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Abstract
Single channel source separation (SCSS) is ill-posed and
thus challenging. In this paper, we apply general stochastic
networks (GSNs) – a deep neural network architecture –
to SCSS. We extend GSNs to be capable of predicting a
time-frequency representation, i.e. softmask by introducing
a hybrid generative-discriminative training objective to the
network. We evaluate GSNs on data of the 2nd CHiME speech
separation challenge. In particular, we provide results for a
speaker dependent, a speaker independent, a matched noise
condition and an unmatched noise condition task. Empirically,
we compare to other deep architectures, namely a deep belief
network (DBN) and a multi-layer perceptron (MLP). In
general, deep architectures perform well on SCSS tasks.

Index Terms: general stochastic network, speech separation,
speech enhancement, single channel source separation

1. Introduction
Researchers have attempted to solve SCSS problems from
various perspectives. In [1, 2] the focus is on model based
approaches. Recently [3] approached the problem via struc-
tured prediction. In all cases a time-frequency matrix called
ideal binary mask (IBM) is estimated from a mixed input
spectogram X , separating X into noise and speech parts. In
this case the underlying assumption is that speech is sparse,
i.e. each time frequency bin belongs to one of the two assumed
sources. Despite of the good results using deep models and
binary masks [3], little attention has been payed to using a real
valued mask i.e. softmask. This type of mask allows a more
precise estimate of speech, leading to a better overall quality
[4]. In this paper, we use the softmask in conjunction with deep
learning i.e. we view SCSS as a regression problem.

The success in deep learning originates from breakthroughs
in unsupervised learning of representations, based mostly on
the restricted Boltzmann machine (RBM) [5], auto-encoder-
[6, 7] and sparse-coding variants [8, 9]. These models in repre-
sentation learning also obtain impressive results in supervised
learning tasks, such as speech recognition, c.f. [10, 11, 12]
and computer vision problems [13]. The latest development in
object recognition is a form of noise injection during training,
called dropout [14]. Often deep models are pre-trained by a
greedy-layerwise procedure called contrastive divergence [5],
i.e. a network layer learns the representation from the layer
below by treating the latter as static input. Recently, a new
training procedure for supervised learning, called walkback
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training, was introduced [15]. The combination of noise, a
multi-layer feed-forward neural network and walkback training
leads to a new network architecture, the generative stochastic
network (GSN) [16]. If trained with backpropagation, the
model can be jointly pre-trained removing the need for
a greedy-layerwise training procedure. Empirical results
obtained in [15, 17] show that this form of joint pre-training
leads to superior results on several image reconstruction tasks.
However this technique has never been applied to supervised
learning problems.

In this paper, we use GSNs to learn and predict the
softmask for SCSS. We introduce a new joint walkback
training method to GSNs. In particular, we use a generative
and discriminative training objective to learn the softmask to
separate signal mixtures of the 2nd CHiME speech separation
challenge [18]. We define four tasks: A speaker dependent
(SD), a speaker independent (SI), a matched noise condition
(MN) and an unmatched noise condition (UN) task. The GSN
is compared to a deep belief network (DBN) [5] and a rectifier
multi-layer perceptron (MLP) [19, 20]. GSNs perform on par
with rectifier MLPs. Both slightly outperform a DBN i.e. the
MLP achieved the best PESQ [21] score, namely 3.17 for the
(SD) task, 3.30 for the (MN) task and 2.7 for the (UN) task.
The GSN achieved the best PESQ score 2.72 on the (SI) task.

This paper is organized as follows: Section 2 presents the
mathematical background. Section 3 introduces four SCSS
problems using the CHiME database. Section 4 presents exper-
imental results of the GSN, the DBN and the recifier MLP and
summarizes results. Section 5 concludes the paper and gives a
future outlook.

2. General Stochastic Networks
Denoising autoencoders (DAE) [7] define a Markov chain,
where the distribution P (X) is sampled to convergence. The
transition operator first samples the hidden state Ht from a cor-
ruption distribution, and generates a reconstruction from the
parametrized model, i.e the density Pθ2(X|H). The resulting
DAE Markov chain is shown in Figure 1.
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Figure 1: DAE Markov chain.



A DAE Markov chain can be written as

Ht+1 ∼ Pθ1(H|Xt+0) and Xt+1 ∼ Pθ2(X|Ht+1), (1)

where Xt+0 is the input sample X , fed into the chain at
time step t = 0 and Xt+1 is the reconstruction of X at time
step t = 1.
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Figure 2: GSN Markov chain.

In the case of a GSN, an additional dependency among the
latent variablesHt over time is introduced in the network graph.
Figure 2 shows the corresponding Markov chain, written as

Ht+1 ∼ Pθ1(H|Ht+0, Xt+0)

Xt+1 ∼ Pθ2(X|Ht+1). (2)

We express this chain with deterministic functions of ran-
dom variables fθ ⊇ {f̂θ, f̌θ}. The density fθ is used to
model Ht+1 = fθ(Xt+0, Zt+0, Ht+0), specified for some in-
dependent noise source Zt+0. Xt+0 cannot be recovered ex-
actly from Ht+1. The function f̂ iθ is a back-probable stochas-
tic non-linearity of the form f̂ iθ = ηout + g(ηin + âi) with
noise processes Zt ⊇ {ηin, ηout} for layer i. The variable
âi is the activation for unit i, where âi = W iIit + bi with
g as a non-linear activation function applied to a weight ma-
trix W i and a bias bi. The input Iit denotes either the real-
ization xit of observed sample Xi

t or the hidden realization hit
of Hi

t . In general, f̂ iθ(I
i
t) defines an upward path in a GSN

for a specific layer i. In the case of Xi
t+1 = f̌ iθ(Zt+0, Ht+1)

we specify f̌ iθ(H
i
t) = ηout + g(ηin + ǎi) as a downward

path in the network i.e. ǎi = (W i)THi
t + (bi)T , using the

transpose of the weight matrix W i and the bias bi respec-
tively. This formulation allows to directly back-propagate the
reconstruction log-likelihood log(P (X|H)) for all parameters
θ ⊇ {W 0, ...,W d, b0, ..., bd} where d is the number of hidden
layers. Figure 2 shows a GSN with a simple hidden layer, using
two deterministic functions, i.e. {f̂0

θ , f̌
0
θ }.
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Figure 3: GSN Markov chain with multiple layers and
backprob-able stochastic units.

Multiple hidden layers require multiple deterministic
functions of random variables fθ ∈ {f̂0

θ , ..., f̂
d
θ , f̌

0
θ , ...f̌

d
θ }.

Figure 3 shows a Markov chain for a three layer GSN,
inspired by the unfolded computational graph of a deep
Boltzmann machine Gibbs sampling process. In the training
case, alternatively even or odd layers are updated at the
same time. The information is propagated both upwards
and downwards for K steps. An example for this update
process is given in Figure 3. In the even update (marked in
red) H1

t+1 = f̂0
θ (X0

t+0). In the odd update (marked in blue)
X0
t+1 = f̌0

θ (H1
t+1) and H2

t+2 = f̂1
θ (H1

t+1) for k = 0. In
the case of k = 1, H1

t+2 = f̂0
θ (X0

t+1) + f̌1
θ (H2

t+2) and
H3
t+3 = f̂2

θ (H2
t+2) in the even update and X0

t+2 = f̌0
θ (H1

t+2)

and H2
t+3 = hatf1

θ (H1
t+2) + f̌2

θ (H3
t+3) in the odd update.

In case of k = 2, H1
t+3 = f̂0

θ (X0
t+2) + f̌1

θ (H2
t+3) and

H3
t+4 = f̂2

θ (H2
t+3) in the even update and X0

t+3 = f̌0
θ (H1

t+3)

and H2
t+4 = f̂1

θ (H1
t+3) + f̌2

θ (H3
t+4) in the odd update.

The cost function of a generative GSN can be written as

C =

K∑
k=1

Lt{X0
t+k, Xt+0}, (3)

where Lt is a specific loss-function such as the mean
squared error (MSE) at time step t. Optimizing the loss
function by building the sum over the costs of multiple
reconstructions is called walkback training [15, 16]. This form
of network training is considerably more favorable than single
step training, as the network is able to handle multi-modal
input representations [15] if noise is injected during the training
process. Equation 3 is specified for unsupervised learning of
representations.

In order to make a GSN suitable for a supervised learning
task we introduce the output Y to the network graph. The cost
function changes to L = logP (X) + logP (Y |X). The layer
update-process stays the same, as the target Y is not fed into
the network. However Y is introduced as an additional cost
term. Figure 4 shows the corresponding network graph for
supervised learning with red and blue edges denoting the even
and odd network updates.
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Figure 4: GSN Markov chain for input Xt+0 and target Yt+0

with backprob-able stochastic units.



We define the following cost function for a 3-layer GSN:

C =
λ

K

K∑
k=1

Lt{Xt+k, Xt+0}+

1− λ
K − d+ 1

K∑
k=d

Lt{H3
t+k, Yt+0} (4)

Equation 4 defines a non-convex multi-objective optimiza-
tion problem, where λ weights the generative and discrimina-
tive part of C. Using the mean loss, as in this case, is not
mandatory but allows an equal balance of both loss terms for
λ = 0.5 with input Xt+0 and target Yt+0 scaled to the same
range.

3. Experimental Setup
The 2nd CHiME speech separation challenge database [18]
consists of 34 speakers with 500 training samples each, and
a validation- and test-set with 600 samples. Every training
sample has a clean, a reverb speech signal, an isolated noise
signal and a signal mixture of reverberated speech and noise.
We performed the following experiments: A speaker dependent
separation task (SD), a speaker independent separation task
(SI), a matched noise separation task (MN), and an unmatched
noise separation task (UN). The primary goal was to predict
513 bins of the softmask i.e. Y (t, f) = |S(t,f)|

|S(t,f)|+|N(t,f)| ,
where f and t are the time and frequency bins and N(t, f)
and S(t, f) are the noise and speech spectograms. The time
frequency representation was computed by a 1024 point Fourier
transform using a Hamming window of 32ms length and a
steps size of 10ms. Due to the lack of isolated noise signals
needed to compute the softmask in the validation- and test set,
disjoint subsets of the training corpus were used for training
and testing. All experiments were carried out using 5 male and
5 female speakers using the Ids {1,2,3,5,6,4,7,11,15,16}. In all
training cases, spectograms of reverberated noisy signals at dB
levels of {-6, -3, ±0, +3, +6, +9} were used to train one model.
In all test scenarios each model was evaluated separately for
every single dB level. In the SD and SI task original CHiME
samples were used as a data source. In the MN and UN task,
CHiME speech signals were mixed with noise variants from
the NOISEX [23] corpus i.e. the Ids {1,...,12} were chosen for
training and test case of the MN task, whereas the Ids {1,...,12}
and {13,..,17} were selected for the training and test set of
the UN task respectively. This corresponds to [3], with the
exception of using CHiME speech utterances instead of the
TIMIT [24] speech corpus. Details about the task specific setup
are listed in Table 1.

task database speakers utterance/speaker
train valid test

SD CHiME 10 400 50 50
SI CHiME 10 40 5 5

MN CHiME, NOISEX 10 40 5 5
UN CHiME, NOISEX 10 40 5 5

Table 1: Number of Utterances used for Training / Validation /
Test.

4. Experimental Results
In order to evaluate the GSN on the tasks defined in the
previous section, the overall perceptual score (OPS), the
artifact perceptual score (APS), the target related perceptual
score (TPS) and the interference-related perceptual score IPS
[23] are used. The range of this scores are in between 0
and 100, where 100 is the best. Furthermore, the source to
interference ratio (SIR), the source to artifacts ratio (SAR) and
the source to distortion ratio (SDR) [25], are selected. Apart
from that, the PESQ [21] measure, the signal-to-noise-ratio
SNR = 10 log Preference

Preference-enhanced
and the HIT-FA [26],[27] were

computed. To test the significance of the results a pair-wise
t-Test [28] with p = 0.05 was calculated in all experiments.
Furthermore, the noisy truth scores were calculated in all
experiments.

A grid-search for an MLP over the layer sizes N × d
with N ∈ {500, 1000, ..., 3000} neurons per layer and d ∈
{1, ..., 5} number of layers for F ∈ {1, 3, 5, 7} speech frames
per timestep was performed to find the optimal network size.
The same network configuration was used for all models for a
fair evaluation. The input data was normalized to zero mean and
unit variance. Stochastic gradient descent with an early stop-
ping criterion of 100 epochs was selected as a training algorithm
for all models. The DBN was pre-trained using contrastive di-
vergence for 200 epochs using k = 1 steps. Both DBN and
MLP were fine-tuned using a cross-entropy objective. The GSN
was simulated using k = 5 steps with the novel walkback train-
ing method using a MSE objective. The GSN hyper-parameter
λt+0 = 1 was annealed with λt+1 = λt+0 · 0.99 per epoch to
simulate pre-training in a GSN. Due to the superior characteris-
tics of rectifier functions reported in [19] and [29] rectifier gates
were used in the MLP and GSN. A l2 regularizer with weight
1e−4 was used when training the MLP. All simulations were
executed on a GPU with the help of the mathematical expres-
sion compiler Theano [30]. Table 2 summarizes the parameters
of all models.

model N × d F activation σ noise l2

GSN 1000x3 5 rectifier 0.1 1e−4

MLP 1000x3 5 rectifier - 1e−4

DBN 1000x3 5 sigmoid - 1e−4

Table 2: Network Model Parameters.

4.1. Experiment 1: Speaker Dependent Separation

The performance of the deep models is shown in Figure 5. The
recifier MLP slightly outperforms the DBN and GSN. A t-test
between the MLP and the DBN showed statistical significant
differences for all PESQ scores, the SNR and SDR score at 9dB
and for all SIR scores except 9dB. In case of the GSN also all
PESQ values, the SNR and SDR at 0dB and 9dB, the SIR scores
bewtween 0dB - 9dB, and the IPS score at -6dB and -3dB are
statistical significant.

4.2. Experiment 2: Speaker Independent Separation

The results for the speaker independent separation task are
shown in Figure 6. The GSN slightly outperforms the DBN and
MLP in terms of SRD, SIR, SAR, OPS, APS and IPS scores.
Also the best PESQ score of 2.72 at 9dB was obtained by the
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Figure 5: Experimental Results: Speaker Dependent Separa-
tion GSN (∧), DBN (∨), MLP (∗) and Noisy Truth
(--).
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Figure 6: Experimental Results: Speaker Independent Separa-
tion GSN (∧), DBN (∨), MLP (∗) and Noisy Truth
(--).

GSN. When comparing the GSN with the second best model,
i.e. the MLP, the HIT-FA scores at dB levels of -6, -3, 6, 9 are
statistically significant. Furthermore, the MSE scores at -6dB
and 0dB, the SNR between -3dB - 9dB, the SDR between 0dB
- 9dB, all SIR scores except 0dB and the IPS scores between
-6dB - 3dB are statistically significant.

4.3. Experiment 3: Matched Noise Separation

The results for the matched noise separation tasks are shown in
Figure 7. The MLP outperforms both the DBN and GSN. The
results are significant for all decibel [dB] levels for the HIT-FA,
MSE, SNR, SDR, SIR, SAR, TPS and IPS (except 6dB, 9dB)
scores when comparing the MLP with the DBN. The MLP only
generated significantly better SNR and SDR scores compared
to the GSN. In general, the MLP obtained the best overall re-
sults. However, this task uses the same 12 noise variants for
training and testing [3]. Hence the model might learn a perfect
representation of the noise patterns.
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Figure 7: Experimental Results: Matched Noise Separation
GSN (∧), DBN (∨), MLP (∗) and Noisy Truth (--).
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Figure 8: Experimental Results: Unmatched Noise Separation
GSN (∧), DBN (∨), MLP (∗) and Noisy Truth (--).

4.4. Experiment 4: Unmatched Noise Separation

Figure 8 shows the simulation results of the unmatched noise
separation task. Again the MLP achieved the best overall result.
When comparing the DBN with the MLP differences in the all
HIT-FA values and SNR values, except -6dB are statistically
significant.

5. Conclusions
In this paper, we analyzed deep learning models using the
softmask. We empirically showed in four SCSS tasks that
rectifier MLPs achieved a better overall performance than its
deep belief counterpart. We also introduced a new hybrid
generative-discriminative learning procedure for GSNs, remov-
ing the need for generative pre-training. Although, our new
model was not able to outperform the rectifier MLP in all tasks,
the GSN achieved the best overall result on a independent
speaker source separation task. In future research we will
therefore focus on new strategies to improve the performance
of GSNs when applied to SCSS.
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