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Lecture 6:
• k-NN
• Cross-validation
• Regularization



LEARNING METHODS



Lazy vs eager learning
• Eager learning – generalizes training data before evaluation (e.g. Neural 

networks)
• Fast prediction evaluation
• Summarize training set (noise reduction)

• Lazy learning – wait a prediction query to generalize (e.g. k-NN)
• Local approximation
• Quick adaptation to variation of the training set
• Require storage of the full training set
• Slow evaluation



Instance based learning
• Type of lazy learning

• Store in memory the training set
• Compare a test sample to the samples memory



K-NEAREST NEIGHBORS 
(K-NN)



k-NN
• Simple
• Non-differentiable
• Lazy learning

• The main idea:
• Find the k closest samples (for instance with Euclidean distance)
• Assign the most frequent class occurring on those k samples
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k=5
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1-NN: Nearest Neighbor
• No computation of the explicit decision boundary
• The decision boundary form a subset of the Voronoi diagram

• a Voronoi diagram is a partitioning of a plane into regions based on distance to points in a 
specific subset of the plane.

• Decision boundaries are irregular

Voronoi diagram Decision boundary



The number of neighbors influence
• The best k is data dependent 

• Larger values of k : robustness to noise but fuzzy boundaries

• Model selection (validation set) is the best heuristic to optimize k



Variants
• Training: 

• Save only preprocessed input
(feature extraction and dimensionality reduction)

• Testing:
• Classification:

• Majority of votes of its k nearest neighbors
• Regression:

• Average of its k nearest neighbors.



Pros and cons

• Easy to implement/understand
• No training
• Learn very complex decision boundaries
• No information loss (all samples are kept)

• Require storage of all the data samples
• Slow at query time 
• Bad performance if metric or feature vector is bad

Pros:

Cons:



Simple concepts are never deprecated

• Memory Networks (Weston et al. Facebook 2015) made 
tremendous progress in text processing and artificial reasoning:

• For each input x
• Find memory instance m most similar to x
• Return a function f(x,m) and update the stored memories

• Differentiable version of these simple algorithms can be designed 
to use back-prop

• Differentiable Neural Computer (Graves et al. Google 2016)
• End-to-End Memory Networks (Sukbaathar et al. Facebook 2016)



Application tips

• What if the classes are not evenly represented? 
• In that case a more frequent class tend to dominate the prediction of 

the new example

• Weighting heuristics

• When to use k-NN:
• Lots of data is available
• Small number of features



UNDERFITTING AND 
OVERFITTING



Under-/ and Overfitting

Model complexity 
(e.g. degree of polynomial terms)

Training error (cost)

Test error (cost)

underfitting

overfitting

„just right“



Under- and Overfitting
• Underfitting:

• Model is too simple
• High training error, high test error

• Overfitting:
• Model is too complex (often: too many 

parameters relative to number of training 
examples)

• Low training error, high test error

• In between „just right“
• Moderate training error
• Lowest test error

Model
complexity 

Training error (cost)

Test error (cost)



How to deal with overfitting
• Use model selection to automatically select the right model complexity

• Use regularization to keep parameters small

• Collect more data 
(often not possible or inefficient)

• Manually throw out features which are unlikely to contribute
(often hard to guess which ones, potentially throwing out the wrong ones)

• Pre-processing, change the feature vector or perform dimension reduction
(endless effort, often not possible or inefficient)



Model selection: Training/Validation/Test 
set workflow

Learning 
algorithm B

Training set

Validation set Model 
selection

Learning 
algorithm A

Hypothesis hA Hypothesis hB

Learning 
algorithm C

Hypothesis hC

Test set Testing Test error/cost

For example: 
Linear regression,

Polynomial regression,
Artificial Neural Network

Selected 
Hypothesis h



CROSS-VALIDATION



Cross-validation
• The goal:

Define a validation set to “pre-test" in the training phase.

• Why to use it:
Limit overfitting: keep track of the predictive power

• The trick:
Recycle the data by using different training/validation partitions 



Model selection with Cross-validation
1. Compute averaged cross-validated error (CV) for each model

2. Choose the model with smallest CV

.6

.5

.7

.6

.4

.5

.5

.6

.6 

.5 

hA

hB



Cross-validation approaches

• Common types of partitioning:
• k-fold
• 2-fold
• Leave-one-out
• Repeated random sub-sampling

• Disadvantage of a single validation set:
• Little training data - the function is poorly fitted
• Little validation data - the true error is poorly estimated

• Tricks and warnings
• Beware if the variance of the error over partitions is large
• Train the best class over full data after selection
• Use the same partitions for all hypothesis



K-fold cross-validation
• Useful when training dataset is small

• Steps:
• Split the data into k equal folds

• Repeat k times cross-validation 
process: each of the folds should be 
used once as a validation set and the 
rest as a training set 

• Calculate the mean and the variance 
of k runs

• Disadvantage:
• It requires k runs of algorithm which means k times as much computation



2-fold cross-validation
• The simplest approach, also called holdout method

• Idea: 
• Split randomly the whole training data into 2 equal folds (k=2)
• Train on the first fold and validate on the second, and vice verse

• Advantage:
• Both training and validation sets are fairly large
• Each data point is used for both training and validation on each fold



Leave-one-out cross-validation

• This is a special case where k equals the 
number of samples in the training set

• Idea:
• Use a single sample as a validation set and all 

the rest as training set (k times)

• Used in the case of really small training set



Leave-one-out cross-validation example

CV = 0.6

3rd order

5th order 7th order

1st order

CV = 1.5

CV = 6.0 CV = 15.6



Repeated random sub-sampling validation

• Idea:
• Randomly split the dataset into training and validation sets k times

• Advantage:
• Choose independently how large each validation set is and how many 

trials you average over

• Disadvantage:
• Validation subsets may overlap (some sample may never be selected)



REGULARIZATION



2

Bias-variance dilemma (tradeoff)
• error = Variance + Bias

• Variance – coherence across samples
• Bias – distance to target

• Regularization provides techniques to reduce the Variance



Under-/ and Overfitting

Model complexity 
(e.g. degree of polynomial terms)

Training error (cost)

Test error (cost)

underfitting

overfitting

„just right“

low bias
high variance

high bias
low variance



Polynomial regression under-/overfitting

underfitting „just right“ overfitting
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Regularization
• Prefer simple models
• Exclude extreme models

• How to do it:
• Instead of minimizing the original problem          minimize

where          is        norm (Euclidean norm)

• Large leads to underfitting (high bias)
• Low to overfitting (high variance)



Regularized linear regression
• Regularized cost function:

• Analytical solution:

• Gradient descent solution:



Regularization of NN

• Reduce the complexity (reduce Variance)
• Weight decay
• Network structure (weight sharing)

• How many hidden layers and how many neurons ?
• Fewer – risk of underfitting
• More – risk of overfitting

• Keep track of predictive power (reduce Error directly)
• Early stopping



Weight decay
• “Weight decay” is a       norm regularization for Neural networks

• The weights of a NN will be an additional term in an Error function:



Sparse structure

• Weights: 32 x 32 x Khidden

• Weights: 8 x 8 x Khidden

• Different role between hidden units

Sparse = many weights set to 0



Weight sharing

• Weights: 8 x 8 x Khidden

• Wi = Wj = W0

• Weights: 8 x 8

• Spatial invariance
Even positions where pixels are always 0 
may learn to recognize some shapes



Early stopping
• A form of regularization based on the scheme of model selection

• Steps:
• The weights are initialized to 

small values
• Stop when the error on 

validation data increases

error



SUMMARY (QUESTIONS)



Some questions…
• Difference between lazy and eager learning?
• Training and testing procedure for k-NN?
• How does the number of neighbors influence k-NN?
• When to use k-NN and what are pros/cons?

• What is overfitting and how to deal with it?
• What is validation set?
• What is cross-validation?
• Types of partitioning in cross-validation?

• What is the bias-variance tradeoff?
• What is regularization and how is it used?
• What are regularization methods for NN?


