtain a simpler but equivalent form. In a sense, these methods can be considered
as various generalizations of the Gaussian elimination method for linear systems into nonlinear
settings. In the past several decades, symbolic methods, especially the Gröbner basis method, has
seen substantial development. But a worst case complexity that is double exponential in the number
of variables [12, 14] and the limited scalability in parallel computation restricts the application to
smaller systems.

Another important approach for solving a system of nonlinear equations is the numerical polynomial
homotopy continuation (NPHC) method. The target system F(µ, α) in (3), which we intend to
solve, is continuously deformed into a closely related start system that is trivial to solve. With an
appropriate construction, the corresponding solutions also vary continuously under this deformation
forming solution paths that connect the solutions of the start system to the desired solutions of the
target system. Each of these solution paths can be tracked independently making this approach being
pleasantly parallelizeable; this is essential in dealing with large polynomial systems. More details on
the NPHC method can be found in [20, 11]

4 Experiments

We apply the NPHC method to obtain all fixed points on fully connected spin glass models. Subse-
quently we obtain the marginals and compare them with marginals obtained by an implementation
of BP without damping [15], as well as with the exact marginals obtained by the junction tree
algorithm [10].

We consider a fully connected Ising model with |X| = 4 RVs. Let the local and pairwise Ising
potentials of state xi be ΦXi(xi) = exp(θxi) and ΦXi,Xj (xi, xj) = exp(Jxixj). Then, the joint
distribution is equal to the Boltzmann distribution [13, p.44]:

P (X = x) =
1

Z
exp

( ∑
(i,j) : ei,j∈E

Jxixj +

N∑
i=1

θxi

)
. (4)

These models are well studied in the physics literature [6, 13] and exhibit phase transitions, i.e.,
regions in the parameter-space exist where BP has multiple solutions. In accordance with statistical
mechanics we separate the parameter space into three distinct regions (I),(II), and (III) (Fig. 1b).
The structure of (3) and the number of complex solutions in V (F ) does not change if the underlying
structure of the graph is the same [2, 3]; but, depending on the potentials, the number of solutions
in V ∗R+

(F) may change. For (J, θ) ∈ (III) BP has a unique fixed point, which is a stable attractor
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Table 1: MSE OF THE MARGINALS OBTAINED BY BP AND NPHC
Couplings Local Field BP NPHC
J ∈ [−2, 2] θ ∈ [−2, 2] 0.069 0.007
J ∈ (I) θ ∈ (I) 0.034 0.033
J ∈ (II) θ ∈ (II) 0.304 0.004
J ∈ (III) θ ∈ (III) 0.003 0.003
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Figure 1: (a) Convergence of BP: for blue BP did converge – for red it did not converge after 4 · 105

iterations. (b) Number of fixed points (yellow: unique fixed point, red: three fixed points). (c)
Number of real solutions: at the onset of phase transitions a sudden increase in the number of real
solutions can be seen.

in the whole message space [16]. In (I) three fixed points exist, two of which are symmetric, i.e.,
P̃1(X = xi) = P̃2(X = x̄i). BP converges to one of these fixed points. If J < 0, BP does only
converge inside (III) and not inside (II) (Fig. 1a). We can see two interesting effects: first in Fig. 1c
the number of real solutions increases at the onset of phase transitions; secondly, even though BP
does not converge, a unique fixed point exists inside (II) (Fig. 1b).

We further asses the accuracy of the marginals obtained by NPHC and BP; averaged over all graphs,
and for each region (Table 1). Indeed, inside region (II) the marginals obtained by NPHC give much
better approximations than BP does.

5 Discussion

The NPHC method is introduced as a tool to obtain all BP fixed point solutions. This work is
an attempt to get a deeper understanding of BP, with potential implications for finding stronger
conditions for uniqueness of BP fixed points.

First, we create a system of equations which has to be solved in order to obtain all fixed points of BP.
Secondly, we present our framework that can be used to obtain the solutions in practice. Finally, we
create a simple example and apply the proposed method and show an accuracy-gap between fixed
points of BP and the best fixed points obtained by NPHC. In practice this justifies the exploration of
multiple fixed points and selecting one that leads to the best approximation.We further show how the
number of fixed points evolves over a large parameter region. When applied to graphs where BP does
not converge, the NPHC method reveals that for some cases a unique fixed point does exist. While, in
practice, fixed points have to be positive, we empirically showed that there is a close relation between
the occurrence of phase transitions and an increase in the number of real solutions. In future we aim
to exploit the graph structure in order to reduce the complexity of constructing the start system.
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