COMPUTATIONAL
INTELLIGENCE

(INTRODUCTION TO MACHINE LEARNING) SS18

Lecture 5:

- Support Vector Machine (SVM)
- Kernel methods

- Multiclass classification

SUPPORT VECTOR
MACHINE (SVM)

Separation of linearly separable classes

- Consider a training set consisting of m samples:
(V) y Wy (@™ ™)) where y) e {—1,1}

- If samples are linearly separable, there are multiple possible decision
boundaries or separation hyperplanes

Which one
is the best?

X2

wix+b =0

wlix+by=0

x1 wix +b3=0

Margin of separation

- SVM tries to find an optimal decision boundary (hyperplane)
determined with w, and b, , for separation of two classes which
maximizes the separation margin or the separation between classes —
the region between classes without samples

w, @+ b, >0

X2

wlz+b, <0

Support vectors

- Support vectors (SVs) are:
- the closest points (samples) to the separation hyperplane
- used for definition of the optimal separation hyperplane

w, @+ b, >0

X2

wlx+b, <0

- SVs are samples for which holds:

wlax®W 4+ b, = +1

Separation hyperplane

- The separation hyperplane is given by wlz +b,=0
- Discrimination function: h(z) = w!x + b,
The class of a new sample is determined based on the sign of h(x)
h(x) 20 = Class 0 (y; = +1)
h(x) <0 = Class 1 (y; = —1)

- Distance of the sample from the separation hyperplane:

The distance is; 7 =

llw,|| is Euclidean norm

||w||=ﬁ

Choice of support vectors

- Scaling of llw,|| and b, does not change the separation hyperplane

- Therefore, SVs are chosen such that:

hx®) =wlx® +b, =41 for y®) = +1

- The distance of SV from the hyperplane is:

- The width of the resulting margin is then:

2
[|w, |

p=2[r|=

Maximizing the margin of separation

- Maximizing the margin is equivalent to minimizing the ||w||

- The ||lw|| norm involves the square root, so minimization of ||w|| is

replaced by minimization of §||w||2 , which does not change the
solution

- SVM finds the maximum margin hyperplane, the hyperplane that
maximizes the distance from the hyerplane to the closest training
point

Optimization

- Optimization problem can be written as:

1 9
argmin —||w||
w2

under condition for all samples (that all of them are correctly classified):

yD(wTz® +b)>1 for i=1...m

1) Using SGD: can be faster if we have many data points or high
dimensional data but it is adapted only for linear classification

2) Using quadratic optimization in the Dual space: make it possible
to use the Kernel trick (see later) and separate non-linearly
separable dataset. (Breakthrough in machine learning history)

Optimization

- Optimization problem can be written as:

1 9
argmin —||w||
w2

under condition for all samples (that all of them are correctly classified):

yD(wTz® +b)>1 for i=1...m

- This problem can be solved by using Lagrange multipliers:

J

1 . i i
J(w,b,a)=§llwll2—§ aily (w4 b) — 1]
\] L=l
Y

|
min max

where Lagrange multipliers a; = 0
- Solution is in the saddle : min[mgx](w, b,a)]
w

- Dual problem is : max [mui’n](w, b, a)] = max [Q(a)]

Solution

- The solution to min J(w, b, &) can be expressed as a linear
w

combination of training vectors (by setting :—‘i = 0 and Z—i = 0)

w, = Z aiy(i)a:(i) i az-y(i) =
=1 i=1

- To find Lagrange multipliers «; the dual form is used, which is solved
through quadratic optimization

— 1 — o
Q) =Y ai— 5y aa;yyPa" Dzl
1=1 i,j

under conditions: > ;' =0 and a; >0
1=1
- Note that only few a; will be greater then 0, and for those the
corresponding samples will be support vectors!

Separation of linearly non-separable classes
(Soft margin method)

- Main idea: use a soft margin which allows for mislabeled samples

- Introduce slack variables &;, one for each x(and solve slightly
different optimization problem o
Regularization

1 term
: 2
argmin —||wl|
w2

y D (wlz® +b) >1-¢

& >0

- The free parameter C' controls the
relative importance of minimizing the
norm ||lw|| and satisfying the margin
constraint for each sample

- It allows to control the sensitivity of SVM
to outliers

outlier

SVM: pros and cons

- SVM is not necessarily better than other machine learning methods (except
perhaps in situations with little training data), but it performs at the state-of-
the-art level and has a nice theoretical background

- Pros:
- Finding a minimum of optimization problem is guaranteed
- Usage of kernel methods (solve nonlinear problems)

- By choosing a specific hyperplane among many SVM avoids overfitting
(this depends on the choice of parameter C')

- Cons:
- Speed of execution — no direct control of number of SVs
- Solution parameters are hard to interpret
- Hard to add a priori knowledge:

- Solutions: add “artificial” samples or add additional optimization
conditions

SVM extensions

- Multiclass SVM (multiple classes)
- Transductive SVM (partially labeled data, transduction)

- Structured SVM (structured output labels)
- E.g. Input is natural language sentence, output is annotated parse tree

- Regression (Support Vector Regression)

SVM applications

- SVMs are used to solve many real world problems:
- Text classification
- Image classification
- Hand-written recognition
- Protein classification

KERNEL METHODS

Motivation

- If data samples are not linearly separable, it would be nice if we could
make them linearly separable and apply well studied linear classifiers
(e.g. SVM) to separate them

- Cover’s theorem: given a set of training data that is not linearly
separable, one can with high probability transform it into a training set
that is linearly separable by projecting it into a higher dimensional
space via some non-linear transformation

©(.)

>

P2

Projection example

Original space: High-dimensional feature space:
L — ($17$2) p(x) = (1733%7 \/5331372,37%, \/5331, \/§$2)

©(.)
i ~~ ~ | o 0
<

Kernels

- Kernels are functions that return the inner products between the
images of data points in some space (they are often interpreted
as a similarity measures)

K(x1,x2) = p(x1)" ()

- They allow for operating in a high-dimensional implicit feature
space without ever computing the coordinates of the data in that
space - no need for explicit mapping!

- This operation is often computationally cheaper than the explicit
computation and is called the kernel trick

Kernel example

. . . T
- Consider 2-dimensional vectors: v = (u1 u2)" and v = (v1 v2)"
and a quadratic kernel in two dimensions:

K(u,v) = (1+u'v)’
If p(x)=(1 22 V2zze 22 V21 V2z2)" then:

K(u,v) = (1 +u'v)?

2.2 2.2
= 1 + ujv] + 2uviugv2 + usv5 + 2u1v1 + 2u02

= (1 43 V2uius u3 V2u V2u9) T (1 v V2009 v V201 V209)

Kernels usage

- Where:

- Within learning algorithms that only require dot products between the
vectors in the original space (choose the mapping such that the high-
dimensional dot products can be computed within the original space, by
means of a kernel function)

- How:

- Calculate the kernel matrix — the inner product between all pairs of data
samples

- Under what condition:

- Given by Mercer’s theorem: the kernel matrix must be symmetric
positive definite

Standard kernels

- Polynomial kernel

K(z,y) = (x"y +)’

- RBF kernel

lz —yl”
)

K(m7y) — emp(_ 20_2

- Sigmoid kernel

K(z,y) = tanh(ax’y + b)

- String kernels
- Graph kernels

Kernels with various methods

- Any linear model can be turned into a non-linear model by applying
the "kernel trick" to the model: replacing its features by a kernel
function

- Methods capable of operating with kernels:
- SVM
- Perceptron (Kernel perceptron)
- Principal component analysis
- Cluster analysis
- Gaussian process
- Fisher discriminant

Discrimination function (linear SVM)

- The separation hyperplane is given by: wlx + b, = 0
- Discrimination function: h(x) = wlx + b,
- The class of a new sample is determined based on the sign of h(x)

h(x) 20 = Class 0 (y; = +1)
h(x) <0 = Class 1 (y; = —1)

AN
x

wlx +b, <0

L
Non-linear (kernel) SVM

- The most famous application of kernels is with SVM
- Kernels allow non-linear classification with SVMs

- The discrimination can be rewritten in the feature space as:

h(x) = wl@(x) where we used ¢,(x) = 1 and wy = b,

- The solution to the optimization problem of the maximal margin can
be written as:

w, =Y a;ye(x)
1=1

- Combining these gives:
m m

h) =) ayPp(x®) o@ =) @y Pr(®,x)

i=1 =1

L
Applications

- Kernels can be applied on general types of data (besides vector data
also on sequences, trees, graphs, etc.)

- Application areas:
- Information extraction
- Bioinformatics
- Handwriting recognition
- Text classification (string kernels)

- 3D reconstruction
- Image recognition

MULTICLASS
CLASSIFICATION

Classification problems

Some are naturally binary: But many are mutli-class:
- Spam vs not spam - Text classification
- Medical tests - POS tagging
- Quality control - Object recognition

- Biological sequences

X2

Multiclass classification

- Consider a training set consisting of m samples:
(@t y W) (@™, ™)

- Each training sample belongs to only one of the N classes

y el,...,N]

- The goal is to find a function which correctly predicts the class to
which a new sample belongs

- It is different from a multilabel classification, where the goal is to
assign to each sample a set of target labels (multiple classes)!

Classifiers

Some are directly multiclass:
- Decision trees i

- Naive Bayes
. MaxEnt __ They directly output more than two

- Multiclass SVM class labels
- AdaBoost.MH _

Many are binary:

- Logistic regression m
- Perceptron They output only 2 class labels
— (e.g. 0 and 1). Can we use
them for multiclass problems
— and how?

- Neural Network
- SVM

Binary classifiers for multiclass problems

- ldea:
- Decompose multiclass problem into a set of binary problems
- Create binary classifiers for binary problems
- Combine the output of binary classifiers as a multiclass classifier

- Methods:
- One-vs-all (OVA)
- One-vs-one (OVO)
- Error Correcting Output Codes (ECOC)

L
One-vs-all (OVA)

- Create classifiers that distinguish each class from all other classes
- There is 1 classifier per class: /N classes = [V classifiers

- Training:
- For each class (C':
- For each sample (x(¥), (V) :
1f y) = C create sample (¥, 1)
- Otherwise, create sample <m(i), —1)

- Train IV classifiers hi(x) where k € [1,..., N]

- Testing:
- Classify new sample using all classifiers
- Select the prediction (class) with the highest confidence score

Class = argmax hi ()

L
One-vs-one (OVO)

- Create classifiers that distinguish between each pair of classes
- There are for N classes = N(N — 1)/2 classifiers

- Training:
- For each class Cj:
- Foreach class Cj:
- For each sample (2, ¢y} :
- If y = C; create sample (V1)
- If) = ¢, create sample () _1)
- Otherwise, ignore sample

- Train all the classifiers

- Testing:
- Classify new sample using all classifiers
- Select the class with most votes

A

OVO: example

x1

X

x1

x1

L
Error Correcting Output Codes (ECOC)

- Each class is represented by a binary code of length n (e.g. NN)
- Each bit position corresponds to the output of a classifier (feature)

- Training: 1 classifier per bit position

- Testing: get the output from classifiers and find the closest binary
code (distance: Euclidean, cosine, Manhattan, etc.) to decide the
class

- ECOC can recover from some bit errors (caused by limited data, bad
features etc.), but this can also be limited due to the correlated
mistakes

Comparison

- The most used (and the simplest) method is OVA

- Complexity (the number of classifiers):
- OVA: N
- OVO: N(N —1)/2
- ECOC: n (code length)

- OVO can be faster then OVA (due to the smaller datasets), but can
have problem with overfitting (too few samples per dataset)

Confusion matrix

- Is an important tool for visualizing and analyzing the performance of a
classifier for multiple classes

- It shows for each pair of classes how many samples were incorrectly
assigned. From this it is easy to see if the classifier is confusing two classes

- It can help pinpoint opportunities for improving the accuracy of the system

- e.g. one can easily identify the place(classifier) of largest error and try to
introduce additional features to improve classification and reduce the

error
Predicted class
COW motorbike car
CcCOow 5] 0 3
Actual motorbike 1 7 0
class

car 4 1 7

Classification metrics

- Classification accuracy

- Proportion of samples that were classified
correctly

- (No. of samples that were classified correctly) / N

- Precision and Recall

- Precision = True predicted Positive / Predicted
Positive

- Recall = True predicted Positive / Real positive

relevant elements

false negatives true negatives

true positives false positives

selected elements

How many selected How many relevant
items are relevant? items are selected?

Precision= —— Recall= ——

SUMMARY (QUESTIONS)

Some questions...

- What is the margin of separation?
- What are support vectors?

- What is SVM?

- What is the separation hyperplane and the discrimination
function?

- What is a distance of a sample from the hyperplane? r =
- Why do we use soft margin (slack variables)?

- What is a kernel?
- State Cover's theorem
- What is the kernel trick?

Some questions...

- What is the difference between Multiclass vs multilabel
classification?

- Methods for multiclass problems
- What is OVA?
- OVAvs OVO

- What is confusion matrix and why do we use it?

