COMPUTATIONAL
INTELLIGENCE

(INTRODUCTION TO MACHINE LEARNING) SS16

Lecture 6:

- k-NN

- Cross-validation
- Regularization

LEARNING METHODS

L
Lazy vs eager learning

- Eager learning — generalizes training data before evaluation (e.g. Neural
networks)
- Fast prediction evaluation
- Summarize training set (noise reduction)

- Lazy learning — wait a prediction query to generalize (e.g. k-NN)
- Local approximation
- Quick adaptation to variation of the training set
- Require storage of the full training set
- Slow evaluation

Instance based learning

- Type of lazy learning

- Store in memory the training set
- Compare a test sample to the samples memory

K-NEAREST NEIGHBORS
(K-NN)

R - :
K-NN

Simple
Non-differentiable
Lazy learning

The main idea:
- Find the k closest samples (for instance with Euclidean distance)

- Assign the most frequent class occurring on those k samples

X2

L
1-NN: Nearest Neighbor

- No computation of the explicit decision boundary
- The decision boundary form a subset of the Voronoi diagram
- Decision boundaries are irregular

Voronoi diagram Decision boundary

The number of neighbors influence

- The best k is data dependent
- Larger values of k : robustness to noise but fuzzy boundaries

- Model selection (validation set) is the best heuristic to optimize k

K=1 K=3 K =31
2 3 g 2 g
e °8 ® .
$ goo l’..o s e g ..oo :;00. oo’ H ..o- :;00. So s g goo :;‘O, o o
& . x7 5 z7] Z7
e : e oo ° e
1 LR J ‘: 1 () o: 1 () o: 1 LY) o:
® [] . ® . L] > L]
L] .. 3 L] .. [.. = .. [} .. e ..
® Jo o (Lo S o] So] S o
.o .: .® .‘ ve .: .o .:
-t " . * wh “® 't “® . -t ®" o
0 : Y 0 a Y 0 2 0 Y

Variants

- Training:
- Very fast (basically non-existing)

- Only input preprocessing (feature extraction and dimensionality
reduction)

- Testing (k-NN can be used for classification and regression):
- Classification:
- Majority of votes of its k nearest neighbors
- Regression:
- Average of its k nearest neighbors.

Pros and cons

Pros:
- Easy to implement/understand
- No training
- Learn very complex decision boundaries
- No information loss (all samples are kept)

Cons:
- Require storage of all the data samples
- Slow at query time
- Bad performance if metric or feature vector is bad

L
Application tips

- When to use k-NN:
- Lots of data is available
- Small number of features

- What if the classes are not evenly represented?

- In that case a more frequent class tend to dominate the prediction of
the new example

- Weighting heuristics

UNDERFITTING AND
OVERFITTING - RECAP

L
Under-/ and Overfitting
A

underfitting

Training error (cost)

A overfitting

Just right*

Test error (cost)

Model complexity
(e.g. degree of polynomial terms)

Under- and Overfitting

- Underfitting:
- Model is too simple
- High training error, high test error

Training error (cost)

Test error (cost)

- Overfitting: A
- Model is too complex (often: too many /
parameters relative to number of training
examples)

- Low training error, high test error \

- In between ,just right
.. Model
- Moderate training error complexity
- Lowest test error

How to deal with overfitting

Use model selection to automatically select the right model complexity

Use regularization to keep parameters small

Collect more data
(often not possible or inefficient)

Manually throw out features which are unlikely to contribute
(often hard to guess which ones, potentially throwing out the wrong ones)

Pre-processing, change the feature vector or perform dimension reduction
(endless effort, often not possible or inefficient)

Model selection: Training/Validation/Test
set workflow

[Training set]
For example:

Learning Learning Learning Linear regression,

algorithm A algorithm B algorithm C Polynomial regression,
Artificial Neural Network

Model
selection

Validation set

Test set Testing Test error/cost

CROSS-VALIDATION

Cross-validation

- The goal:

Define a validation set to “pre-test" in the training phase.
Use the full training set

- Why to use it:
Instead of training error keep track of the predictive power

- The trick:
Recycle the data by using different training/validation partitions
I run 1
I run 2

run 3

run 4

Model selection with Cross-validation

1. Compute averaged cross-validated error (CV) for each model

S s s i

= = =
S L R
o N 0 o

i
\ég/)

h® O 1 1w

2. Choose the model with smallest CV

Cross-validation approaches

- Disadvantage of a single validation set:
- Little training data - the function is poorly fitted
- Little validation data - the true error is poorly estimated

- Tricks and warnings
- Beware if the variance of the error over partitions is large
- Train the best class over full data after selection
- Use the same partitions for all hypothesis

- Common types of partitioning:
- k-fold
- 2-fold
- Leave-one-out
- Repeated random sub-sampling

K-fold cross-validation

- Useful when training dataset is small

- Steps:

- Split the data into k equal folds
: L run 1

- Repeat k times cross-validation
process: each of the folds should be run 2

used once as a validation set and the

rest as a training set run 3
I run 4

- Calculate the mean and the variance
of k runs

- Disadvantage:
- It requires k runs of algorithm which means k times as much computation

2-fold cross-validation

- The simplest approach, also called holdout method

- ldea:
- Split randomly the whole training data into 2 equal folds (k=2)
- Train on the first fold and validate on the second, and vice verse

- Advantage:
- Both training and validation sets are fairly large
- Each data point is used for both training and validation on each fold

| eave-one-out cross-validation

- This is a special case where k equals the
number of samples in the training set

- |ldea:

- Use a single sample as a validation set and all
the rest as training set (k times)

- Used in the case of really small training set

1st order

5th order

cv=60

/.1

3rd order

Leave-one-out cross-validation example

CV=15

L,

7th order
cv=156 /|

Repeated random sub-sampling validation

- ldea:
- Randomly split the dataset into training and validation sets k times

- Advantage:

- Choose independently how large each validation set is and how many
trials you average over

- Disadvantage:
- Validation subsets may overlap (some sample may never be selected)

REGULARIZATION

Bias-variance dilemma (tradeoff)

. : .2 :
- Expected prediction error = Variance + Bias + Noise

- The bias—variance dilemma (tradeoff) is the problem of simultaneously
minimizing the bias and the variance of the model error

- Variance - how sensitive the model is to small changes in the training set
- Blas - how accurate a model is across different training sets

- High bias -> underfitting (the model is too simple)
- High variance -> overfitting (the model is too complex)

- To achieve good performance on data outside the training set a
tradeoff must be made!

L
Under-/ and Overfitting

Training error (cost)

Test error (cost)

low variance
A high bias
underfitting high variance

low bias
A overfitting

JuSt rlght

Model complexity
(e.g. degree of polynomial terms)

Polynomial regression under-/overfitting

MSEtrain=0.22, MSEtest=0.29 MSEtrain=0.01, MSEtest=0.01 MSEtrain=0.00, MSEtest=3.17
2.5 d 2.5 2.5
o tra|n|ng ° trammg tralnlng
21 o test o 21 o test 1 21 o test
—pol ial fit d 1 —pol ial fit d 5 —pol ial fit d 15
sl polynomial fit degree | Lsl polynomial fit degree | L5l polynomial fit degree
> >
10 ° (2 o 1b o
(-]
05— 5 ° "% o 05 °R o
°0% °
92 1 0 1 2 (-)2 -1 0 1 2
X X
underfitting Just right“ overfitting
high bias he(x) =0p+ 0, -2+ + 05 -2 high variance
he(z) =60y + 0, - x P ho(a) =0+ 01w+ - +05-2°
+ 025+ 4015 -2
96 ~0 ... 915 ~ 0

L i N2 suppose we

Regularization

- Prefer simple models
- Exclude extreme models

- How to do it: ,
- Instead of minimizing the original problem J(0) minimize J(0) + A[|6]]
where [|0|| is I, norm (Euclidean norm)

- Large A leads to underfitting (high bias)
- Low A to overfitting (high variance)

Regularized linear regression

- Regularized cost function:

70) = - > (ho () =) + 2 302

=1 J

1 A
J(0) = —|1X0 — y||* + =[jo]

- Analytical solution:

~1
0" = (XTX —|—£) X"y

- Gradient descent solution:

m

0;:=0;(1— 277%) — 2 - %Z (he (m(i)) _ y(i)) .CIS‘E’Z)

Regularization of NN

- How many hidden layers and how many neurons ?
- Fewer — risk of underfitting
- More - risk of overfitting

B

- Reduce the parameter space:
- Weight decay
- Network structure (weight sharing)

- Keep track of predictive power:
- Early stopping

L
Weight decay

- “Weight decay” is a L, norm regularization for Neural networks

- The weights of a NN will be an additional term in an Error function:

B(w) = MSE(w) + 5 w|

Sparse structure

* Weights: 32 X 32 X Ky,i4gen

T 3

O0000

« Weights: 8 X 8 X K}, 4qen i

» Different role between hidden units

|
O000O0

Sparse = many weights set to null

L
Weight sharing

. Weights: 8 X 8 X K1 y4en et O

'- O

=~ O

____________ ‘O

C W= W, =W, e - O

- Weights: 8 x 8 "/JO

- Spatial invariance Saiae O

Even positions were pixels are always Omay O
learn to recognize some shapes

L
Early stopping

- A form of regularization based on the scheme of model selection

. Steps: error

- The weights are initialized to
small values

- Stop when the error on
validation data increases

validation

SUMMARY (QUESTIONS)

Some questions...

- Difference between lazy and eager learning?

- What is Instance based learning?

- Training and testing procedure for K-NN?

- How does the number of neighbors influence k-NN?
- When to use k-NN and what are pros/cons?

- What is overfitting and how to deal with it?
- What is validation set?

- What is cross-validation?

- Types of partitioning in cross-validation?

- What is the bias-variance tradeoft?
- What is regularization and how is it used?
- What are regularization methods for NN?

