Lecture 6:

- Support Vector Machine (SVM)
- Kernel methods
- Multiclass classification
SUPPORT VECTOR MACHINE (SVM)
Separation of linearly separable classes

- Consider a training set consisting of m samples:
 $$\langle x^{(1)}, y^{(1)} \rangle \ldots \langle x^{(m)}, y^{(m)} \rangle$$
 where $y^{(i)} \in \{-1, 1\}$

- If samples are linearly separable, there are multiple possible decision boundaries or separation hyperplanes

Which one is the best?
Margin of separation

• SVM tries to find an optimal decision boundary (hyperplane) determined with \mathbf{w}_o and b_o, for separation of two classes which maximizes the separation margin or the separation between classes – the region between classes without samples.
Support vectors

- Support vectors (SVs) are:
 - the closest points (samples) to the separation hyperplane
 - used for definition of the optimal separation hyperplane

\[w_o^T x + b_o \geq 0 \]

\[w_o^T x + b_o < 0 \]

\[w_o^T x + b_o = 0 \]

\[w_o^T x + b_o = \pm 1 \]

- SVs are samples for which holds:
Separation hyperplane

- The separation hyperplane is given by
\[w_o^T x + b_o = 0 \]

- Discrimination function:
\[h(x) = w_o^T x + b_o \]

 The class of a new sample is determined based on the sign of \(h(x) \)

- Distance of the sample from the separation hyperplane:
\[r = \frac{h(x)}{||w_o||} \]

 \(||w_o|| \) is Euclidean norm
\[||w|| = \sqrt{\sum_i w_i^2} \]
Choice of support vectors

- Scaling of $\|w_o\|$ and b_o does not change the separation hyperplane

- Therefore, SVs are chosen such that:

$$h(x^{(s)}) = w_o^T x^{(s)} + b_o = \pm 1 \quad \text{for} \quad y^{(s)} = \pm 1$$

- The distance of SV from the hyperplane is:

$$r = \frac{h(x^{(s)})}{\|w_o\|} = \frac{\pm 1}{\|w_o\|}$$

- The width of the resulting margin is then:

$$\rho = 2|r| = \frac{2}{\|w_o\|}$$
Maximizing the margin of separation

• Maximizing the margin is equivalent to minimizing the $||w||$

• The $||w||$ norm involves the square root, so minimization of $||w||$ is replaced by minimization of $\frac{1}{2}||w||^2$, which does not change the solution

• SVM finds the maximum margin hyperplane, the hyperplane that maximizes the distance from the hyperplane to the closest training point
Optimization

• Optimization problem can be written as:

\[
\text{arg min}_w \frac{1}{2} ||w||^2
\]

under condition for all samples (that all of them are correctly classified):

\[
y^{(i)}(w^T x^{(i)} + b) \geq 1 \quad \text{for} \quad i = 1 \ldots m
\]

• This problem can be solved by using Lagrange multipliers:

\[
J(w, b, \alpha) = \frac{1}{2} ||w||^2 - \max_{i=1}^{m} \alpha_i [y^{(i)}(w^T x^{(i)} + b) - 1]
\]

where Lagrange multipliers \(\alpha_i \geq 0 \)

• Solution is in the saddle \(\min_{w} \max_{\alpha} J(w, b, \alpha) \)
Solution

• To find Lagrange multipliers α_i the dual form is used, which is solved through quadratic optimization

$$Q(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j}^{m} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{T(i)} \mathbf{x}^{(j)}$$

under conditions: $\sum_{i=1}^{m} \alpha_i y^{(i)} = 0$ and $\alpha_i \geq 0$

• The solution can be expressed as a linear combination of training vectors

$$\mathbf{w}_o = \sum_{i=1}^{m} \alpha_i y^{(i)} \mathbf{x}^{(i)}$$

$$b_o = y^{(i)} - \mathbf{w}_o^T \mathbf{x}^{(i)} \text{ (for some SV)}$$

• Note that only few of α_i will be greater then 0, and for those the corresponding samples will be support vectors!
Separation of linearly non-separable classes (Soft margin method)

- Main idea: use a soft margin which allows for mislabeled samples
- Introduce slack variables ξ_i and solve slightly different optimization problem

The free parameter C controls the relative importance of minimizing the norm $||w||$ and satisfying the margin constraint for each sample
- It allows to control the sensitivity of SVM to outliers

$$\arg\min_w \frac{1}{2}||w||^2 + C \sum_{i=1}^{m} \xi_i$$

$$y^{(i)}(w^T x^{(i)} + b) \geq 1 - \xi_i$$

$\xi_i \geq 0$
SVM: pros and cons

• SVM is not necessarily better than other machine learning methods (except perhaps in situations with little training data), but it performs at the state-of-the-art level and has a nice theoretical background

• Pros:
 • Finding a minimum of optimization problem is guaranteed
 • Usage of kernel methods (solve nonlinear problems)
 • By choosing a specific hyperplane among many SVM avoids overfitting (this depends on the choice of parameter C)

• Cons:
 • Speed of execution – no direct control of number of SVs
 • Solution parameters are hard to interpret
 • Hard to add a priori knowledge:
 • Solutions: add “artificial” samples or add additional optimization conditions
SVM extensions

- Multiclass SVM (multiple classes)
- Transductive SVM (partially labeled data, transduction)
- Structured SVM (structured output labels)
 - E.g. Input is natural language sentence, output is annotated parse tree
- Regression (Support Vector Regression)
SVM applications

- SVMs are used to solve many real world problems:
 - Text classification
 - Image classification
 - Hand-written recognition
 - Protein classification
 - ...

KERNEL METHODS
Motivation

• If data samples are not linearly separable, it would be nice if we could make them linearly separable and apply well studied linear classifiers (e.g. SVM) to separate them.

• **Cover’s theorem:** given a set of training data that is not linearly separable, one can with high probability transform it into a training set that is linearly separable by projecting it into a higher dimensional space via some non-linear transformation.
Projection example

Original space:
\[\mathbf{x} = (x_1, x_2) \]

High-dimensional feature space:
\[\varphi(\mathbf{x}) = (1, x_1^2, \sqrt{2}x_1x_2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2) \]
Kernels

- Kernels are functions that return the inner products between the images of data points in some space (they are often interpreted as a similarity measures)

\[K(x_1, x_2) = \varphi(x_1)^T \varphi(x_2) \]

- They allow for operating in a high-dimensional *implicit* feature space without ever computing the coordinates of the data in that space - no need for explicit mapping!

- This operation is often computationally cheaper than the explicit computation and is called the **kernel trick**
Kernel example

• Consider 2-dimensional vectors: \(\mathbf{u} = (u_1 \quad u_2)^T \) and \(\mathbf{v} = (v_1 \quad v_2)^T \)

and a quadratic kernel in two dimensions:

\[
K(\mathbf{u}, \mathbf{v}) = (1 + \mathbf{u}^T \mathbf{v})^2
\]

If \(\varphi(\mathbf{x}) = (1 \quad x_1^2 \quad \sqrt{2} x_1 x_2 \quad x_2^2 \quad \sqrt{2} x_1 \quad \sqrt{2} x_2)^T \) then:

\[
K(\mathbf{u}, \mathbf{v}) = (1 + \mathbf{u}^T \mathbf{v})^2
\]

\[
= 1 + u_1^2 v_1^2 + 2u_1 v_1 u_2 v_2 + u_2^2 v_2^2 + 2u_1 v_1 + 2u_2 v_2
\]

\[
= (1 \quad u_1^2 \quad \sqrt{2} u_1 u_2 \quad u_2^2 \quad \sqrt{2} u_1 \quad \sqrt{2} u_2)^T (1 \quad v_1^2 \quad \sqrt{2} v_1 v_2 \quad v_2^2 \quad \sqrt{2} v_1 \quad \sqrt{2} v_2)
\]

\[
= \varphi(\mathbf{u})^T \varphi(\mathbf{v})
\]
Kernels usage

• **Where:**
 • Within learning algorithms that only require dot products between the vectors in the original space (choose the mapping such that the high-dimensional dot products can be computed within the original space, by means of a *kernel function*)

• **How:**
 • Calculate *the kernel matrix* – the inner product between all pairs of data samples

• **Under what condition:**
 • Given by *Mercer’s theorem*: the kernel matrix must be symmetric positive definite
Standard kernels

• Polynomial kernel

\[K(x, y) = (x^T y + c)^d \]

• RBF kernel

\[K(x, y) = \exp\left(-\frac{||x - y||^2}{2\sigma^2}\right) \]

• Sigmoid kernel

\[K(x, y) = \tanh(ax^T y + b) \]

• String kernels
• Graph kernels
• ...
Kernels with various methods

• Any linear model can be turned into a non-linear model by applying the "kernel trick" to the model: replacing its features by a kernel function

• Methods capable of operating with kernels:
 • SVM
 • Perceptron (Kernel perceptron)
 • Principal component analysis
 • Cluster analysis
 • Gaussian process
 • Fisher discriminant
 • ...
Nonlinear (kernel) SVM

- The most famous application of kernels is with SVM
- Kernels allow non-linear classification with SVMs

The separation hyperplane can be rewritten in the feature space as:

\[\mathbf{w}^T \varphi(x) = 0 \quad \text{where we used} \quad \varphi_0(x) = 1 \quad \text{and} \quad w_0 = b_0 \]

The solution to the optimization problem of the maximal margin can be written as:

\[\mathbf{w}_o = \sum_{i=1}^{m} \alpha_i y^{(i)} \varphi(x^{(i)}) \]

Combining these gives:

\[\sum_{i=1}^{m} \alpha_i y^{(i)} \varphi(x^{(i)})^T \varphi(x) = 0 \quad \rightarrow \quad \sum_{i=1}^{m} \alpha_i y^{(i)} K(x^{(i)}, x) = 0 \]
Applications

- Kernels can be applied on general types of data (besides vector data also on sequences, trees, graphs, etc.)

- Application areas:
 - Information extraction
 - Bioinformatics
 - Handwriting recognition
 - Text classification (string kernels)
 - 3D reconstruction
 - Image recognition
 - ...

MULTICLASS CLASSIFICATION
Classification problems

Some are naturally **binary:**
- Spam vs not spam
- Medical tests
- Quality control
- ...

But many are **multi-class:**
- Text classification
- POS tagging
- Object recognition
- Biological sequences
- ...

![Graphs illustrating binary and multi-class classification problems](image_url)
Multiclass classification

- Consider a training set consisting of \(m \) samples:
 \[
 \langle x^{(1)}, y^{(1)} \rangle \ldots \langle x^{(m)}, y^{(m)} \rangle
 \]
- Each training sample belongs to **only one** of the \(N \) classes
 \[
 y^{(i)} \in [1, \ldots, N]
 \]
- The goal is to find a function which correctly predicts the class to which a new sample belongs
- It is different from a multilabel classification, where the goal is to assign to each sample a set of target labels (multiple classes)!
Classifiers

Some are directly multiclass:
- Decision trees
- Naive Bayes
- MaxEnt
- Multiclass SVM
- AdaBoost.MH

Many are binary:
- Logistic regression
- Perceptron
- Neural Network
- SVM

They directly output more than two class labels

They output only 2 class labels (e.g. 0 and 1). Can we use them for multiclass problems and how?
Binary classifiers for multiclass problems

• Idea:
 • Decompose multiclass problem into a set of binary problems
 • Create binary classifiers for binary problems
 • Combine the output of binary classifiers as a multiclass classifier

• Methods:
 • One-vs-all (OVA)
 • One-vs-one (OVO)
 • Error Correcting Output Codes (ECOC)
One-vs-all (OVA)

• Create classifiers that distinguish each class from all other classes
• There is 1 classifier per class: N classes $→ N$ classifiers

• Mapping from a multiclass training set to binary training sets:
 • For each class C:
 • For each sample $\langle x^{(i)}, y^{(i)} \rangle$:
 • If $y^{(i)} = C$ create sample $\langle x^{(i)}, 1 \rangle$
 • Otherwise, create sample $\langle x^{(i)}, -1 \rangle$

• Train N classifiers $h_k(x)$ where $k \in [1, \ldots, N]$

• Testing:
 • Classify new sample using all classifiers
 • Select the prediction (class) with the highest confidence score
 \[\text{Class} = \arg \max_k h_k(x^{(i)}) \]
OVA: example
One-vs-one (OVO)

- Create classifiers that distinguish between each pair of classes
- There are for N classes $\rightarrow N(N - 1)/2$ classifiers
- Mapping from a multiclass training set to binary training sets:
 - For each class C_i:
 - For each class C_j:
 - For each sample $\langle x^{(l)}, y^{(l)} \rangle$:
 - If $y^{(l)} = C_i$ create sample $\langle x^{(l)}, 1 \rangle$
 - If $y^{(l)} = C_j$ create sample $\langle x^{(l)}, -1 \rangle$
 - Otherwise, ignore sample
- Train all the classifiers
- Testing:
 - Classify new sample using all classifiers
 - Select the class with most votes
OVO: example
Error Correcting Output Codes (ECOC)

- Each class is represented by a binary code of length n (e.g. NN)
- Each bit position corresponds to the output of a classifier (feature)

- Training: 1 classifier per bit position
- Testing: get the output from classifiers and find the closest binary code (distance: Euclidean, cosine, Manhattan, etc.) to decide the class

- ECOC can recover from some bit errors (caused by limited data, bad features etc.), but this can also be limited due to the correlated mistakes
Comparison

• The most used (and the simplest) method is OVA

• Complexity (the number of classifiers):
 • OVA: N
 • OVO: $N(N - 1)/2$
 • ECOC: n (code length)

• OVO can be faster than OVA (due to the smaller datasets), but can have problem with overfitting (too few samples per dataset)
Confusion matrix

- Is an important tool for visualizing and analyzing the performance of a classifier for multiple classes.

- It shows for each pair of classes how many samples were incorrectly assigned. From this it is easy to see if the classifier is confusing two classes.

- It can help pinpoint opportunities for improving the accuracy of the system.
 - e.g. one can easily identify the place (classifier) of largest error and try to introduce additional features to improve classification and reduce the error.

<table>
<thead>
<tr>
<th>Actual class</th>
<th>Predicted class</th>
</tr>
</thead>
<tbody>
<tr>
<td>cow</td>
<td>cow 6</td>
</tr>
<tr>
<td></td>
<td>motorbike 0</td>
</tr>
<tr>
<td></td>
<td>car 3</td>
</tr>
<tr>
<td>motorbike</td>
<td>cow 1</td>
</tr>
<tr>
<td></td>
<td>motorbike 7</td>
</tr>
<tr>
<td></td>
<td>car 0</td>
</tr>
<tr>
<td>car</td>
<td>cow 4</td>
</tr>
<tr>
<td></td>
<td>motorbike 1</td>
</tr>
<tr>
<td></td>
<td>car 7</td>
</tr>
</tbody>
</table>
Classification metrics

• Classification accuracy
 • Proportion of samples that were classified correctly
 • \((\text{No. of samples that were classified correctly}) / N\)

• Classification error
 • Proportion of samples that were classified incorrectly
 • \((\text{No. of samples that were classified incorrectly}) / N\)
SUMMARY (QUESTIONS)
Some questions…

- What is the margin of separation?
- What are support vectors?
- What is SVM?
- What is the separation hyperplane and the discrimination function?
- What is a distance of a sample from the hyperplane?
- How is the margin of separation maximized?
- Why do we use soft margin?

- What is kernel?
- State Cover's theorem
- What is the kernel trick?
- Condition for kernel matrix?
- Name few standard kernels
Some questions…

- Multiclass vs multilabel classification
- Methods for multiclass problems
- What is OVA?
- OVA vs OVO
- What is ECOC?
- What is confusion matrix and why do we use it?