COMPUTATIONAL INTELLIGENCE

(INTRODUCTION TO MACHINE LEARNING)

SS 16

2 VO 442.070 + 1 UE 708.070

Institute for Theoretical Computer Science (IGI) TU Graz, Inffeldgasse 16b / first floor www.igi.tugraz.at

Institute for Signal Processing and Speech Communication (SPSC) TU Graz, Inffeldgasse 16c / ground floor www.spsc.tugraz.at

Organization

- Lecture / VO:
 - Tuesday, 11:00, HS i13
 - Anand Subramoney and Guillaume Bellec (IGI)
 - Assoc. Prof. Dr. Franz Pernkopf (SPSC)
- Practical / UE:
 - First practical on Friday 4th of March, 12:30, HS i11
 - Anand Subramoney and Guillaume Bellec (IGI) Part I
 - Dipl.-Ing. Christian Knoll (SPSC)
 - Homework in teams of up to 3 (use newsgroup to form teams)

Part I

Part I

Part II

- Website: http://www.spsc.tugraz.at/courses/computational-intelligence
- Newsgroup: tu-graz.lv.ci

Organization

- Office hours:
 - Both Anand and Guillaume:
 - Time: Every Wednesday 16:00 17:00
 - Place: Our offices at Inffeldgasse 16b/1
- Exam:
 - Written exam for this year's course:
 - 08.07.2016
 - Exam has two parts: IGI (first half of semester) + SPSC (second half)
 - Language: English
 - Positive grade if positive on both parts!

Materials (for IGI part)

- No textbook required
- Lecture slides and further reading on course website
- Materials for further study:
 - Online Machine Learning course by Andrew Ng (Stanford): <u>https://www.coursera.org/course/ml</u>
 - Book by C. Bishop, Pattern Recognition and Machine Learning, Springer 2007.
- For SPSC part (second half):
 - Announced by Franz Pernkopf

Acknowledgments

 IGI Slides based on material from Stefan Häusler (IGI), Zeno Jonke (IGI), David Sontag (NYU), Andrew Ng (Stanford), Xiaoli Fern (Oregon State)

INTRODUCTION + MOTIVATION

Machine Learning

Grew out of Artificial Intelligence

What is Artificial Intelligence?

"The exciting new effort to make computers think <i>machines with minds</i> , in the full and literal sense" (Haugeland, 1985)	"The study of mental faculties through the use of computational models" (Charniak and McDermott, 1985)	
"[The automation of] activities that we asso- ciate with human thinking, activities such as decision-making, problem solving, learning " (Bellman, 1978)	"The study of the computations that make it possible to perceive, reason, and act" (Winston, 1992)	
"The art of creating machines that perform functions that require intelligence when per- formed by people" (Kurzweil, 1990)	"A field of study that seeks to explain and emulate intelligent behavior in terms of computational processes" (Schalkoff, 1990)	
"The study of how to make computers do things at which, at the moment, people are better" (Rich and Knight, 1991) "The branch of computer science that is cerned with the automation of intelli- behavior" (Luger and Stubblefield, 199		
Figure 1.1 Some definitions of AI. They are organized into four categories:		
Systems that think like humans.	Systems that think rationally.	

Systems that act like humans.	Systems that act rationally.

Source -- Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig

But what is really AI?

Turing test

AI – "You'll know it when you see it"

Components of AI

- Natural language processing
- Knowledge representation
- Automated reasoning
- Machine learning
- Computer vision
- Robotics
 - -- Russel and Norvig

Machine Learning

- Grew out of Artificial Intelligence
- The ability to "adapt to new circumstances and to detect and extrapolate patterns" – Russel and Norvig
- Arthur Samuel (1959). "Field of study that gives computers the ability to learn without being explicitly programmed."

When do we need computers to learn?

- When human expert knowledge is missing
 - For example, predicting whether some new substance could be an effective treatment for a disease
- · When humans can only do it "intuitively"
 - Flying a helicopter
 - Recognize visual objects
 - Natural language processing
- When we need to learn about something that changes frequently
 - Stock market analysis
 - Weather forecasting
 - Computer network routing
- Customized learning
 - Spam filters, movie/product recommendations

Applications of Machine learning

- Machine learning is used in a wide range of fields including:
 - Bio-informatics
 - Brain-Machine interfaces
 - Computational finance
 - Game playing
 - Information Retrieval
 - Internet fraud detection
 - Medical diagnosis
 - Natural language processing
 - Online advertising
 - Recommender systems
 - Robot locomotion
 - Search engines
 - Sentiment analysis
 - Software engineering
 - Speech and handwriting recognition
 - Stock market analysis
 - Economics and Finance
 - Credit card fraud detection

•

Google car

https://www.youtube.com/watch?v=TsaES--OTzM

ATLAS (Boston Dynamics / Alphabet)

https://www.youtube.com/watch?v=rVlhMGQgDkY

http://spectrum.ieee.org/automaton/robotics/humanoids/boston-dynamics-marc-raibert-on-nextgen-atlas

Spam filtering

http://sivk.kaeconomic.cn

- "Spam in email started to become a problem when the Internet was opened up to the general public in the mid-1990s. It grew exponentially over the following years, and today composes some 80 to 85% of all the email in the world, by a "conservative estimate".
- Source: <u>http://en.wikipedia.org/wiki/Spamming</u>

data

Natural _LoseWeight SuperFood Endorsed by Oprah Winfrey, Free Trial 1 bottle, pay only \$5.95 for shipping mfw rlk Spam |x

Spam vs. Not Spam

prediction

Face recognition

- Facebook <u>http://www.youtube.com/watch?v=I4Rn38_vrLQ</u>
- iPhoto
- Cameras, etc.

Speech recognition

Siri: http://www.youtube.com/watch?v=8ciagGASro0

Machine Translation

Skype real-time translation

https://www.youtube.com/watch?v=rek3jjbYRLo

Optical character recognition

- Car plate recognition
- Zip code recognition (mail delivery)
- Electronic versions of printed books (searchable PDFs)

http://detexify.kirelabs.org/classify.html

Web search

C 1			
Google	learning to rank Q		
	learning to rank		
	learning to rank for information retrieval I'm Feeling Lucky »		
Search	learning to rank using gradient descent		
	learning to rank tutorial		
Web	Learning to rank - Wikipedia, the free encyclopedia		
Images	en.wikipedia.org/wiki/ Learning_to_rank Learning to rank or machine-learned ranking (MLR) is a type of supervised or		
	semi-supervised machine learning problem in which the goal is to automatically		
Maps	Applications Feature vectors Evaluation measures Approaches		
Videos			
News	Yahoo! Learning to Rank Challenge		
News	learningtorankchallenge.yahoo.com/		
Shopping	Learning to Rank Challenge is closed! Close competition, innovative ideas, and fierce determination were some of the highlights of the first ever Yahoo!		
More			
	[PDF] Large Scale Learning to Rank		
	www.eecs.tufts.edu/~dsculley/papers/large-scale- rank .pdf		
Manhattan, NY 10012	File Format: PDF/Adobe Acrobat - Quick View		
Change location	by D Sculley - Cited by 24 - Related articles Pairwise learning to rank methods such as RankSVM give good performance, In this		
change loodion	paper, we are concerned with learning to rank methods that can learn on		
Show search tools			
Show search tools	Microsoft Learning to Rank Datasets - Microsoft Research		
	research.microsoft.com/en-us/projects/mslr/		
	We release two large scale datasets for research on learning to rank : L2R-WEB30k		
	with more than 30000 queries and a random sampling of it L2R-WEB10K		
	LETOR: A Benchmark Collection for Research on Learning to Rank		
	research.microsoft.com/~letor/		
	This website is designed to facilitate research in LEarning TO Rank (LETOR). Much		
	information about learning to rank can be found in the website, including		

Image search

Google image search

https://images.google.com

Search by image Search Google with an i	mage instead of text. Try dr	agging an image here.
Paste image URL	Upload an image 🛽	
Choose File No file of	chosen	

Recommendation systems

Clustering

Clustering data into similar groups

Data visualization (Embedding images)

- Images have thousands or millions of pixels.
- Can we give each image a coordinate, such that similar images are near each other?

[Saul & Roweis '03]

Growth of Machine Learning

- Preferred approach to
 - Speech recognition, Natural language processing
 - Computer vision
 - Robot control
 - Computational biology
 -
- Accelerating trend
 - Big data (data mining)
 - Improved algorithms
 - Faster computers
 - Availability of good open-source software

COURSE CONTENT

What we will cover

• IGI part:

- Introduction
- Linear regression
- Non-linear basis functions
- Logistic regression
- Under- and over-fitting
- Model selection
- k-NN
- Cross-validation
- Regularization
- Neural networks
- SVM
- Kernel methods
- Multiclass classification

SPSC part:

- Parametric & non-parametric density estimation
- Bayes classifier
- Gaussian mixture model
- K-means
- Markov model & Hidden Markov model
- Graphical models
- PCA
- LDA

INTRODUCTION: TYPES OF ML ALGORITHMS

Types of Machine Learning algorithms

Supervised learning

- Given: Training examples with target values
- Goal: Predict target values for new examples
- Examples: optical character recognition, speech recognition, etc.
- Unsupervised learning
 - Given: Training examples without target values
 - Goal: Detect and extract structure from data
 - Examples: clustering, segmentation, embedding (visualization), compression, automatic speaker separation
- Reinforcement learning (not in this course)
 - Given: Feedback (reward/cost) during trial-and-error episodes
 - Goal: Maximize Reward/minimize cost
 - Examples: learning to control a robot/car/helicopter etc.
 - see Master's course "Machine Learning B"

Learning from examples (data)

Learning by doing (trial and error)

Supervised Learning: Example

- Learn to predict output from input *(learning from examples)*
 - Target values (output) can be continuous (regression) or discrete (classification)
 - E.g. predict the risk level (high vs. low) of a loan applicant based on income and savings

Applications:

- Spam filters
- Character recognition
- Speech recognition
- Collaborative filtering (predicting if a customer will be interested in an advertisement ...)
- Medical diagnosis

. . .

Unsupervised Learning: Example

• Find patterns and structure in data

Clustering art

Unsupervised Learning: Applications

- Market partition: divide a market into distinct subsets of customers
 - Find clusters of similar customers, where each cluster may conceivably be selected as a market target to be reached with a distinct marketing strategy
- Image, document, web clustering
 - Automatic organization of pictures
 - Generate a categorized view of a collection of documents
 - For organizing search results etc.
- Bioinformatics
 - Clustering the genes based on their expression profile
 - Find clusters of similarly regulated genes functional groups

INTRODUCTION: SUPERVISED LEARNING

Regression and classification

Simple regression example

Top 50 movies (top first weekends)

Simple regression example (cont'd)

Total

. . .

• Data set: Input $x^{(i)}$, Output $y^{(i)}$

i

First

weekend

. . .

 $y^{(i)}$ $x^{(i)}$ 1 207 623 **Avengers** 2 174 409 Iron Man 3 **Harry Potter** 3 169 and the 381 Deathly... *m* data points The Dark Knight (data samples) 4 161 449 Rises 5 158 533 **The Dark Knight**

Simple regression example (cont'd)

Non-linear regression

Non-linear hypothesis, for example $h_{\theta}(x) = \theta_0 + \theta_1 \cdot x + \theta_2 \cdot x^2$

Regression with multiple inputs

linear hypothesis $h_{\theta}(x_1, x_2) = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2$

non-linear hypothesis

Multiple inputs continued

i	$x_1^{(i)}$	$x_2^{(i)}$	$y^{(i)}$
1	5.3	-2.1	2.31
2	0.4	3.5	-1.3
3	1.2	0.9	1.9
4	-0.3	0.1	-0.7
5			

Simple classification example

1 (Y)

i

1

2

3

4

5

5.3

. . .

"labeled data" decision boundary Malignant? Tumor size benign Ο (mm) malignant X X V **0 (N)** 2.3 $\rightarrow \times \times \times \rightarrow$ θ× Tumor size (x) 5.1 **1 (Y)** 0|| 1.4 ||**0(N)** $h_{oldsymbol{ heta}}(x)$ $h_{\boldsymbol{\theta}}(x)$ 6.3 **1 (Y)**

Example hypothesis: $h_{\theta}(x) = 1$ if $x > \theta_0$ labels

Classification with multiple inputs

i	Tumor size (mm)	Age	Malign ant?
	x1	x2	у
1	2.3	25	0 (N)
2	5.1	62	1 (Y)
3	1.4	47	0 (N)
4	6.3	39	1 (Y)
5	5.3	72	1 (Y)

benignmalignant

Non-linear classification

Which one fits the **training data** better? Which one would you trust more for **prediction**?

Supervised learning (Regr., Class.)

 Discrete vs. continuous outputs (classification vs. regression)

In the next few classes we'll cover:

- Learning algorithms for regression and classification (linear regression, neural nets, SVMs, etc.)
- Supervised learning in practice (overfitting, etc.)

What is next?

- Lecture by Guillaume Bellec on:
 - Linear regression
 - Gradient descent
 - Non-linear basis functions