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Abstract

This tutorial gives a gentle introduction to Markov models and hidden Markov models (HMMs) and relates
them to their use in automatic speech recognition. Additionally, the Viterbi algorithm is considered,
relating the most likely state sequence of a HMM to a given sequence of observations.

Usage

To make full use of this tutorial you should

1. Download the file HMM.zip which contains this tutorial and the accompanying Matlab programs.

2. Unzip HMM.zip which will generate a subdirectory named HMM/matlab where you can find all the
Matlab programs.

3. Add the folder HMM/matlab and the subfolders to the Matlab search path with a command
like addpath(’C:\Work\HMM\matlab’) if you are using a Windows machine or addpath(’/home/-
jack/HMM/matlab’) if you are using a Unix/Linux machine.

Sources

This tutorial is based on

• “Markov Models and Hidden Markov Models - A Brief Tutorial” International Computer Science
Institute Technical Report TR-98-041, by Eric Fosler-Lussier,

• EPFL lab notes “Introduction to Hidden Markov Models” by Hervé Bourlard, Sacha Krstulović,
and Mathew Magimai-Doss, and

• HMM-Toolbox (also included in BayesNet Toolbox) for Matlab by Kevin Murphy.

1 Markov Models

Let’s talk about the weather. Let’s say in Graz, there are three types of weather: sunny , rainy , and
foggy . Let’s assume for the moment that the weather lasts all day, i.e., it doesn’t change from rainy
to sunny in the middle of the day.

Weather prediction is about trying to guess what the weather will be like tomorrow based on the ob-
servations of the weather in the past (the history). Let’s set up a statistical model for weather prediction:
We collect statistics on what the weather qn is like today (on day n) depending on what the weather
was like yesterday qn−1, the day before qn−2, and so forth. We want to find the following conditional
probabilities

P (qn|qn−1, qn−2, ..., q1), (1)

meaning, the probability of the unknown weather at day n, qn ∈ { , , }, depending on the (known)
weather qn−1, qn−2, . . . of the past days.

Using the probability in eq. 1, we can make probabilistic predictions of the type of weather for
tomorrow and the next days using the observations of the weather history. For example, if we knew that
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the weather for the past three days was { , , } in chronological order, the probability that tomorrow
would be is given by:

P (q4 = |q3 = , q2 = , q1 = ). (2)

This probability could be inferred from the relative frequency (the statistics) of past observations of
weather sequences { , , , }.

Here’s one problem: the larger n is, the more observations we must collect. Suppose that n = 6,
then we have to collect statistics for 3(6−1) = 243 past histories. Therefore, we will make a simplifying
assumption, called the Markov assumption:

For a sequence {q1, q2, ..., qn}:

P (qn|qn−1, qn−2, ..., q1) = P (qn|qn−1). (3)

This is called a first-order Markov assumption: we say that the probability of a certain observation at
time n only depends on the observation qn−1 at time n− 1. (A second-order Markov assumption would
have the probability of an observation at time n depend on qn−1 and qn−2. In general, when people
talk about a Markov assumption, they usually mean the first-order Markov assumption.) A system for
which eq. 3 is true is a (first-order) Markov model, and an output sequence {qi} of such a system is a
(first-order) Markov chain.

We can also express the probability of a certain sequence {q1, q2, . . . , qn} (the joint probability of
certain past and current observations) using the Markov assumption:1

P (q1, ..., qn) =

n∏
i=1

P (qi|qi−1). (4)

The Markov assumption has a profound affect on the number of histories that we have to find statistics
for – we now only need 3 · 3 = 9 numbers (P (qn|qn−1) for every possible combination of qn, qn−1 ∈
{ , , }) to characterize the probabilities of all possible sequences. The Markov assumption may or
may not be a valid assumption depending on the situation (in the case of weather, it’s probably not
valid), but it is often used to simplify modeling.

So let’s arbitrarily pick some numbers for P (qtomorrow|qtoday), as given in table 1 (note, that – whatever
the weather is today – there certainly is some kind of weather tomorrow, so the probabilities in every
row of table 1 sum up to one).

Tomorrow’s weather
Today’s weather

0.8 0.05 0.15

0.2 0.6 0.2

0.2 0.3 0.5

Table 1: Probabilities p(qn+1|qn) of tomorrow’s weather based on today’s weather

For first-order Markov models, we can use these probabilities to draw a probabilistic finite state
automaton. For the weather domain, we would have three states, S = { , , }, and every day there
would be a possibility p(qn|qn−1) of a transition to a (possibly different) state according to the probabilities
in table 1. Such an automaton would look like shown in figure 1.

1.0.1 Examples

1. Given that today the weather is , what’s the probability that tomorrow is and the day after is
?

1One question that comes to mind is “What is q0?” In general, one can think of q0 as the start word, so P (q1|q0)
is the probability that q1 can start a sentence. We can also just multiply a prior probability of q1 with the product of∏n

i=2 P (qi|qi−1) , it’s just a matter of definitions.
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Figure 1: Markov model for the Graz weather with state transition probabilities according to table 1

Using the Markov assumption and the probabilities in table 1, this translates into:

P (q2 = , q3 = |q1 = ) = P (q3 = |q2 = , q1 = ) · P (q2 = |q1 = )

= P (q3 = |q2 = ) · P (q2 = |q1 = ) (Markov assumption)

= 0.05 · 0.8
= 0.04

You can also think about this as moving through the automaton (figure 1), multiplying the proba-
bilities along the path you go.

2. Assume, the weather yesterday was q1 = , and today it is q2 = , what is the probability that
tomorrow it will be q3 = ?

P (q3 = |q2 = , q1 = ) = P (q3 = |q2 = ) (Markov assumption)

= 0.2.

3. Given that the weather today is q1 = , what is the probability that it will be two days from
now: q3 = . (Hint: There are several ways to get from today to two days from now. You
have to sum over these paths.)

2 Hidden Markov Models (HMMs)

So far we heard of the Markov assumption and Markov models. So, what is a Hidden Markov Model?
Well, suppose you were locked in a room for several days, and you were asked about the weather outside.
The only piece of evidence you have is whether the person who comes into the room bringing your daily
meal is carrying an umbrella ( ) or not ( ).

Let’s suppose the probabilities shown in table 2: The probability that your caretaker carries an
umbrella is 0.1 if the weather is sunny, 0.8 if it is actually raining, and 0.3 if it is foggy.

The equation for the weather Markov process before you were locked in the room was (eq. 4):

P (q1, ..., qn) =

n∏
i=1

P (qi|qi−1).

However, the actual weather is hidden from you. Finding the probability of a certain weather qi ∈
{ , , } can only be based on the observation xi, with xi = , if your caretaker brought an umbrella
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Weather Probability of umbrella

Sunny 0.1

Rainy 0.8

Foggy 0.3

Table 2: Probability P (xi|qi) of carrying an umbrella (xi = true) based on the weather qi on some day i

on day i, and xi = if the caretaker did not bring an umbrella. This conditional probability P (qi|xi)
can be rewritten according to Bayes’ rule:

P (qi|xi) =
P (xi|qi)P (qi)

P (xi)
,

or, for n days, and weather sequence Q = {q1, . . . , qn}, as well as ‘umbrella sequence’ X = {x1, , . . . , xn}

P (q1, . . . , qn|x1, . . . , xn) =
P (x1, . . . , xn|q1, . . . , qn)P (q1, . . . , qn)

P (x1, . . . , xn)
,

using the probability P (q1, . . . , qn) of a Markov weather sequence from above, and the probability
P (x1, . . . , xn) of seeing a particular sequence of umbrella events (e.g., { , , }). The probability
P (x1, . . . , xn|q1, . . . , qn) can be estimated as

∏n
i=1 P (xi|qi), if you assume that, for all i, the qi, xi are

independent of all xj and qj , for all j 6= i.
We want to draw conclusions from our observations (if the persons carries an umbrella or not) about

the weather outside. We can therefore omit the probability of seeing an umbrella P (x1, . . . , xn) as it
is independent of the weather, that we like to predict. We get a measure for the probability, which is
proportional to the probability, and which we will refer as the likelihood L.

P (q1, . . . , qn|x1, . . . , xn) ∝
L(q1, . . . , qn|x1, . . . , xn) = P (x1, . . . , xn|q1, . . . , qn) · P (q1, . . . , qn)

(5)

With our (first order) Markov assumption it turns to:

P (q1, . . . , qn|x1, . . . , xn) ∝

L(q1, . . . , qn|x1, . . . , xn) =

n∏
i=1

P (xi|qi) ·
n∏

i=1

P (qi|qi−1)
(6)

2.0.2 Examples

1. Suppose the day you were locked in it was sunny. The next day, the caretaker carried an umbrella
into the room. You would like to know, what the weather was like on this second day.

First we calculate the likelihood for the second day to be sunny:

L(q2 = |q1 = , x2 = ) = P (x2 = |q2 = ) · P (q2 = |q1 = )

= 0.1 · 0.8 = 0.08,

then for the second day to be rainy:

L(q2 = |q1 = , x2 = ) = P (x2 = |q2 = ) · P (q2 = |q1 = )

= 0.8 · 0.05 = 0.04,

and finally for the second day to be foggy:

L(q2 = |q1 = , x2 = ) = P (x2 = |q2 = ) · P (q2 = |q1 = )

= 0.3 · 0.15 = 0.045.

Thus, although the caretaker did carry an umbrella, it is most likely that on the second day the
weather was sunny.
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2. Suppose you do not know how the weather was when your were locked in. The following three days
the caretaker always comes without an umbrella. Calculate the likelihood for the weather on these
three days to have been {q1 = , q2 = , q3 = }. As you do not know how the weather is on
the first day, you assume the 3 weather situations are equi-probable on this day (cf. footnote on
page 2), and the prior probability for sun on day one is therefore P (q1 = |q0) = P (q1 = ) = 1/3.

L(q1 = , q2 = , q3 = |x1 = , x2 = , x3 = ) =

P (x1 = |q1 = ) · P (x2 = |q2 = ) · P (x3 = |q3 = )·
P (q1 = ) · P (q2 = |q1 = ) · P (q3 = |q2 = ) =

0.9 · 0.7 · 0.9 · 1/3 · 0.15 · 0.2 = 0.0057

(7)

2.1 HMM Terminology

A HMM Model is specified by:

- The set of states S = {s1, s2, . . . , sNs
}, (corresponding to the three possible weather conditions

above),

and a set of parameters Θ = {π,A,B}:

- The prior probabilities πi = P (q1 = si) are the probabilities of si being the first state of a state
sequence. Collected in a vector π. (The prior probabilities were assumed equi-probable in the last
example, πi = 1/Ns.)

- The transition probabilities are the probabilities to go from state i to state j: ai,j = P (qn+1 =
sj |qn = si). They are collected in the matrix A.

- The emission probabilities characterize the likelihood of a certain observation x, if the model is in
state si. Depending on the kind of observation x we have:

- for discrete observations, xn ∈ {v1, . . . , vK}: bi,k = P (xn = vk|qn = si), the probabilities to
observe vk if the current state is qn = si. The numbers bi,k can be collected in a matrix B.
(This would be the case for the weather model, with K = 2 possible observations v1 = and
v2 = .)

- for continuous valued observations, e.g., xn ∈ RD: A set of functions bi(xn) = p(xn|qn = si)
describing the probability densities (probability density functions, pdfs) over the observation
space for the system being in state si. Collected in the vector B(x) of functions. Emission
pdfs are often parametrized, e.g, by mixtures of Gaussians.

The operation of a HMM is characterized by

- The (hidden) state sequence Q = {q1, q2, . . . , qN}, qn ∈ S, (the sequence of the weather conditions
from day 1 to N).

- The observation sequence X = {x1, x2, . . . , xN}.

A HMM allowing for transitions from any emitting state to any other emitting state is called an
ergodic HMM. The other extreme, a HMM where the transitions only go from one state to itself or to a
unique follower is called a left-right HMM.

Useful formula:

- Probability of a state sequence: the probability of a state sequence Q = {q1, q2, . . . , qN} coming
from a HMM with parameters Θ corresponds to the product of the transition probabilities from
one state to the following:

P (Q|Θ) = πq1 ·
N−1∏
n=1

aqn,qn+1
= πq1 · aq1,q2 · aq2,q3 · . . . · aqN−1,qN (8)
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- Likelihood of an observation sequence given a state sequence, or likelihood of an observation sequence
along a single path: given an observation sequence X = {x1, x2, . . . , xN} and a state sequence Q =
{q1, q2, . . . , qN} (of the same length) determined from a HMM with parameters Θ, the likelihood
of X along the path Q is equal to:

P (X|Q,Θ) =

N∏
n=1

P (xn|qn,Θ) = bq1,x1
· bq2,x2

· . . . · bqN ,xN
(9)

i.e., it is the product of the emission probabilities computed along the considered path.

- Joint likelihood of an observation sequence X and a path Q: it is the probability that X and Q occur
simultaneously, p(X,Q|Θ), and decomposes into a product of the two quantities defined previously:

P (X,Q|Θ) = P (X|Q,Θ) · P (Q|Θ) (Bayes) (10)

- Likelihood of a sequence with respect to a HMM: the likelihood of an observation sequence X =
{x1, x2, . . . , xN} with respect to a Hidden Markov Model with parameters Θ expands as follows:

P (X|Θ) =
∑
all Q

P (X,Q|Θ)

i.e., it is the sum of the joint likelihoods of the sequence over all possible state sequences Q allowed
by the model.

2.2 Trellis Diagram

A trellis diagram can be used to visualize likelihood calculations of HMMs. Figure 2 shows such a diagram
for a HMM with 3 states.

..........

..........

.......... ..........

..........

..........

time

a1,1

a1,3State 2

State 1

State 3

Sequence:

n = 2 n = i n = Nn = 1

xNxix2x1

a1,2

b1,k

b2,k

b3,k b3,k

b2,k

b1,k b1,k

b2,k

b3,k

b1,k

b2,k

b3,k

Figure 2: Trellis diagram

Each column in the trellis shows the possible states of the weather at a certain time n. Each state
in one column is connected to each state in the adjacent columns by the transition likelihood given by
the the elements ai,j of the transition matrix A (shown for state 1 at time 1 in figure 2). At the bottom
is the observation sequence X = {x1, . . . , xN}. bi,k is the likelihood of the observation xn = vk in state
qn = si at time n.

Figure 3 shows the trellis diagram for Example 2 in sect. 2.0.2. The likelihood of the state sequence
given the observation sequence can be found by simply following the path in the trellis diagram, multi-
plying the observation and transition likelihoods.

L = π · b , · a , · b , · a , · b , (11)

= 1/3 · 0.9 · 0.15 · 0.7 · 0.2 · 0.9 (12)
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Figure 3: Trellis diagram for Example 2 in sect. 2.0.2

2.3 Generating samples from Hidden Markov Models

2.3.1 Question

Find the parameter set Θ = {π,A,B} that describes the weather HMM. Let’s suppose that the prior
probabilities are the same for each state.

2.3.2 Experiment

Let’s generate a sample sequence X coming from our weather HMM. First you have to specify the
parameter set Θ = {π,A,B} that describes the model.
>> %Choose the prior probabilities as you like: E.g., first day sunny

>> Pi w=[1 0 0]

The transition matrix is given in table 1:
>> A w = [0.8 0.05 0.15; 0.2 0.6 0.2; 0.2 0.3 0.5]

As the observation probabilities in this case are discrete probabilities, they can be saved in a matrix:
>> B w = [0.1 0.9; 0.8 0.2; 0.3 0.7]

In this observation matrix B, using the numbers from table 2, the rows correspond to the states and the
columns to our 2 discrete observations, i.e., b1,1 = p(umbrella = ) and b1,2 = p(umbrella = ) is the
probability of seeing an umbrella, resp. not seeing an umbrella, if the weather is in state s1: qn = .

Use the function sample dhmm to do several draws with the weather model. View the resulting samples
and state sequences with the help of the function plotseq w. In the matrix containing the data, 1 stands
for ‘umbrella= ’ and 2 for ‘umbrella= ’.
>> % drawing 1 sample of length 4 (4 days)

>> [data,hidden] = sample dhmm(Pi w,A w,B w,1,4)

>> plotseq w(data,hidden)

2.3.3 Task

Write a Matlab function prob path(), that computes the joint likelihood for a given observation se-
quence and an assumed path:
>> prob = prob path(data,path,Pi w,A w,B w)

Input arguments are the observed sequence data, the assumed path path, and the weather HMM param-
eters (prior probabilities Pi w, transition matrix A w, and emission matrix B w). Use the function obslik

= mk dhmm obs lik(data,obsmat) to produce an observation likelihood matrix where the entries corre-
spond to bi,j in a trellis diagram (see figures 2 and 3). Type help mk dhmm obs lik for more detailed
information.

• Produce same random sequences, plot them and calculate their likelihood.
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You can test your function to make the likelihood calculation for the 2. Example from section 2.0.2
described above.(Input parameters: data=[2 2 2];path=[1 3 1];prior=[1/3 1/3 1/3].)
>> prob = prob path([2 2 2],[1 3 1], [1/3 1/3 1/3], A w, B w)

2.4 HMMs for speech recognition

Let’s forget about the weather and umbrellas for a moment and talk about speech. In automatic speech
recognition, the task is to find the most likely sequence of words Ŵ given some acoustic input, or:

Ŵ = arg max
W∈W

P (W |X). (13)

Here, X = {x1,x2, . . . ,xN} is the sequence of “acoustic vectors” – or “feature vectors” – that are
“extracted” from the speech signal, and we want to find Ŵ as the sequence of words W (out of all possible
word sequences W), that maximizes P (W |X). To compare this to the weather example, the acoustic
feature vectors are our observations, corresponding to the umbrella observations, and the word sequence
corresponds to the weather on successive days (a day corresponds to about 10 ms), i. e., to the hidden
state sequence of a HMM for speech production.

Words are made of ordered sequences of phonemes: /h/ is followed by /e/ and then by /l/ and /O/
in the word “hello”. This structure can be adequately modeled by a left-right HMM, where each state
corresponds to a phone. Each phoneme can be considered to produce typical feature values according to
a particular probability density (possibly Gaussian) (Note, that the observed feature values xi now are
d-dimensional vectors and continuous valued, xi ∈ Rd, and no more discrete values, as for the weather
model where xi could only be true or false: xi ∈ { , }!).

In “real world” speech recognition, the phonemes themselves are often modeled as left-right HMMs
(e.g., to model separately the transition part at the begin of the phoneme, then the stationary part, and
finally the transition at the end). Words are then represented by large HMMs made of concatenations of
smaller phonetic HMMs.

Values used throughout the following experiments:

In the following experiments we will work with HMMs where the ‘observations’ are drawn from a Gaussian
probability distribution. Instead of an observation matrix (as in the weather example) the observations
of each state are described by the mean value and the variance of a Gaussian density.

The following 2-dimensional Gaussian pdfs will be used to model simulated observations of the vowels
/a/, /i/, and /y/2. The observed features are the first two formants (maxima of the spectral envelope),
which are characteristic for the vowel identity, e.g., for the vowel /a/ the formants typically occur around
frequencies 730 Hz and 1090 Hz.

State s1 (for /a/): N/a/: µ/a/ =

[
730

1090

]
, Σ/a/ =

[
1625 5300

5300 53300

]

State s2 (for /i/): N/i/: µ/i/ =

[
270

2290

]
, Σ/i/ =

[
2525 1200

1200 36125

]

State s3 (for /y/): N/y/: µ/y/ =

[
440

1020

]
, Σ/y/ =

[
8000 8400

8400 18500

]
(Those densities have been used in the previous lab session.) The Gaussian pdfs now take the role of the
emission matrix B in the hidden Markov models for recognition of the three vowels /a/, /i/, and /y/.

The parameters of the densities and of the Markov models are stored in the file data.mat (Use: load
data). A Markov model named, e.g., hmm1 is stored as an object with fields hmm1.means, hmm1.vars,
hmm1.trans,hmm1.pi. The means fields contains a matrix of mean vectors, where each column of the
matrix corresponds to one state si of the HMM (e.g., to access the means of the second state of hmm1 use:
hmm1.means(:,2); the vars field contains a 3 dimensional array of variance matrices, where the third

2Phonetic symbol for the usual pronunciation of ‘ü’
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Figure 4:

dimension corresponds to the state (e.g to access Σ/a/ for state 1 use hmm1.vars(:,:,1); the trans field
contains the transition matrix, and the pi field the prior probabilities.

2.4.1 Task

Load the HMMs and make a sketch of each of the models with the transition probabilities.

2.4.2 Experiment

Generate samples using the HMMs and plot them with plotseq and plotseq2.
Use the functions plotseq and plotseq2 to plot the obtained 2-dimensional data. In the resulting views,
the obtained sequences are represented by a yellow line where each point is overlaid with a colored dot.
The different colors indicate the state from which any particular point has been drawn.
>> %Example:generate sample from HMM1 of length N

>> [X,ST]=sample ghmm(hmm1,N)

>> plotseq(X,ST) % View of both dimensions as separate sequences

>> plotseq2(X,ST,hmm1) %2D view with location of gaussian states

Draw several samples with the same parameters and compare. Compare the Matlab figures with
your sketch of the model.
What is the effect of the different transition matrices of the HMMs on the sequences obtained during the
current experiment? Hence, what is the role of the transition probabilities in the HMM?

3 Pattern Recognition with HMM

In equation 10 we expressed the joint likelihood p(X,Q|Θ) of an observation sequence X and a path Q
given a model with parameters Θ.

The likelihood of a sequence with respect to a HMM (the likelihood of an observation sequence X =
{x1, x2, · · · , xN} for a given hidden Markov model with parameters Θ ) expands as follows:

p(X|Θ) =
∑

every possible Q

p(X,Q|Θ), (14)

i.e., it is the sum of the joint likelihoods of the sequence over all possible state sequences allowed by the
model (see Trellis diagram in figure 3).

Calculating the likelihood in this manner is computationally expensive, particularly for large models
or long sequences. It can be done with a recursive algorithm (forward-backward algorithm), which reduces
the complexity of the problem. For more information about this algorithm see [1]. It is very common
using log-likelihoods and log-probabilities, computing log p(X|Θ) instead of p(X|Θ).
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3.0.3 Experiment

Classify the sequences X1, X2, X3, X4, given in the file Xdata.mat, in a maximum likelihood sense with
respect to the four Markov models. Use the function loglik ghmm to compute the likelihood of a sequence
with respect to a HMM. Store the results in a matrix (they will be used in the next section).
>> load Xdata

>> % Example:

>> logProb(1,1) = loglik ghmm(X1,hmm1)

>> logProb(1,2) = loglik ghmm(X1,hmm2)

etc.
>> logProb(3,2) = loglik ghmm(X3,hmm2)

etc.
Instead of typing these commands for every combination of the four sequences and models, filling the

logProb matrix can be done automatically with the help of loops, using a command string composed of
fixed strings and strings containing the number of sequence/model:

>> for i=1:4,

for j=1:4,

stri = num2str(i);

strj = num2str(j);

cmd = [’logProb(’,stri,’,’,strj,’) = loglik_ghmm(X’,stri,’,hmm’,strj,’);’]

eval(cmd);

end;

end;

You can find the maximum value of each row i of the matrix, giving the index of the most likely model
for sequence Xi, with the Matlab function max:

for i=1:4;

[v,index]=max(logProb(i,:));

disp ([’X’,num2str(i),’ -> HMM’,num2str(index)]);

end

i Sequence log p(Xi|Θ1) log p(Xi|Θ2) log p(Xi|Θ3) log p(Xi|Θ4)
Most likely
model

1 X1

2 X2

3 X3

4 X4

4 Optimal state sequence

In speech recognition and several other pattern recognition applications, it is useful to associate an
“optimal” sequence of states to a sequence of observations, given the parameters of a model. For instance,
in the case of speech recognition, knowing which frames of features “belong” to which state allows to
locate the word boundaries across time. This is called alignment of acoustic feature sequences.

A “reasonable” optimality criterion consists of choosing the state sequence (or path) that has the
maximum likelihood with respect to a given model. This sequence can be determined recursively via the
Viterbi algorithm.

This algorithm makes use of two variables:

• δn(i) is the highest likelihood of a single path among all the paths ending in state si at time n:

δn(i) = max
q1,q2,...,qn−1

p(q1, q2, . . . , qn−1, qn = si, x1, x2, . . . xn|Θ) (15)
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• a variable ψn(i) which allows to keep track of the “best path” ending in state si at time n:

ψn(i) = arg max
q1,q2,...,qn−1

p(q1, q2, . . . , qn−1, qn = si, x1, x2, . . . xn|Θ) (16)

The idea of the Viterbi algorithm is to find the most probable path for each intermediate and finally
for the terminating state in the trellis. At each time n only the most likely path leading to each state si
‘survives’.

The Viterbi Algorithm

for a HMM with Ns states.

1. Initialization

δ1(i) = πi · bi,x1 , i = 1, . . . , Ns

ψ1(i) = 0
(17)

where πi is the prior probability of being in state si at time n = 1.

2. Recursion

δn(j) = max
1≤i≤Ns

(δn−1(i) · aij) · bj,xn
,

2 ≤ n ≤ N
1 ≤ j ≤ Ns

ψn(j) = arg max
1≤i≤Ns

(δn−1(i) · aij) ,
2 ≤ n ≤ N
1 ≤ j ≤ Ns

(18)

“Optimal policy is composed of optimal sub-policies”: find the path that leads to a maximum likeli-
hood considering the best likelihood at the previous step and the transitions from it; then multiply
by the current likelihood given the current state. Hence, the best path is found by induction.

3. Termination

p∗(X|Θ) = max
1≤i≤Ns

δN (i)

q∗N = arg max
1≤i≤Ns

δN (i)
(19)

Find the best likelihood when the end of the observation sequence t = T is reached.

4. Backtracking

Q∗ = {q∗1 , . . . , q∗N} so that q∗n = ψn+1(q∗n+1), n = N − 1, N − 2, . . . , 1 (20)

Read (decode) the best sequence of states from the ψn vectors.

4.0.4 Example

Let’s get back to our weather HMM. You don’t know how the weather was when your were locked in. On
the first 3 days your umbrella observations are: {no umbrella,umbrella,umbrella} ({ , , }). Find
the most probable weather-sequence using the Viterbi algorithm (assume the 3 weather situations to be
equi-probable on day 1).

1. Initialization
n = 1:

δ1( ) = π · b , = 1/3 · 0.9 = 0.3

ψ1( ) = 0

δ1( ) = π · b , = 1/3 · 0.2 = 0.0667

ψ1( ) = 0

δ1( ) = π · b , = 1/3 · 0.7 = 0.233

ψ1( ) = 0

11



ST
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S

time

Sequence:

δ1 = 0.3

n = 1 n = 2 n = 3

ψ2( ) =

δ2( ) = max(δ1( ) · a , , δ1( ) · a , , δ1( ) · a , ) · b ,

x1 = x2 = x3 =

Figure 5: Viterbi algorithm to find the most likely weather sequence. Finding the most likely path to
state ‘sunny’ at n = 2.

2. Recursion
n = 2 :
We calculate the likelihood of getting to state ‘ ’ from all possible 3 predecessor states, and choose
the most likely one to go on with:

δ2( ) = max(δ1( ) · a , , δ1( ) · a , , δ1( ) · a , ) · b ,

= max(0.3 · 0.8, 0.0667 · 0.2, 0.233 · 0.2) · 0.1 = 0.024

ψ2( ) =

The likelihood is stored in δ, the most likely predecessor in ψ. See figure 5.

The same procedure is executed with states and :

δ2( ) = max(δ1( ) · a , , δ1( ) · a , , δ1( ) · a , ) · b ,

= max(0.3 · 0.05, 0.0667 · 0.6, 0.233 · 0.3) · 0.8 = 0.056

ψ2( ) =

δ2( ) = max(δ1( ) · a , , δ1( ) · a , , δ1( ) · a , ) · b ,

= max(0.3 · 0.15, 0.0667 · 0.2, 0.233 · 0.5) · 0.3 = 0.0350

ψ2( ) =

n = 3 :

δ3( ) = max(δ2( ) · a , , δ2( ) · a , , δ2( ) · a , ) · b ,

= max(0.024 · 0.8, 0.056 · 0.2, 0.035 · 0.2) · 0.1 = 0.0019

ψ3( ) =

δ3( ) = max(δ2( ) · a , , δ2( ) · a , , δ2( ) · a , ) · b ,

= max(0.024 · 0.05, 0.056 · 0.6, 0.035 · 0.3) · 0.8 = 0.0269

ψ3( ) =

δ3( ) = max(δ2( ) · a , , δ2( ) · a , , δ2( ) · a , ) · b ,

= max(0.0024 · 0.15, 0.056 · 0.2, 0.035 · 0.5) · 0.3 = 0.0052

ψ3( ) =

Finally, we get one most likely path ending in each state of the model. See figure 6.
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Sequence:

time

n = 1 n = 2 n = 3

δ3( ) = 0.0019

δ3( ) = 0.0052

δ3( ) = 0.0269

x1 = x2 = x3 =

Figure 6: Viterbi algorithm to find most likely weather sequence at n = 3.

ST
A

T
E

S

Sequence:

time

δ3( ) = 0.0019

δ3( ) = 0.0052

δ3( ) = 0.0269

n = 1 n = 2 n = 3

x2 = x3 =x1 =

Figure 7: Viterbi algorithm to find most likely weather sequence. Backtracking.

3. Termination
The globally most likely path is determined, starting by looking for the last state of the most likely
sequence.

P ∗(X|Θ) = max(δ3(i)) = δ3( ) = 0.0269

q∗3 = arg max(δ3(i)) =

4. Backtracking
The best sequence of states can be read from the ψ vectors. See figure 7.
n = N − 1 = 2:

q∗2 = ψ3(q∗3) = ψ3( ) =

n = N − 1 = 1:
q∗1 = ψ2(q∗2) = ψ2( ) =

Thus the most likely weather sequence is: Q∗ = {q∗1 , q∗2 , q∗3} = { , , }.

4.0.5 Task

1. Write a Matlab function [loglik,path] = vit ghmm(data,HMM) to implement the Viterbi al-
gorithm for HMMs with Gaussian emissions. Use the function mk ghmm obs lik to calculate the
observation likelihood matrix for a given sequence. Store the δ and ψ vectors in a matrix in the
format of the observation likelihood matrix. You can either write the function with the algorithm
exactly as given before, or switch to make the calculations in the log likelihood domain, where the
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multiplications of the parameters δ and ψ transform to additions. What are the advantages or dis-
advantages of the second method? (Think about how to implement it on a real system with limited
computational accuracy, and about a HMM with a large number of states where the probabilities
ai,j and bi,k might be small.)

2. Use the function vit ghmm to determine the most likely path for the sequences X1, X2, X3 and X4.
Compare with the state sequence ST1, . . . , ST4 originally used to generate X1, . . . , X4. (Use the
function compseq, which provides a view of the first dimension of the observations as a time series,
and allows to compare the original alignment to the Viterbi solution).
>> [loglik,path] = vit ghmm(X1,hmm1); compseq(X1,ST1,path);

>> [loglik,path] = vit ghmm(X2,hmm1); compseq(X2,ST2,path);

Repeat for the remaining sequences.

3. Use the function vit ghmm to compute the probabilities of the sequences X1, . . . , X4 along the best
paths with respect to each model Θ1, . . . ,Θ4. Note down your results below. Compare with the
log-likelihoods obtained in section 3.0.3 using the forward procedure.
>> diffL=logProb-logProbViterbi

Likelihoods along the best path:

i Sequence log p∗(Xi|Θ1) log p∗(Xi|Θ2) log p∗(Xi|Θ3) log p∗(Xi|Θ4)
Most likely
model

1 X1

2 X2

3 X3

4 X4

Difference between log-likelihoods and likelihoods along the best path:

Sequence HMM1 HMM2 HMM3 HMM4

X1

X2

X3

X4

Question:

Is the likelihood along the best path a good approximation of the real likelihood of a sequence given a
model?
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