COMPUTATIONAL INTELLIGENCE
(INTRODUCTION TO MACHINE LEARNING)

SS 16

2 VO 442.070 + 1 UE 708.070

Institute for Theoretical Computer Science (IGI)
TU Graz, Inffeldgasse 16b / first floor
www.igi.tugraz.at

Institute for Signal Processing and Speech Communication (SPSC)
TU Graz, Inffeldgasse 16c / ground floor
www.spsc.tugraz.at
Organization

- **Lecture / VO:**
 - Tuesday, 11:00, HS i13
 - Anand Subramoney and Guillaume Bellec (IGI)
 - Assoc. Prof. Dr. Franz Pernkopf (SPSC)

- **Practical / UE:**
 - First practical on **Friday 4th of March**, 12:30, HS i11
 - Anand Subramoney and Guillaume Bellec (IGI)
 - Dipl.-Ing. Christian Knoll (SPSC)
 - Homework in **teams of up to 3** (use newsgroup to form teams)

- **Website:** http://www.spsc.tugraz.at/courses/computational-intelligence
- **Newsgroup:** tu-graz.lv.ci
Organization

• Office hours:
 • Both Anand and Guillaume:
 • Time: Every Wednesday 16:00 – 17:00
 • Place: Our offices at Inffeldgasse 16b/1

• Exam:
 • Written exam for this year’s course:
 • 08.07.2016
 • Exam has two parts: IGI (first half of semester) + SPSC (second half)
 • Language: English
 • Positive grade if positive on both parts!
Materials (for IGI part)

- No textbook required
- Lecture slides and further reading on course website

Materials for further study:
- Online Machine Learning course by Andrew Ng (Stanford): https://www.coursera.org/course/ml

For SPSC part (second half):
- Announced by Franz Pernkopf
Acknowledgments

- IGI Slides based on material from Stefan Häusler (IGI), Zeno Jonke (IGI), David Sontag (NYU), Andrew Ng (Stanford), Xiaoli Fern (Oregon State)
INTRODUCTION + MOTIVATION
Machine Learning

- Grew out of Artificial Intelligence
What is Artificial Intelligence?

"The exciting new effort to make computers think ... *machines with minds*, in the full and literal sense" (Haugeland, 1985)

"[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning ..." (Bellman, 1978)

"The art of creating machines that perform functions that require intelligence when performed by people" (Kurzweil, 1990)

"The study of how to make computers do things at which, at the moment, people are better" (Rich and Knight, 1991)

"The study of mental faculties through the use of computational models" (Charniak and McDermott, 1985)

"The study of the computations that make it possible to perceive, reason, and act" (Winston, 1992)

"A field of study that seeks to explain and emulate intelligent behavior in terms of computational processes" (Schalkoff, 1990)

"The branch of computer science that is concerned with the automation of intelligent behavior" (Luger and Stubblefield, 1993)

Figure 1.1 Some definitions of AI. They are organized into four categories:

<table>
<thead>
<tr>
<th>Systems that think like humans</th>
<th>Systems that think rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems that act like humans</td>
<td>Systems that act rationally</td>
</tr>
</tbody>
</table>

Source -- *Artificial Intelligence: A Modern Approach* by Stuart Russell and Peter Norvig
But what is really AI?

Turing test
Turing test

AI – “You’ll know it when you see it”
Components of AI

- *Natural language processing*
- Knowledge representation
- Automated reasoning
- **Machine learning**
- *Computer vision*
- *Robotics*

-- Russel and Norvig
Machine Learning

• Grew out of **Artificial Intelligence**

• The ability to “adapt to new circumstances and to detect and extrapolate patterns” – Russel and Norvig

• Arthur Samuel (1959). “Field of study that gives computers the ability to learn without being explicitly programmed.”
When do we need computers to learn?

• When human expert knowledge is missing
 • For example, predicting whether some new substance could be an effective treatment for a disease

• When humans can only do it “intuitively”
 • Flying a helicopter
 • Recognize visual objects
 • Natural language processing

• When we need to learn about something that changes frequently
 • Stock market analysis
 • Weather forecasting
 • Computer network routing

• Customized learning
 • Spam filters, movie/product recommendations
Applications of Machine learning

- Machine learning is used in a wide range of fields including:
 - Bio-informatics
 - Brain-Machine interfaces
 - Computational finance
 - Game playing
 - Information Retrieval
 - Internet fraud detection
 - Medical diagnosis
 - Natural language processing
 - Online advertising
 - Recommender systems
 - Robot locomotion
 - Search engines
 - Sentiment analysis
 - Software engineering
 - Speech and handwriting recognition
 - Stock market analysis
 - Economics and Finance
 - Credit card fraud detection
 -
Google car

- [link](https://www.youtube.com/watch?v=TsaES--OTzM)
ATLAS (Boston Dynamics / Alphabet)

- https://www.youtube.com/watch?v=rVlhMGQgDkY
Spam filtering

"Spam in email started to become a problem when the Internet was opened up to the general public in the mid-1990s. It grew exponentially over the following years, and today composes some 80 to 85% of all the email in the world, by a "conservative estimate"."

Face recognition

- Facebook http://www.youtube.com/watch?v=l4Rn38_vrLQ
- iPhoto
- Cameras, etc.
Speech recognition

Siri:
http://www.youtube.com/watch?v=8ciagGASro0
Machine Translation

• Skype real-time translation

https://www.youtube.com/watch?v=rek3jjbYRLo
Optical character recognition

- Car plate recognition
- Zip code recognition (mail delivery)
- Electronic versions of printed books (searchable PDFs)

http://detexify.kirelabs.org/classify.html
Learning to rank - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Learning_to_rank

Learning to rank or machine-learned ranking (MLR) is a type of supervised or semi-supervised machine learning problem in which the goal is to automatically ... Applications Feature vectors Evaluation measures Approaches

Yahoo! Learning to Rank Challenge
learningtorankchallenge.yahoo.com/

Learning to Rank Challenge is closed! Close competition, innovative ideas, and fierce determination were some of the highlights of the first ever Yahoo!

[PDF] Large Scale Learning to Rank
www.eecs.tufts.edu/~dsculley/papers/large-scale-rank.pdf
File Format: PDF/Adobe Acrobat - Quick View
by D Sculley - Cited by 24 - Related articles
Pairwise learning to rank methods such as RankSVM give good performance, ... In this paper, we are concerned with learning to rank methods that can learn on ...

Microsoft Learning to Rank Datasets - Microsoft Research
research.microsoft.com/en-us/projects/mslr/
We release two large scale datasets for research on learning to rank: L2R-WEB30k with more than 30000 queries and a random sampling of it L2R-WEB10K ...

LETOR: A Benchmark Collection for Research on Learning to Rank ...
research.microsoft.com/~lektor/
This website is designed to facilitate research in LEarning TO Rank (LETOR). Much information about learning to rank can be found in the website, including ...
Image search

- Google image search

 https://images.google.com
Recommendation systems
Clustering

- Clustering data into similar groups
Clustering images

Set of images
Data visualization (Embedding images)

- Images have thousands or millions of pixels.
- Can we give each image a coordinate, such that similar images are near each other?

[Saul & Roweis ‘03]
Growth of Machine Learning

• Preferred approach to
 • Speech recognition, Natural language processing
 • Computer vision
 • Robot control
 • Computational biology
 •

• Accelerating trend
 • Big data (data mining)
 • Improved algorithms
 • Faster computers
 • Availability of good open-source software
What we will cover

• IGI part:
 • Introduction
 • Linear regression
 • Non-linear basis functions
 • Logistic regression
 • Under- and over-fitting
 • Model selection
 • k-NN
 • Cross-validation
 • Regularization
 • Neural networks
 • SVM
 • Kernel methods
 • Multiclass classification

• SPSC part:
 • Parametric & non-parametric density estimation
 • Bayes classifier
 • Gaussian mixture model
 • K-means
 • Markov model & Hidden Markov model
 • Graphical models
 • PCA
 • LDA
INTRODUCTION:
TYPES OF ML ALGORITHMS
Types of Machine Learning algorithms

- **Supervised learning**
 - Given: Training examples with **target values**
 - Goal: Predict target values for new examples
 - Examples: optical character recognition, speech recognition, etc.

- **Unsupervised learning**
 - Given: Training examples without target values
 - Goal: Detect and extract structure from data
 - Examples: clustering, segmentation, embedding (visualization), compression, automatic speaker separation

- **Reinforcement learning** (not in this course)
 - Given: Feedback (reward/cost) during trial-and-error episodes
 - Goal: Maximize Reward/minimize cost
 - Examples: learning to control a robot/car/helicopter etc.
 - see Master’s course „Machine Learning B“
Supervised Learning: Example

- Learn to predict output from input (*learning from examples*)
 - Target values (output) can be continuous (regression) or discrete (classification)
 - E.g. predict the risk level (high vs. low) of a loan applicant based on income and savings

Applications:

- Spam filters
- Character recognition
- Speech recognition
- Collaborative filtering (predicting if a customer will be interested in an advertisement …)
- Medical diagnosis
- …
Unsupervised Learning: Example

- Find patterns and structure in data
Unsupervised Learning: Applications

- Market partition: divide a market into distinct subsets of customers
 - Find clusters of similar customers, where each cluster may conceivably be selected as a market target to be reached with a distinct marketing strategy

- Image, document, web clustering
 - Automatic organization of pictures
 - Generate a categorized view of a collection of documents
 - For organizing search results etc.

- Bioinformatics
 - Clustering the genes based on their expression profile
 - Find clusters of similarly regulated genes – functional groups
INTRODUCTION:
SUPERVISED LEARNING
Regression and classification
Simple regression example

Top 50 movies (top first weekends)

First weekend income

“The Hunger Games: Catching Fire“: **158 Mio. USD** on opening weekend.

How much in total?

Data source: http://www.boxofficemojo.com
Simple regression example (cont’d)

- **Data set**: Input $x(i)$, Output $y(i)$

<table>
<thead>
<tr>
<th>i</th>
<th>$x(i)$</th>
<th>$y(i)$</th>
<th>$y(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avengers 1</td>
<td>207</td>
<td>623</td>
<td></td>
</tr>
<tr>
<td>Iron Man 3 2</td>
<td>174</td>
<td>409</td>
<td></td>
</tr>
<tr>
<td>Harry Potter and the Deathly... 3</td>
<td>169</td>
<td>381</td>
<td></td>
</tr>
<tr>
<td>The Dark Knight Rises 4</td>
<td>161</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>The Dark Knight 5</td>
<td>158</td>
<td>533</td>
<td></td>
</tr>
</tbody>
</table>

... m data points (data samples)
Simple regression example (cont’d)

- **Data set:** \(\langle x^{(1)}, y^{(1)} \rangle \ldots \langle x^{(m)}, y^{(m)} \rangle \)

![Diagram showing the process of a simple linear regression.](image)

Training set

Learning algorithm

Test input \(x \)

\[h(x) = \theta_0 + \theta_1 \cdot x \]

Parameters \(\theta = (\theta_0, \theta_1) \)

Prediction
Non-linear regression

Non-linear hypothesis, for example

\[h_\theta(x) = \theta_0 + \theta_1 \cdot x + \theta_2 \cdot x^2 \]
Regression with multiple inputs

linear hypothesis

\[h_{\theta}(x_1, x_2) = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 \]

non-linear hypothesis
Multiple inputs continued

\[\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x_1^{(i)})</th>
<th>(x_2^{(i)})</th>
<th>(y^{(i)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.3</td>
<td>-2.1</td>
<td>2.31</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>3.5</td>
<td>-1.3</td>
</tr>
<tr>
<td>3</td>
<td>1.2</td>
<td>0.9</td>
<td>1.9</td>
</tr>
<tr>
<td>4</td>
<td>-0.3</td>
<td>0.1</td>
<td>-0.7</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Simple classification example

"labeled data"

<table>
<thead>
<tr>
<th>i</th>
<th>Tumor size (mm)</th>
<th>Malignant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.3</td>
<td>0 (N)</td>
</tr>
<tr>
<td>2</td>
<td>5.1</td>
<td>1 (Y)</td>
</tr>
<tr>
<td>3</td>
<td>1.4</td>
<td>0 (N)</td>
</tr>
<tr>
<td>4</td>
<td>6.3</td>
<td>1 (Y)</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
<td>1 (Y)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Example hypothesis:

$h_\theta(x) = 1$ if $x > \theta_0$
Classification with multiple inputs

Table

<table>
<thead>
<tr>
<th>i</th>
<th>Tumor size (mm)</th>
<th>Age</th>
<th>Malignant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.3</td>
<td>25</td>
<td>0 (N)</td>
</tr>
<tr>
<td>2</td>
<td>5.1</td>
<td>62</td>
<td>1 (Y)</td>
</tr>
<tr>
<td>3</td>
<td>1.4</td>
<td>47</td>
<td>0 (N)</td>
</tr>
<tr>
<td>4</td>
<td>6.3</td>
<td>39</td>
<td>1 (Y)</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
<td>72</td>
<td>1 (Y)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Diagram

- Linear decision boundary: $h_\theta(x) = 1$
- Tumor size (x1) vs Age (x2)
- O: benign
- X: malignant
Non-linear classification

Both hypotheses fit the data quite well. Which one fits the **training data** better? Which one would you trust more for **prediction**?
Supervised learning (Regr., Class.)

- Discrete vs. continuous outputs (classification vs. regression)

In the next few classes we'll cover:

- **Learning algorithms** for regression and classification (linear regression, neural nets, SVMs, etc.)

- Supervised learning **in practice** (overfitting, etc.)
What is next?

- Lecture by Guillaume Bellec on:
 - Linear regression
 - Gradient descent
 - Non-linear basis functions