
COMPUTATIONAL

INTELLIGENCE
(INTRODUCTION TO MACHINE LEARNING) SS16

Lecture 6:

• k-NN

• Cross-validation

• Regularization

LEARNING METHODS

Lazy vs eager learning

• Eager learning – generalizes training data before evaluation (e.g. Neural

networks)

• Fast prediction evaluation

• Summarize training set (noise reduction)

• Lazy learning – wait a prediction query to generalize (e.g. k-NN)

• Local approximation

• Quick adaptation to variation of the training set

• Require storage of the full training set

• Slow evaluation

Instance based learning

• Type of lazy learning

• Store in memory the training set

• Compare a test sample to the samples memory

K-NEAREST NEIGHBORS

(K-NN)

k-NN

• Simple

• Non-differentiable

• Lazy learning

• The main idea:

• Find the k closest samples (for instance with Euclidean distance)

• Assign the most frequent class occurring on those k samples

k=1

k=5

x
2

x1

1-NN: Nearest Neighbor

• No computation of the explicit decision boundary

• The decision boundary form a subset of the Voronoi diagram

• Decision boundaries are irregular

Voronoi diagram Decision boundary

The number of neighbors influence

• The best k is data dependent

• Larger values of k : robustness to noise but fuzzy boundaries

• Model selection (validation set) is the best heuristic to optimize k

Variants

• Training:

• Very fast (basically non-existing)

• Only input preprocessing (feature extraction and dimensionality

reduction)

• Testing (k-NN can be used for classification and regression):

• Classification:

• Majority of votes of its k nearest neighbors

• Regression:

• Average of its k nearest neighbors.

Pros and cons

• Easy to implement/understand

• No training

• Learn very complex decision boundaries

• No information loss (all samples are kept)

• Require storage of all the data samples

• Slow at query time

• Bad performance if metric or feature vector is bad

Pros:

Cons:

Application tips

• What if the classes are not evenly represented?

• In that case a more frequent class tend to dominate the prediction of

the new example

• Weighting heuristics

• When to use k-NN:

• Lots of data is available

• Small number of features

UNDERFITTING AND

OVERFITTING - RECAP

Under-/ and Overfitting

Model complexity
(e.g. degree of polynomial terms)

Training error (cost)

Test error (cost)

underfitting

overfitting

„just right“

Under- and Overfitting

• Underfitting:

• Model is too simple

• High training error, high test error

• Overfitting:

• Model is too complex (often: too many

parameters relative to number of training

examples)

• Low training error, high test error

• In between „just right“

• Moderate training error

• Lowest test error

Model

complexity

Training error (cost)

Test error (cost)

How to deal with overfitting

• Use model selection to automatically select the right model complexity

• Use regularization to keep parameters small

• Collect more data
(often not possible or inefficient)

• Manually throw out features which are unlikely to contribute

(often hard to guess which ones, potentially throwing out the wrong ones)

• Pre-processing, change the feature vector or perform dimension reduction

(endless effort, often not possible or inefficient)

Model selection: Training/Validation/Test

set workflow

Learning

algorithm B

Training set

Validation set
Model

selection

Learning

algorithm A

Hypothesis hA Hypothesis hB

Learning

algorithm C

Hypothesis hC

Test set Testing Test error/cost

For example:

Linear regression,

Polynomial regression,

Artificial Neural Network

Selected

Hypothesis h

CROSS-VALIDATION

Cross-validation

• The goal:

Define a validation set to “pre-test" in the training phase.

Use the full training set

• Why to use it:

Instead of training error keep track of the predictive power

• The trick:

Recycle the data by using different training/validation partitions

Model selection with Cross-validation

1. Compute averaged cross-validated error (CV) for each model

2. Choose the model with smallest CV

.6

.5

.7

.6

.4

.5

.5

.6

.6

.5

hA

hB

Cross-validation approaches

• Common types of partitioning:

• k-fold

• 2-fold

• Leave-one-out

• Repeated random sub-sampling

• Disadvantage of a single validation set:

• Little training data - the function is poorly fitted

• Little validation data - the true error is poorly estimated

• Tricks and warnings

• Beware if the variance of the error over partitions is large

• Train the best class over full data after selection

• Use the same partitions for all hypothesis

K-fold cross-validation

• Useful when training dataset is small

• Steps:

• Split the data into k equal folds

• Repeat k times cross-validation

process: each of the folds should be

used once as a validation set and the

rest as a training set

• Calculate the mean and the variance

of k runs

• Disadvantage:

• It requires k runs of algorithm which means k times as much computation

2-fold cross-validation

• The simplest approach, also called holdout method

• Idea:

• Split randomly the whole training data into 2 equal folds (k=2)

• Train on the first fold and validate on the second, and vice verse

• Advantage:

• Both training and validation sets are fairly large

• Each data point is used for both training and validation on each fold

Leave-one-out cross-validation

• This is a special case where k equals the

number of samples in the training set

• Idea:

• Use a single sample as a validation set and all

the rest as training set (k times)

• Used in the case of really small training set

Leave-one-out cross-validation example

CV = 0.6

3rd order

5th order 7th order

1st order

CV = 1.5

CV = 6.0 CV = 15.6

Repeated random sub-sampling validation

• Idea:

• Randomly split the dataset into training and validation sets k times

• Advantage:

• Choose independently how large each validation set is and how many

trials you average over

• Disadvantage:

• Validation subsets may overlap (some sample may never be selected)

REGULARIZATION

2

Bias-variance dilemma (tradeoff)

• Expected prediction error = Variance + Bias + Noise

• The bias–variance dilemma (tradeoff) is the problem of simultaneously

minimizing the bias and the variance of the model error

• Variance - how sensitive the model is to small changes in the training set

• Bias - how accurate a model is across different training sets

• To achieve good performance on data outside the training set a
tradeoff must be made!

• High bias -> underfitting (the model is too simple)

• High variance -> overfitting (the model is too complex)

Under-/ and Overfitting

Model complexity
(e.g. degree of polynomial terms)

Training error (cost)

Test error (cost)

underfitting

overfitting

„just right“

low bias

high variance
high bias

low variance

Polynomial regression under-/overfitting

underfitting „just right“ overfitting

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

x

y

MSEtrain=0.22, MSEtest=0.29

training

test

polynomial fit degree 1

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

x

y

MSEtrain=0.01, MSEtest=0.01

training

test

polynomial fit degree 5

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

x

y

MSEtrain=0.00, MSEtest=3.17

training

test

polynomial fit degree 15

high variancehigh bias

suppose we

penalize

Regularization

• Prefer simple models

• Exclude extreme models

• How to do it:

• Instead of minimizing the original problem minimize

where is norm (Euclidean norm)

• Large leads to underfitting (high bias)

• Low to overfitting (high variance)

Regularized linear regression

• Regularized cost function:

• Analytical solution:

• Gradient descent solution:

Regularization of NN

• Reduce the parameter space:

• Weight decay

• Network structure (weight sharing)

• How many hidden layers and how many neurons ?

• Fewer – risk of underfitting

• More – risk of overfitting

• Keep track of predictive power:

• Early stopping

Weight decay

• “Weight decay” is a norm regularization for Neural networks

• The weights of a NN will be an additional term in an Error function:

Sparse structure

• Weights: 32 x 32 x Khidden

• Weights: 8 x 8 x Khidden

• Different role between hidden units

Sparse = many weights set to null

Weight sharing

• Weights: 8 x 8 x Khidden

• Wi = Wj = W0

• Weights: 8 x 8

• Spatial invariance
Even positions were pixels are always 0 may

learn to recognize some shapes

Early stopping

• A form of regularization based on the scheme of model selection

• Steps:

• The weights are initialized to

small values

• Stop when the error on

validation data increases

error

SUMMARY (QUESTIONS)

Some questions…

• Difference between lazy and eager learning?

• What is Instance based learning?

• Training and testing procedure for k-NN?

• How does the number of neighbors influence k-NN?

• When to use k-NN and what are pros/cons?

• What is overfitting and how to deal with it?

• What is validation set?

• What is cross-validation?

• Types of partitioning in cross-validation?

• What is the bias-variance tradeoff?

• What is regularization and how is it used?

• What are regularization methods for NN?

