COMPUTATIONAL INTELLIGENCE

(INTRODUCTION TO MACHINE LEARNING) SS18

Lecture 6:

- k-NN
- Cross-validation
- Regularization

LEARNING METHODS

Lazy vs eager learning

- Eager learning generalizes training data before evaluation (e.g. Neural networks)
 - Fast prediction evaluation
 - Summarize training set (noise reduction)

- Lazy learning wait a prediction query to generalize (e.g. k-NN)
 - Local approximation
 - Quick adaptation to variation of the training set
 - Require storage of the full training set
 - Slow evaluation

Instance based learning

- Type of lazy learning
- Store in memory the training set
- Compare a test sample to the samples memory

K-NEAREST NEIGHBORS (K-NN)

k-NN

- Simple
- Non-differentiable
- Lazy learning
- The main idea:
 - Find the k closest samples (for instance with Euclidean distance)
 - Assign the most frequent class occurring on those k samples

1-NN: Nearest Neighbor

- No computation of the explicit decision boundary
- The decision boundary form a subset of the Voronoi diagram
 - a Voronoi diagram is a partitioning of a plane into regions based on distance to points in a specific subset of the plane.
- Decision boundaries are irregular

The number of neighbors influence

- The best **k** is data dependent
- Larger values of k : robustness to noise but fuzzy boundaries
- Model selection (validation set) is the best heuristic to optimize k

Variants

Training:

 Save only preprocessed input (feature extraction and dimensionality reduction)

Testing:

Classification:

- Majority of votes of its k nearest neighbors
- Regression:
 - Average of its k nearest neighbors.

Pros and cons

Pros:

- Easy to implement/understand
- No training
- Learn very complex decision boundaries
- No information loss (all samples are kept)

Cons:

- Require storage of all the data samples
- Slow at query time
- Bad performance if metric or feature vector is bad

Simple concepts are never deprecated

- **Memory Networks** (Weston et al. Facebook 2015) made tremendous progress in text processing and artificial reasoning:
 - For each input x
 - Find memory instance m most similar to x
 - Return a function f(x,m) and update the stored memories
- Differentiable version of these simple algorithms can be designed to use back-prop
 - Differentiable Neural Computer (Graves et al. Google 2016)
 - End-to-End Memory Networks (Sukbaathar et al. Facebook 2016)

Application tips

- When to use k-NN:
 - Lots of data is available
 - Small number of features
- What if the classes are not evenly represented?
 - In that case a more frequent class tend to dominate the prediction of the new example
 - Weighting heuristics

UNDERFITTING AND OVERFITTING

Under-/ and Overfitting

(e.g. degree of polynomial terms)

Under- and Overfitting

- Underfitting:
 - Model is too simple
 - High training error, high test error
- Overfitting:
 - Model is too complex (often: too many parameters relative to number of training examples)
 - Low training error, high test error
- In between "just right"
 - Moderate training error
 - Lowest test error

Model complexity

How to deal with overfitting

- Use model selection to automatically select the right model complexity
- Use regularization to keep parameters small

- Collect more data
 (often not possible or inefficient)
- Manually throw out features which are unlikely to contribute (often hard to guess which ones, potentially throwing out the wrong ones)
- Pre-processing, change the feature vector or perform dimension reduction (endless effort, often not possible or inefficient)

Model selection: Training/Validation/Test set workflow

CROSS-VALIDATION

Cross-validation

• The goal:

Define a validation set to "pre-test" in the training phase.

• Why to use it:

Limit overfitting: keep track of the predictive power

• The trick:

Recycle the data by using different training/validation partitions

Model selection with Cross-validation

1. Compute averaged cross-validated error (CV) for each model

2. Choose the model with smallest CV

Cross-validation approaches

- Disadvantage of a single validation set:
 - Little training data the function is poorly fitted
 - Little validation data the true error is poorly estimated
- Tricks and warnings
 - Beware if **the variance of the error** over partitions is large
 - Train the best class over full data after selection
 - Use the same partitions for all hypothesis
- Common types of partitioning:
 - k-fold
 - 2-fold
 - Leave-one-out
 - Repeated random sub-sampling

K-fold cross-validation

- Useful when training dataset is small
- Steps:
 - Split the data into k equal folds
 - Repeat k times cross-validation process: each of the folds should be used once as a validation set and the rest as a training set
- run 1

 run 2

 run 3

 run 4
- Calculate the mean and the variance of *k* runs
- Disadvantage:
 - It requires k runs of algorithm which means k times as much computation

2-fold cross-validation

- The simplest approach, also called holdout method
- Idea:
 - Split randomly the whole training data into 2 equal folds (*k*=2)
 - Train on the first fold and validate on the second, and vice verse
- Advantage:
 - Both training and validation sets are fairly large
 - Each data point is used for both training and validation on each fold

Leave-one-out cross-validation

- This is a special case where k equals the number of samples in the training set
- Idea:
 - Use a single sample as a validation set and all the rest as training set (*k* times)
- Used in the case of really small training set

Leave-one-out cross-validation example

Repeated random sub-sampling validation

- Idea:
 - Randomly split the dataset into training and validation sets k times
- Advantage:
 - Choose independently how large each validation set is and how many trials you average over
- Disadvantage:
 - Validation subsets may overlap (some sample may never be selected)

REGULARIZATION

Bias-variance dilemma (tradeoff)

- error = Variance + Bias²
- Variance coherence across samples
- Bias distance to target

• **Regularization** provides techniques to reduce the Variance

Under-/ and Overfitting

Model complexity (e.g. degree of polynomial terms)

Polynomial regression under-/overfitting

Regularization

- Prefer simple models
- Exclude extreme models
- How to do it:
 - Instead of minimizing the original problem $J(\theta)$ minimize $J(\theta) + \lambda ||\theta||^2$ where $||\theta||$ is L_2 norm (Euclidean norm)
- Large λ leads to underfitting (high bias)
- Low λ to overfitting (high variance)

Regularized linear regression

Regularized cost function:

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{m} \sum_{j} \theta_j^2$$
$$J(\boldsymbol{\theta}) = \frac{1}{m} ||\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y}||^2 + \frac{\lambda}{m} ||\boldsymbol{\theta}||^2$$

Analytical solution:

$$\boldsymbol{\theta}^* = \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Gradient descent solution:

$$\theta_j := \theta_j (1 - 2\eta \frac{\lambda}{m}) - 2\eta \cdot \frac{1}{m} \sum_{i=1}^m \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) \cdot x_j^{(i)}$$

Regularization of NN

- How many hidden layers and how many neurons ?
 - Fewer risk of underfitting
 - More risk of overfitting

- Reduce the complexity (reduce Variance)
 - Weight decay
 - Network structure (weight sharing)
- Keep track of predictive power (reduce Error directly)
 - Early stopping

Weight decay

- "Weight decay" is a L_2 norm regularization for Neural networks
- The weights of a NN will be an additional term in an Error function:

$$E(\boldsymbol{w}) = MSE(\boldsymbol{w}) + \frac{\lambda}{2}||\boldsymbol{w}||^2$$

Sparse structure

• Weights: 32 x 32 x K_{hidden}

- Weights: 8 x 8 x K_{hidden}
- Different role between hidden units

Weight sharing

• Weights: 8 x 8 x K_{hidden}

- $W_i = W_j = W_0$
- Weights: 8 x 8

• Spatial **invariance** Even positions where pixels are always 0 may learn to recognize some shapes

Early stopping

A form of regularization based on the scheme of model selection

- Steps:
 - The weights are initialized to small values
 - Stop when the error on validation data increases

SUMMARY (QUESTIONS)

Some questions...

- Difference between lazy and eager learning?
- Training and testing procedure for k-NN?
- How does the number of neighbors influence k-NN?
- When to use k-NN and what are pros/cons?
- What is overfitting and how to deal with it?
- What is validation set?
- What is cross-validation?
- Types of partitioning in cross-validation?
- What is the bias-variance tradeoff?
- What is regularization and how is it used?
- What are regularization methods for NN?