Lecture 6:

- k-NN
- Cross-validation
- Regularization
Lazy vs eager learning

- **Eager learning** — generalizes training data before evaluation (e.g. Neural networks)
 - Fast prediction evaluation
 - Summarize training set (noise reduction)

- **Lazy learning** — wait a prediction query to generalize (e.g. k-NN)
 - Local approximation
 - Quick adaptation to variation of the training set
 - Require storage of the full training set
 - Slow evaluation
Instance based learning

- Type of lazy learning

- Store in memory the training set
- Compare a test sample to the samples memory
K-NEAREST NEIGHBORS (K-NN)
k-NN

- Simple
- Non-differentiable
- Lazy learning

The main idea:
- Find the k closest samples (for instance with Euclidean distance)
- Assign the most frequent class occurring on those k samples
1-NN: Nearest Neighbor

- No computation of the explicit decision boundary
- The decision boundary form a subset of the Voronoi diagram
- Decision boundaries are irregular
The number of neighbors influence

- The best k is data dependent

- Larger values of k: robustness to noise but fuzzy boundaries

- Model selection (validation set) is the best heuristic to optimize k
Variants

- **Training:**
 - Very fast (basically non-existing)
 - Only input preprocessing (feature extraction and dimensionality reduction)

- **Testing** (k-NN can be used for classification and regression):
 - **Classification:**
 - Majority of votes of its k nearest neighbors
 - **Regression:**
 - Average of its k nearest neighbors.
Pros and cons

Pros:
- Easy to implement/understand
- No training
- Learn very complex decision boundaries
- No information loss (all samples are kept)

Cons:
- Require storage of all the data samples
- Slow at query time
- Bad performance if metric or feature vector is bad
Application tips

• When to use k-NN:
 • Lots of data is available
 • Small number of features

• What if the classes are not evenly represented?
 • In that case a more frequent class tend to dominate the prediction of the new example

• Weighting heuristics
UNDERFITTING AND OVERFITTING - RECAP
Under-/ and Overfitting

Model complexity
(e.g. degree of polynomial terms)

Training error (cost)
Test error (cost)

underfitting

overfitting

„just right“
Under- and Overfitting

- **Underfitting:**
 - Model is too simple
 - High training error, high test error

- **Overfitting:**
 - Model is too complex (often: too many parameters relative to number of training examples)
 - Low training error, high test error

- In between „just right“
 - Moderate training error
 - Lowest test error
How to deal with overfitting

• Use **model selection** to automatically select the right model complexity

• Use **regularization** to keep parameters small

• Collect more data
 (often not possible or inefficient)

• Manually throw out features which are unlikely to contribute
 (often hard to guess which ones, potentially throwing out the wrong ones)

• Pre-processing, change the feature vector or perform dimension reduction
 (endless effort, often not possible or inefficient)
Model selection: Training/Validation/Test set workflow

For example: Linear regression, Polynomial regression, Artificial Neural Network
Cross-validation

- **The goal:**
 Define a validation set to "pre-test" in the training phase.
 Use the full training set

- **Why to use it:**
 Instead of training error keep track of the predictive power

- **The trick:**
 Recycle the data by using different training/validation partitions
Model selection with Cross-validation

1. Compute averaged cross-validated error (CV) for each model

 \[h^A \]
 \[\begin{array}{cccc}
 \text{run 1} & \text{run 2} & \text{run 3} & \text{run 4} \\
 .6 & .5 & .7 & .6 \\
 \end{array} \]

 \[h^B \]
 \[\begin{array}{cccc}
 \text{run 1} & \text{run 2} & \text{run 3} & \text{run 4} \\
 .4 & .5 & .5 & .6 \\
 \end{array} \]

2. Choose the model with smallest CV

 \[.6 \]
 \[.5 \]
Cross-validation approaches

- Disadvantage of a single validation set:
 - Little training data - the function is poorly fitted
 - Little validation data - the true error is poorly estimated

- Tricks and warnings
 - Beware if the variance of the error over partitions is large
 - Train the best class over full data after selection
 - Use the same partitions for all hypothesis

- Common types of partitioning:
 - k-fold
 - 2-fold
 - Leave-one-out
 - Repeated random sub-sampling
K-fold cross-validation

- Useful when training dataset is small

- Steps:
 - Split the data into k equal folds
 - Repeat k times cross-validation process: each of the folds should be used once as a validation set and the rest as a training set
 - Calculate the mean and the variance of k runs

- Disadvantage:
 - It requires k runs of algorithm which means k times as much computation
2-fold cross-validation

- The simplest approach, also called holdout method

- Idea:
 - Split randomly the whole training data into 2 equal folds ($k=2$)
 - Train on the first fold and validate on the second, and vice versa

- Advantage:
 - Both training and validation sets are fairly large
 - Each data point is used for both training and validation on each fold
Leave-one-out cross-validation

- This is a special case where k equals the number of samples in the training set

- Idea:
 - Use a single sample as a validation set and all the rest as training set (k times)

- Used in the case of really small training set
Leave-one-out cross-validation example

1st order

CV = 0.6

3rd order

CV = 1.5

5th order

CV = 6.0

7th order

CV = 15.6
Repeated random sub-sampling validation

- **Idea:**
 - Randomly split the dataset into training and validation sets k times

- **Advantage:**
 - Choose independently how large each validation set is and how many trials you average over

- **Disadvantage:**
 - Validation subsets may overlap (some sample may never be selected)
REGULARIZATION
Bias-variance dilemma (tradeoff)

- Expected prediction error = Variance + Bias^2 + Noise

- The bias–variance dilemma (tradeoff) is the problem of simultaneously minimizing the bias and the variance of the model error

- **Variance** - how sensitive the model is to small changes in the training set
- **Bias** - how accurate a model is across different training sets

- High bias -> underfitting (the model is too simple)
- High variance -> overfitting (the model is too complex)

- To achieve good performance on data outside the training set a tradeoff must be made!
Under-/ and Overfitting

- Model complexity (e.g., degree of polynomial terms)
- Training error (cost)
- Test error (cost)

- Low variance
- High bias
- Underfitting

- High variance
- Low bias
- Overfitting

"Just right"
Polynomial regression under-/overfitting

underfitting
high bias
\[h_\theta(x) = \theta_0 + \theta_1 \cdot x \]

„just right“
\[h_\theta(x) = \theta_0 + \theta_1 \cdot x + \cdots + \theta_5 \cdot x^5 \]
\[\theta_6 \approx 0 \quad \ldots \quad \theta_{15} \approx 0 \]

overfitting
high variance
\[h_\theta(x) = \theta_0 + \theta_1 \cdot x + \cdots + \theta_5 \cdot x^5 + \theta_6 \cdot x^6 + \cdots + \theta_{15} \cdot x^{15} \]

\[J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 + 1000 \cdot \theta_6^2 + \cdots + 1000 \cdot \theta_{15}^2 \]

suppose we penalize \(\theta_6 \ldots \theta_{15} \)
Regularization

- Prefer simple models
- Exclude extreme models

How to do it:
- Instead of minimizing the original problem $J(\theta)$ minimize $J(\theta) + \lambda \|\theta\|^2$
- where $\|\theta\|$ is L_2 norm (Euclidean norm)

- Large λ leads to underfitting (high bias)
- Low λ to overfitting (high variance)
Regularized linear regression

• Regularized cost function:

\[J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{m} \sum_j \theta_j^2 \]

\[J(\theta) = \frac{1}{m} \| X\theta - y \|^2 + \frac{\lambda}{m} \| \theta \|^2 \]

• Analytical solution:

\[\theta^* = \left(X^T X + \lambda I \right)^{-1} X^T y \]

• Gradient descent solution:

\[\theta_j := \theta_j (1 - 2\eta \frac{\lambda}{m}) - 2\eta \cdot \frac{1}{m} \sum_{i=1}^{m} \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) \cdot x_j^{(i)} \]
Regularization of NN

- How many hidden layers and how many neurons?
 - Fewer – risk of underfitting
 - More – risk of overfitting

- Reduce the parameter space:
 - Weight decay
 - Network structure (weight sharing)

- Keep track of predictive power:
 - Early stopping
Weight decay

- “Weight decay” is a L_2 norm regularization for Neural networks.
- The weights of a NN will be an additional term in an Error function:

$$E(w) = MSE(w) + \frac{\lambda}{2} ||w||^2$$
Sparse structure

- Weights: $32 \times 32 \times K_{\text{hidden}}$
- Weights: $8 \times 8 \times K_{\text{hidden}}$
- Different role between hidden units

Sparse = many weights set to null
Weight sharing

- Weights: $8 \times 8 \times K_{\text{hidden}}$
- $W_i = W_j = W_0$
- Weights: 8×8
- Spatial **invariance**
 Even positions were pixels are always 0 may learn to recognize some shapes
Early stopping

- A form of regularization based on the scheme of model selection

- Steps:
 - The weights are initialized to small values
 - Stop when the error on validation data increases
SUMMARY (QUESTIONS)
Some questions…

• Difference between lazy and eager learning?
• What is Instance based learning?
• Training and testing procedure for k-NN?
• How does the number of neighbors influence k-NN?
• When to use k-NN and what are pros/cons?

• What is overfitting and how to deal with it?
• What is validation set?
• What is cross-validation?
• Types of partitioning in cross-validation?

• What is the bias-variance tradeoff?
• What is regularization and how is it used?
• What are regularization methods for NN?