
COMPUTATIONAL
INTELLIGENCE
(INTRODUCTION TO MACHINE LEARNING) SS18

Lecture 6:
• k-NN
• Cross-validation
• Regularization

LEARNING METHODS

Lazy vs eager learning
• Eager learning – generalizes training data before evaluation (e.g. Neural

networks)
• Fast prediction evaluation
• Summarize training set (noise reduction)

• Lazy learning – wait a prediction query to generalize (e.g. k-NN)
• Local approximation
• Quick adaptation to variation of the training set
• Require storage of the full training set
• Slow evaluation

Instance based learning
• Type of lazy learning

• Store in memory the training set
• Compare a test sample to the samples memory

K-NEAREST NEIGHBORS
(K-NN)

k-NN
• Simple
• Non-differentiable
• Lazy learning

• The main idea:
• Find the k closest samples (for instance with Euclidean distance)
• Assign the most frequent class occurring on those k samples

k=1
k=5

x2

x1

1-NN: Nearest Neighbor
• No computation of the explicit decision boundary
• The decision boundary form a subset of the Voronoi diagram

• a Voronoi diagram is a partitioning of a plane into regions based on distance to points in a
specific subset of the plane.

• Decision boundaries are irregular

Voronoi diagram Decision boundary

The number of neighbors influence
• The best k is data dependent

• Larger values of k : robustness to noise but fuzzy boundaries

• Model selection (validation set) is the best heuristic to optimize k

Variants
• Training:

• Save only preprocessed input
(feature extraction and dimensionality reduction)

• Testing:
• Classification:

• Majority of votes of its k nearest neighbors
• Regression:

• Average of its k nearest neighbors.

Pros and cons

• Easy to implement/understand
• No training
• Learn very complex decision boundaries
• No information loss (all samples are kept)

• Require storage of all the data samples
• Slow at query time
• Bad performance if metric or feature vector is bad

Pros:

Cons:

Simple concepts are never deprecated

• Memory Networks (Weston et al. Facebook 2015) made
tremendous progress in text processing and artificial reasoning:

• For each input x
• Find memory instance m most similar to x
• Return a function f(x,m) and update the stored memories

• Differentiable version of these simple algorithms can be designed
to use back-prop

• Differentiable Neural Computer (Graves et al. Google 2016)
• End-to-End Memory Networks (Sukbaathar et al. Facebook 2016)

Application tips

• What if the classes are not evenly represented?
• In that case a more frequent class tend to dominate the prediction of

the new example

• Weighting heuristics

• When to use k-NN:
• Lots of data is available
• Small number of features

UNDERFITTING AND
OVERFITTING

Under-/ and Overfitting

Model complexity
(e.g. degree of polynomial terms)

Training error (cost)

Test error (cost)

underfitting

overfitting

„just right“

Under- and Overfitting
• Underfitting:

• Model is too simple
• High training error, high test error

• Overfitting:
• Model is too complex (often: too many

parameters relative to number of training
examples)

• Low training error, high test error

• In between „just right“
• Moderate training error
• Lowest test error

Model
complexity

Training error (cost)

Test error (cost)

How to deal with overfitting
• Use model selection to automatically select the right model complexity

• Use regularization to keep parameters small

• Collect more data
(often not possible or inefficient)

• Manually throw out features which are unlikely to contribute
(often hard to guess which ones, potentially throwing out the wrong ones)

• Pre-processing, change the feature vector or perform dimension reduction
(endless effort, often not possible or inefficient)

Model selection: Training/Validation/Test
set workflow

Learning
algorithm B

Training set

Validation set Model
selection

Learning
algorithm A

Hypothesis hA Hypothesis hB

Learning
algorithm C

Hypothesis hC

Test set Testing Test error/cost

For example:
Linear regression,

Polynomial regression,
Artificial Neural Network

Selected
Hypothesis h

CROSS-VALIDATION

Cross-validation
• The goal:

Define a validation set to “pre-test" in the training phase.

• Why to use it:
Limit overfitting: keep track of the predictive power

• The trick:
Recycle the data by using different training/validation partitions

Model selection with Cross-validation
1. Compute averaged cross-validated error (CV) for each model

2. Choose the model with smallest CV

.6

.5

.7

.6

.4

.5

.5

.6

.6

.5

hA

hB

Cross-validation approaches

• Common types of partitioning:
• k-fold
• 2-fold
• Leave-one-out
• Repeated random sub-sampling

• Disadvantage of a single validation set:
• Little training data - the function is poorly fitted
• Little validation data - the true error is poorly estimated

• Tricks and warnings
• Beware if the variance of the error over partitions is large
• Train the best class over full data after selection
• Use the same partitions for all hypothesis

K-fold cross-validation
• Useful when training dataset is small

• Steps:
• Split the data into k equal folds

• Repeat k times cross-validation
process: each of the folds should be
used once as a validation set and the
rest as a training set

• Calculate the mean and the variance
of k runs

• Disadvantage:
• It requires k runs of algorithm which means k times as much computation

2-fold cross-validation
• The simplest approach, also called holdout method

• Idea:
• Split randomly the whole training data into 2 equal folds (k=2)
• Train on the first fold and validate on the second, and vice verse

• Advantage:
• Both training and validation sets are fairly large
• Each data point is used for both training and validation on each fold

Leave-one-out cross-validation

• This is a special case where k equals the
number of samples in the training set

• Idea:
• Use a single sample as a validation set and all

the rest as training set (k times)

• Used in the case of really small training set

Leave-one-out cross-validation example

CV = 0.6

3rd order

5th order 7th order

1st order

CV = 1.5

CV = 6.0 CV = 15.6

Repeated random sub-sampling validation

• Idea:
• Randomly split the dataset into training and validation sets k times

• Advantage:
• Choose independently how large each validation set is and how many

trials you average over

• Disadvantage:
• Validation subsets may overlap (some sample may never be selected)

REGULARIZATION

2

Bias-variance dilemma (tradeoff)
• error = Variance + Bias

• Variance – coherence across samples
• Bias – distance to target

• Regularization provides techniques to reduce the Variance

Under-/ and Overfitting

Model complexity
(e.g. degree of polynomial terms)

Training error (cost)

Test error (cost)

underfitting

overfitting

„just right“

low bias
high variance

high bias
low variance

Polynomial regression under-/overfitting

underfitting „just right“ overfitting

-2 -1 0 1 20

0.5

1

1.5

2

2.5

x

y

MSEtrain=0.22, MSEtest=0.29

training
test
polynomial fit degree 1

-2 -1 0 1 20

0.5

1

1.5

2

2.5

x

y

MSEtrain=0.01, MSEtest=0.01

training
test
polynomial fit degree 5

-2 -1 0 1 20

0.5

1

1.5

2

2.5

x

y

MSEtrain=0.00, MSEtest=3.17

training
test
polynomial fit degree 15

high variancehigh bias

suppose we
penalize

Regularization
• Prefer simple models
• Exclude extreme models

• How to do it:
• Instead of minimizing the original problem minimize

where is norm (Euclidean norm)

• Large leads to underfitting (high bias)
• Low to overfitting (high variance)

Regularized linear regression
• Regularized cost function:

• Analytical solution:

• Gradient descent solution:

Regularization of NN

• Reduce the complexity (reduce Variance)
• Weight decay
• Network structure (weight sharing)

• How many hidden layers and how many neurons ?
• Fewer – risk of underfitting
• More – risk of overfitting

• Keep track of predictive power (reduce Error directly)
• Early stopping

Weight decay
• “Weight decay” is a norm regularization for Neural networks

• The weights of a NN will be an additional term in an Error function:

Sparse structure

• Weights: 32 x 32 x Khidden

• Weights: 8 x 8 x Khidden

• Different role between hidden units

Sparse = many weights set to 0

Weight sharing

• Weights: 8 x 8 x Khidden

• Wi = Wj = W0

• Weights: 8 x 8

• Spatial invariance
Even positions where pixels are always 0
may learn to recognize some shapes

Early stopping
• A form of regularization based on the scheme of model selection

• Steps:
• The weights are initialized to

small values
• Stop when the error on

validation data increases

error

SUMMARY (QUESTIONS)

Some questions…
• Difference between lazy and eager learning?
• Training and testing procedure for k-NN?
• How does the number of neighbors influence k-NN?
• When to use k-NN and what are pros/cons?

• What is overfitting and how to deal with it?
• What is validation set?
• What is cross-validation?
• Types of partitioning in cross-validation?

• What is the bias-variance tradeoff?
• What is regularization and how is it used?
• What are regularization methods for NN?

