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• Neural Networks

Perceptron
Feedforward Neural Network
Backpropagation algorithm



NEURAL NETWORKS
MOTIVATION



The brain
• Enables us to do some remarkable things such as:

• learning from experience
• instant memory (experiences) search
• face recognition (~100ms)
• adaptation to a new situation
• being creative..

• The brain is a biological neural network (BNN):
• extremely complex and highly parallel system
• consisting of 100 billions of neurons communicating via 

100 trillions of synapses (each neuron connected to
10000 other neurons on average)

• Mimicking the brain could be the way to build an (human level) 
intelligent system!



Artificial Neural Networks (ANN)
• ANN are computational models that model the way brain works
• Motivated and inspired by BNN, but still only simple imitation of BNN!

• ANN mimic human learning by changing 
the strength of simulated neural  connections 
on the basis of experience

• What are the different types of ANNs?
• What level of details is required? 
• How do we implement and simulate them? 



ARTIFICIAL NEURAL 
NETWORKS
History and types



History
• 1943 McCulloch and Pitts, Threshold Logic Unit (TLU)  - artificial 

neuron model
• 1949 Hebb’s book “The organization of  behavior", learning as 

synapse modification
• 1957 Rosenblatt, Perceptron (conceptual foundation of SVM)
• 1969 Minsky and Papert, limits of Perceptron (AI winter)
• 1974 Backpropagation algorithm (applied in the context of NN -

“renaissance” of NN)
• 1982 Hopfield network (Recurrent Neural Network)
• 1985 Boltzmann machine (stochastic RNN)
• 2010+  Backpropagation algorithm is back (top results, GPUs, deep 

learning)



What types of ANN there are?
• Feedforward networks

• SOM (Self Organizing Maps , Kohonen network)

• Recurrent networks
• Hopfield Network
• Boltzmann Machine
• Echo State Network
• Liquid State Machine
• ...

• Spiking Neural Networks
• ...

this lecture

Master courses NN, PBC



ARTIFICIAL NEURAL 
NETWORKS
Applications (level of details required?)



Machine learning ANN applications
• Areas of applications:

• Function approximation, regression analysis
• Classification
• Data processing
• Robotics

• Examples:
• Vehicle control, process control
• Game-playing, decision making
• Pattern recognition (face identification, object recognition)
• Sequence recognition (gesture, speech, handwritten text recognition)
• Medical diagnosis
• Financial applications (e.g. automated trading systems)
• Data mining, spam filtering
• Data compression



Success of Neural Networks
• Since 2012

• Go (AlphaGo Zero)

• ATARI Games

• Dota

• Speech synthesis

• Google translate

• Since 2005, overcame all other methods in :
• Image recognition Image Net

• Speech analysis

• Text prediction

• Analysis of brain slices



Other fields using NN
• Computational neuroscience:

• Create models of biological neural systems in order to understand how 
biological systems work

• Cognitive science:
• Modelling higher(language, problem solving) and lower(vision, speech 

generation) level reasoning

• Neurobiology:
• Modelling how the brain works at neuron-level (neural correlates of 

consciousness) or higher levels(vision, hearing)

• Philosophy:
• Can human mind and behavior be explained in terms of symbols, or does it 

require something lower level, like a neuronal based model?

(and often biologically more realistic neuron models)



ARTIFICIAL NEURAL 
NETWORKS
Simulations



Brain vs computer

• Hundreds of neuron types
• ~100 billion neurons
• ~100 trillion synapses
• ~ms signal transmission 
• Serial, parallel
• Analog
• Robustness
• Energy efficient
• Learns and develops through 

experience

• 1-2 types of processing unit
• ~10 processors
• ~1 billion transistors
• ~ns signal transmission
• Serial (per core)
• Digital
• Sensitive to failures



How to efficiently simulate ANN?
• Depends on the network size and the level of biological 

details (neuron/synapse)

• Implementation on:
• General purpose computers (exploiting GPUs)
• Supercomputers (Blue Gene, IBM)

• Specialized hardware (analog, digital, hybrid)
• Intel Loihi
• BSS (Wafer scale)
• SpiNNaker
• IBM TrueNorth
• FPGAs
• Other neuromorphic hardware



Recent large scale simulations
• 2005+ Blue Brain Project (BBP): Henry Markram at EPFL

• An attempt to create a synthetic brain by reverse-engineering the 
mammalian brain down to the molecular level

• Simulation of rat neocortical column (10,000 neurons and 100 million 
synapses)

• 2009  D.S. Modha (IBM): simulation of cat cerebral cortex
• 1 billion neurons, 10 trillion synapses, 100x slower than real time at 

147,456 processor Blue Gene supercomputer (cognitive architecture)

• 2012  D.S. Modha (IBM): 
• 530 billion neurons, 137 trillion synapses,1542x slower than real time at 

1,572,864 processors of Sequoia supercomputer

• 2012  Chris Eliasmith: Spaun
• A Large-Scale Model of the Functioning Brain 
• it can perform 8 tasks, 2 million neurons, with plasticity



Recent large scale simulations (2)
• 2012  Andrew Ng (Google) - deep learning:

• extract concepts (cat) from YouTube videos
• 1 million neurons, 1 billion synapses, 16,000 processors
• “One algorithm hypothesis”, learning

• 2013  Andrew Ng (Google) - deep learning:
• network size x10 simulated with only 64 GPUs

• 2013+ Human Brain Project (HBP):
• Aim is to simulate the complete human brain (molecular level) on 

supercomputers to better understand how it functions
• www.ted.com/talks/henry_markram_supercomputing_the_brain_s_secrets

• 2015 Digital Reasoning 160 billion parameters
• 2017 Chris Eliasmith 4.5 million neurons with plasticity
• 2018  Jülich Research Centre, Germany and RIKEN Japan (1.51 billion neurons, 16.8 

trillion synapses on the K-computer)
• And many many others…

http://www.ted.com/talks/henry_markram_supercomputing_the_brain_s_secrets


ARTIFICIAL NEURAL 
MODEL



Biological neuron

Cell body

Dendrite (input)

Nucleus

Axon terminal
Node of 

Ranvier

Schwann cell
Myelin sheath

Axon (output)

Synapse



Artificial neuron model

- activation function

Activation:

- inputs
- weights

- bias (threshold)

Output:



Artificial neuron model

- activation function

- inputs
- weights

- bias (threshold)

Output:

Activation:



Activation functions (most common)

Heaviside step function
Threshold Logic Unit 

(TLU) Perceptron 
(classification)
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(nonlinear)

Sigmoid function
Feedforward networks

(nonlinear, classification) 
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PERCEPTRON



Introduction

• Perceptron is the simplest neural network used for classification of 

linearly separable data – it is a linear (binary) classifier

• It consists of 1 neuron with Heaviside step function as activation 

function (TLU)

• Learning algorithm by Rosenblatt in 1957:

• Theorem: If training set is linearly separable the algorithm converges

• If training set is not linearly separable, the algorithm does not terminate!

• Algorithm allows for online learning: it processes one data sample at a time



Linearly separable data?
• Consider a training set consisting of m samples:

x2

x1x1

x2

Where

Example in 2D space: Can you find a linear decision boundary (hyperplane) 
which separates class 0 from class 1? 

NO YES



The output of Perceptron 

for sample          is:

Binary classification
If training data is linearly separable then there exist parameters       defining a 
decision boundary or a hyperplane (a subspace of one dimension less then its 
ambient space) such that:

for each that belongs to class 0

for each that belongs to class 1

x1

x2

2D line equation:

if belongs to class 0

if belongs to class 1



Learning algorithm

and or

and

• Otherwise update the weights

• Repeat until all data is correctly classified or max number of iteration reached
(or some other stopping criteria is met, e.g. the number of misclassified 
samples)

is learning rate

sample category 0 or 1

Perceptron prediction 0 or 1

as

as

• For each sample         from training set:
• If sample is classified correctly no change



Limitations and extensions
• If data is not linearly separable no linear classifier can classify all data 

correctly, so neither can the Perceptron
• Note that the best classifier is not necessarily one which classifies all 

the training data perfectly (overfitting)
• But for Perceptron, if data is not linearly separable it does not 

converge!

x1

x2

XOR



Limitations and extensions
• This was brought up by Minsky and Pepert in 1969 (AI winter)

• They pointed out that Perceptron can not solve XOR problem

• Extensions:
• Pocket Perceptron

• Perceptron of optimal stability

• Multiclass Perceptron

• Kernel Perceptron (separate nonlinear data!)
x1

x2

XOR

x y out
0 0 0

1 1 0

0 1 1

1 0 1



FEEDFORWARD NEURAL 
NETWORK



Feedforward architecture
• Network with feedforward architecture has no cycles
• The input information is propagated from the input neurons towards the 

output ones

Recurrent architecture Feedforward architecture 

Input Output



Feedforward layer architecture
• Neurons are organized in layers
• Such networks are also called Multilayer Perceptrons

Output layerInput layer

The network implements the function:

input

output

weights

Activation function of 
neuron k in layer 1

Output neuron



Hidden layers
Hidden layerInput layer Output layer

The network implements the function:

input

output

weights

Hidden neuron

Output neuron



Hidden neurons (units)

• Are situated in hidden layers between the input and the output layers

• They allow a network to learn non-linear functions and to represent 
combinations of the input features

• Given too many hidden neurons, a neural net will simply memorize 
the input patterns (overfitting)

• Given too few hidden neurons, the network may not be able to 
represent all of the necessary generalizations (underfitting)



FEEDFORWARD NEURAL 
NETWORK
Computational power



• ANN which solves 
XOR problem can be 
easily constructed

XOR problem



Computational power
• Boolean functions:

• Every Boolean function can be represented by network with single hidden 
layer, but might require exponential (in number of inputs) hidden units

• Continuous functions (universal approximation theorem):
• Every bounded continuous function can be approximated with arbitrarily 

small error, by a network with one hidden layer under mild assumption on 
activation function (it has to be non-constant, bounded, and monotonically-
increasing continuous function, e.g. sigmoid function) [Cybenko1989; 
Hornik et al. 1989]



blue Target function
red Approximation

Output of hidden neurons

Example: function approximation

Network with 3 hidden neurons



Example: classification

Network with 2 hidden neurons
green Target function
red Approximation

Output of hidden neurons

Neural network can define very complex decision boundaries



BACKPROPAGATION 
ALGORITHM



Introduction
• Backpropagation algorithm was first applied in the context of NN in 1974 

by Paul Werbos (“renaissance” of NN)

• It became famous after book “Parallel Distributed processing” by 
Rumelhart and McClelland in 1987

• Previously it was not applicable to larger networks, but nowadays due to 
the increased computation power(GPU) is back and is being used for 
training of large networks which achieve top results for many problems!

• Credit Assignment Problem : determining how the success of a 
system’s overall performance is due to the various contributions of the 
system’s components 

• Credit Assignment Problem for ANN: assign the “blame” to each hidden 
neuron for its contribution to output neuron error



Error measure

Input Output Target

• Consider a training set consisting of m samples:

• Error of a single output neuron:
• Classical measure (function) of error:

Sum of squared errors:

How to choose weights 
to minimize the error 
measure?

Error for a 
particular sample



Learning = minimizing training error
Input Output

• As no analytic solution is possible use gradient descent!
• Other techniques are also possible (adam, l-bfgs, conjugate gradient, Rprop, any 

optimization technique)

Target



Backpropagation algorithm
• For learning (update of weights) the gradient of the error function is 

needed
• The gradient of the error function is calculated by the local exchange 

of messages in 2 passes:
• Forward: Calculate activations and outputs of all neurons
• Backward: Calculate errors      and propagate them back



• Error gradient calculation:

• Forward transmission: calculate the output       of the neuron 

• Backward transmission: calculate the error        of the neuron 

• Hidden neuron:

• Output neuron: 

Algorithm



Batch vs online learning

• Online learning
• After presentation of each sample    from the training set we use the 

calculated error gradient for weight update:

• Batch learning
• The error gradient for each sample from training set is calculated and 

accumulated. The weight update is done after all samples are seen.

• It can be used when there is no fixed training set (new data keeps coming in)
• The noise in the gradient can help to escape from local minimum
• “Stochastic Gradient Descent”

• Mini-batch



Properties
• The algorithm is executed (usually in epochs during which each 

sample from the training set is presented to the network) until 
stopping criteria (e.g. error is smaller then some threshold) is fulfilled

• The results may converge to a local minimum

• The convergence is not guaranteed and is very slow (if obtained)

• Normalization of input vectors is not required, but it can improve the 
performance



NEURAL NETWORKS
EXAMPLE



Regression

Activation 
functions

• Linear activation function 
in output layer ensures 
arbitrary output range

Input Output Target



Classification

• Sigmoid activation 
function in output layer 
ensures outputs between 
0 and 1

Activation 
functions

Input Output Target



Classification: binary vs multiclass
• Binary classification:

• Round the output of a single neuron (with sigmoidal activation) to 0 
or 1 and interpret it as a class 0 or class 1 (as in Perceptron)

• Multiclass classification:
• Multiple output neurons: use 1-out-of-n encoding for the target value   

(one of        values is 1, all others are 0)
• This means there is one output neuron for each class
• Use a softmax encoding to code the output as probabilities



Classification: binary vs multiclass
• For example, if the number of classes is 3:

is one of: , or

• We want the output of ANN to be: 

, ,



Classification training example

Activation 
functions

Input Output Target
K categories

1 “car”

0 “motorbike”

0 “cow”

Softmax or 



Classification training example

Activation 
functions

Input Output Target
K categories

0 “car”

0 “motorbike”

1 “cow”

Softmax or 



Classification test example (after learning)

Activation 
functions

Input Output
K categories

“car”

“motorbike”

“cow”

0.9

0.03

0.07

Softmax or 



ARTIFICIAL NEURAL 
NETWORKS
Properties



Properties
• Neurobiology analogy
• Adaptive model
• Learns input output mapping
• Learning is quite slow but testing is fast
• Data does not have to be precise and perfect
• Result does not depend on a single network element
• Fault tolerant  - robust (redundancy)
• Knowledge is stored implicitly (it is hard to interpret it)



Critic: Black Box interpretation
A neural network learns. But What ?
What are the role of higher layers ?

- Pre-training unsupervised or on another dataset may help



Google Deep Dream



Google Deep Dream



Google Deep Dream

Details at:
• http://googleresearch.blogspot.co.at/2015/06/inceptionism-going-deeper-into-neural.html
Source code available at:
• https://github.com/google/deepdream

http://googleresearch.blogspot.co.at/2015/06/inceptionism-going-deeper-into-neural.html
https://github.com/google/deepdream


SUMMARY (QUESTIONS)



Some questions…
• What is an ANN?
• What are the different types of ANN?
• Applications of ANN?
• Artificial neuron model?
• What is an activation function? Types and usage?
• What is Perceptron?
• Convergence properties of Perceptron?
• Perceptron learning algorithm?
• Limitations of Perceptron?
• Can you use Perceptron to classify nonlinear data?



Some questions (2)…
• What is feedforward architecture?
• What is hidden layer and what is it useful for?
• Can Perceptron solve XOR? How about Multilayer 

Perceptron?
• Computational properties of ANN?
• What is Credit Assignment Problem? In context of ANN?
• What is the backpropagation algorithm?
• What error function is minimized in backpropagation?
• Why is the backpropagation algorithm used?
• What are online and batch learning? What is the 

difference?
• How can one use ANN for classification? And regression?



What is next?
• Support Vector Machines : a powerful linear classifier

• Kernel methods

• Multiclass classification methods
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