
COMPUTATIONAL
INTELLIGENCE
(INTRODUCTION TO MACHINE LEARNING) SS18

Lecture 4: (Lecturer: Anand Subramoney)
• Neural Networks

Perceptron
Feedforward Neural Network
Backpropagation algorithm

NEURAL NETWORKS
MOTIVATION

The brain
• Enables us to do some remarkable things such as:

• learning from experience
• instant memory (experiences) search
• face recognition (~100ms)
• adaptation to a new situation
• being creative..

• The brain is a biological neural network (BNN):
• extremely complex and highly parallel system
• consisting of 100 billions of neurons communicating via

100 trillions of synapses (each neuron connected to
10000 other neurons on average)

• Mimicking the brain could be the way to build an (human level)
intelligent system!

Artificial Neural Networks (ANN)
• ANN are computational models that model the way brain works
• Motivated and inspired by BNN, but still only simple imitation of BNN!

• ANN mimic human learning by changing
the strength of simulated neural connections
on the basis of experience

• What are the different types of ANNs?
• What level of details is required?
• How do we implement and simulate them?

ARTIFICIAL NEURAL
NETWORKS
History and types

History
• 1943 McCulloch and Pitts, Threshold Logic Unit (TLU) - artificial

neuron model
• 1949 Hebb’s book “The organization of behavior", learning as

synapse modification
• 1957 Rosenblatt, Perceptron (conceptual foundation of SVM)
• 1969 Minsky and Papert, limits of Perceptron (AI winter)
• 1974 Backpropagation algorithm (applied in the context of NN -

“renaissance” of NN)
• 1982 Hopfield network (Recurrent Neural Network)
• 1985 Boltzmann machine (stochastic RNN)
• 2010+ Backpropagation algorithm is back (top results, GPUs, deep

learning)

What types of ANN there are?
• Feedforward networks

• SOM (Self Organizing Maps , Kohonen network)

• Recurrent networks
• Hopfield Network
• Boltzmann Machine
• Echo State Network
• Liquid State Machine
• ...

• Spiking Neural Networks
• ...

this lecture

Master courses NN, PBC

ARTIFICIAL NEURAL
NETWORKS
Applications (level of details required?)

Machine learning ANN applications
• Areas of applications:

• Function approximation, regression analysis
• Classification
• Data processing
• Robotics

• Examples:
• Vehicle control, process control
• Game-playing, decision making
• Pattern recognition (face identification, object recognition)
• Sequence recognition (gesture, speech, handwritten text recognition)
• Medical diagnosis
• Financial applications (e.g. automated trading systems)
• Data mining, spam filtering
• Data compression

Success of Neural Networks
• Since 2012

• Go (AlphaGo Zero)

• ATARI Games

• Dota

• Speech synthesis

• Google translate

• Since 2005, overcame all other methods in :
• Image recognition Image Net

• Speech analysis

• Text prediction

• Analysis of brain slices

Other fields using NN
• Computational neuroscience:

• Create models of biological neural systems in order to understand how
biological systems work

• Cognitive science:
• Modelling higher(language, problem solving) and lower(vision, speech

generation) level reasoning

• Neurobiology:
• Modelling how the brain works at neuron-level (neural correlates of

consciousness) or higher levels(vision, hearing)

• Philosophy:
• Can human mind and behavior be explained in terms of symbols, or does it

require something lower level, like a neuronal based model?

(and often biologically more realistic neuron models)

ARTIFICIAL NEURAL
NETWORKS
Simulations

Brain vs computer

• Hundreds of neuron types
• ~100 billion neurons
• ~100 trillion synapses
• ~ms signal transmission
• Serial, parallel
• Analog
• Robustness
• Energy efficient
• Learns and develops through

experience

• 1-2 types of processing unit
• ~10 processors
• ~1 billion transistors
• ~ns signal transmission
• Serial (per core)
• Digital
• Sensitive to failures

How to efficiently simulate ANN?
• Depends on the network size and the level of biological

details (neuron/synapse)

• Implementation on:
• General purpose computers (exploiting GPUs)
• Supercomputers (Blue Gene, IBM)

• Specialized hardware (analog, digital, hybrid)
• Intel Loihi
• BSS (Wafer scale)
• SpiNNaker
• IBM TrueNorth
• FPGAs
• Other neuromorphic hardware

Recent large scale simulations
• 2005+ Blue Brain Project (BBP): Henry Markram at EPFL

• An attempt to create a synthetic brain by reverse-engineering the
mammalian brain down to the molecular level

• Simulation of rat neocortical column (10,000 neurons and 100 million
synapses)

• 2009 D.S. Modha (IBM): simulation of cat cerebral cortex
• 1 billion neurons, 10 trillion synapses, 100x slower than real time at

147,456 processor Blue Gene supercomputer (cognitive architecture)

• 2012 D.S. Modha (IBM):
• 530 billion neurons, 137 trillion synapses,1542x slower than real time at

1,572,864 processors of Sequoia supercomputer

• 2012 Chris Eliasmith: Spaun
• A Large-Scale Model of the Functioning Brain
• it can perform 8 tasks, 2 million neurons, with plasticity

Recent large scale simulations (2)
• 2012 Andrew Ng (Google) - deep learning:

• extract concepts (cat) from YouTube videos
• 1 million neurons, 1 billion synapses, 16,000 processors
• “One algorithm hypothesis”, learning

• 2013 Andrew Ng (Google) - deep learning:
• network size x10 simulated with only 64 GPUs

• 2013+ Human Brain Project (HBP):
• Aim is to simulate the complete human brain (molecular level) on

supercomputers to better understand how it functions
• www.ted.com/talks/henry_markram_supercomputing_the_brain_s_secrets

• 2015 Digital Reasoning 160 billion parameters
• 2017 Chris Eliasmith 4.5 million neurons with plasticity
• 2018 Jülich Research Centre, Germany and RIKEN Japan (1.51 billion neurons, 16.8

trillion synapses on the K-computer)
• And many many others…

http://www.ted.com/talks/henry_markram_supercomputing_the_brain_s_secrets

ARTIFICIAL NEURAL
MODEL

Biological neuron

Cell body

Dendrite (input)

Nucleus

Axon terminal
Node of

Ranvier

Schwann cell
Myelin sheath

Axon (output)

Synapse

Artificial neuron model

- activation function

Activation:

- inputs
- weights

- bias (threshold)

Output:

Artificial neuron model

- activation function

- inputs
- weights

- bias (threshold)

Output:

Activation:

Activation functions (most common)

Heaviside step function
Threshold Logic Unit

(TLU) Perceptron
(classification)

0

1

0

1

1 0

1

RELU function
(nonlinear)

Sigmoid function
Feedforward networks

(nonlinear, classification)

! " = $0 " < 0
" " ≥ 0! " = $0 " < 0

1 " ≥ 0 ! " = 1
1 + *+,

PERCEPTRON

Introduction

• Perceptron is the simplest neural network used for classification of

linearly separable data – it is a linear (binary) classifier

• It consists of 1 neuron with Heaviside step function as activation

function (TLU)

• Learning algorithm by Rosenblatt in 1957:

• Theorem: If training set is linearly separable the algorithm converges

• If training set is not linearly separable, the algorithm does not terminate!

• Algorithm allows for online learning: it processes one data sample at a time

Linearly separable data?
• Consider a training set consisting of m samples:

x2

x1x1

x2

Where

Example in 2D space: Can you find a linear decision boundary (hyperplane)
which separates class 0 from class 1?

NO YES

The output of Perceptron

for sample is:

Binary classification
If training data is linearly separable then there exist parameters defining a
decision boundary or a hyperplane (a subspace of one dimension less then its
ambient space) such that:

for each that belongs to class 0

for each that belongs to class 1

x1

x2

2D line equation:

if belongs to class 0

if belongs to class 1

Learning algorithm

and or

and

• Otherwise update the weights

• Repeat until all data is correctly classified or max number of iteration reached
(or some other stopping criteria is met, e.g. the number of misclassified
samples)

is learning rate

sample category 0 or 1

Perceptron prediction 0 or 1

as

as

• For each sample from training set:
• If sample is classified correctly no change

Limitations and extensions
• If data is not linearly separable no linear classifier can classify all data

correctly, so neither can the Perceptron
• Note that the best classifier is not necessarily one which classifies all

the training data perfectly (overfitting)
• But for Perceptron, if data is not linearly separable it does not

converge!

x1

x2

XOR

Limitations and extensions
• This was brought up by Minsky and Pepert in 1969 (AI winter)

• They pointed out that Perceptron can not solve XOR problem

• Extensions:
• Pocket Perceptron

• Perceptron of optimal stability

• Multiclass Perceptron

• Kernel Perceptron (separate nonlinear data!)
x1

x2

XOR

x y out
0 0 0

1 1 0

0 1 1

1 0 1

FEEDFORWARD NEURAL
NETWORK

Feedforward architecture
• Network with feedforward architecture has no cycles
• The input information is propagated from the input neurons towards the

output ones

Recurrent architecture Feedforward architecture

Input Output

Feedforward layer architecture
• Neurons are organized in layers
• Such networks are also called Multilayer Perceptrons

Output layerInput layer

The network implements the function:

input

output

weights

Activation function of
neuron k in layer 1

Output neuron

Hidden layers
Hidden layerInput layer Output layer

The network implements the function:

input

output

weights

Hidden neuron

Output neuron

Hidden neurons (units)

• Are situated in hidden layers between the input and the output layers

• They allow a network to learn non-linear functions and to represent
combinations of the input features

• Given too many hidden neurons, a neural net will simply memorize
the input patterns (overfitting)

• Given too few hidden neurons, the network may not be able to
represent all of the necessary generalizations (underfitting)

FEEDFORWARD NEURAL
NETWORK
Computational power

• ANN which solves
XOR problem can be
easily constructed

XOR problem

Computational power
• Boolean functions:

• Every Boolean function can be represented by network with single hidden
layer, but might require exponential (in number of inputs) hidden units

• Continuous functions (universal approximation theorem):
• Every bounded continuous function can be approximated with arbitrarily

small error, by a network with one hidden layer under mild assumption on
activation function (it has to be non-constant, bounded, and monotonically-
increasing continuous function, e.g. sigmoid function) [Cybenko1989;
Hornik et al. 1989]

blue Target function
red Approximation

Output of hidden neurons

Example: function approximation

Network with 3 hidden neurons

Example: classification

Network with 2 hidden neurons
green Target function
red Approximation

Output of hidden neurons

Neural network can define very complex decision boundaries

BACKPROPAGATION
ALGORITHM

Introduction
• Backpropagation algorithm was first applied in the context of NN in 1974

by Paul Werbos (“renaissance” of NN)

• It became famous after book “Parallel Distributed processing” by
Rumelhart and McClelland in 1987

• Previously it was not applicable to larger networks, but nowadays due to
the increased computation power(GPU) is back and is being used for
training of large networks which achieve top results for many problems!

• Credit Assignment Problem : determining how the success of a
system’s overall performance is due to the various contributions of the
system’s components

• Credit Assignment Problem for ANN: assign the “blame” to each hidden
neuron for its contribution to output neuron error

Error measure

Input Output Target

• Consider a training set consisting of m samples:

• Error of a single output neuron:
• Classical measure (function) of error:

Sum of squared errors:

How to choose weights
to minimize the error
measure?

Error for a
particular sample

Learning = minimizing training error
Input Output

• As no analytic solution is possible use gradient descent!
• Other techniques are also possible (adam, l-bfgs, conjugate gradient, Rprop, any

optimization technique)

Target

Backpropagation algorithm
• For learning (update of weights) the gradient of the error function is

needed
• The gradient of the error function is calculated by the local exchange

of messages in 2 passes:
• Forward: Calculate activations and outputs of all neurons
• Backward: Calculate errors and propagate them back

• Error gradient calculation:

• Forward transmission: calculate the output of the neuron

• Backward transmission: calculate the error of the neuron

• Hidden neuron:

• Output neuron:

Algorithm

Batch vs online learning

• Online learning
• After presentation of each sample from the training set we use the

calculated error gradient for weight update:

• Batch learning
• The error gradient for each sample from training set is calculated and

accumulated. The weight update is done after all samples are seen.

• It can be used when there is no fixed training set (new data keeps coming in)
• The noise in the gradient can help to escape from local minimum
• “Stochastic Gradient Descent”

• Mini-batch

Properties
• The algorithm is executed (usually in epochs during which each

sample from the training set is presented to the network) until
stopping criteria (e.g. error is smaller then some threshold) is fulfilled

• The results may converge to a local minimum

• The convergence is not guaranteed and is very slow (if obtained)

• Normalization of input vectors is not required, but it can improve the
performance

NEURAL NETWORKS
EXAMPLE

Regression

Activation
functions

• Linear activation function
in output layer ensures
arbitrary output range

Input Output Target

Classification

• Sigmoid activation
function in output layer
ensures outputs between
0 and 1

Activation
functions

Input Output Target

Classification: binary vs multiclass
• Binary classification:

• Round the output of a single neuron (with sigmoidal activation) to 0
or 1 and interpret it as a class 0 or class 1 (as in Perceptron)

• Multiclass classification:
• Multiple output neurons: use 1-out-of-n encoding for the target value

(one of values is 1, all others are 0)
• This means there is one output neuron for each class
• Use a softmax encoding to code the output as probabilities

Classification: binary vs multiclass
• For example, if the number of classes is 3:

is one of: , or

• We want the output of ANN to be:

, ,

Classification training example

Activation
functions

Input Output Target
K categories

1 “car”

0 “motorbike”

0 “cow”

Softmax or

Classification training example

Activation
functions

Input Output Target
K categories

0 “car”

0 “motorbike”

1 “cow”

Softmax or

Classification test example (after learning)

Activation
functions

Input Output
K categories

“car”

“motorbike”

“cow”

0.9

0.03

0.07

Softmax or

ARTIFICIAL NEURAL
NETWORKS
Properties

Properties
• Neurobiology analogy
• Adaptive model
• Learns input output mapping
• Learning is quite slow but testing is fast
• Data does not have to be precise and perfect
• Result does not depend on a single network element
• Fault tolerant - robust (redundancy)
• Knowledge is stored implicitly (it is hard to interpret it)

Critic: Black Box interpretation
A neural network learns. But What ?
What are the role of higher layers ?

- Pre-training unsupervised or on another dataset may help

Google Deep Dream

Google Deep Dream

Google Deep Dream

Details at:
• http://googleresearch.blogspot.co.at/2015/06/inceptionism-going-deeper-into-neural.html
Source code available at:
• https://github.com/google/deepdream

http://googleresearch.blogspot.co.at/2015/06/inceptionism-going-deeper-into-neural.html
https://github.com/google/deepdream

SUMMARY (QUESTIONS)

Some questions…
• What is an ANN?
• What are the different types of ANN?
• Applications of ANN?
• Artificial neuron model?
• What is an activation function? Types and usage?
• What is Perceptron?
• Convergence properties of Perceptron?
• Perceptron learning algorithm?
• Limitations of Perceptron?
• Can you use Perceptron to classify nonlinear data?

Some questions (2)…
• What is feedforward architecture?
• What is hidden layer and what is it useful for?
• Can Perceptron solve XOR? How about Multilayer

Perceptron?
• Computational properties of ANN?
• What is Credit Assignment Problem? In context of ANN?
• What is the backpropagation algorithm?
• What error function is minimized in backpropagation?
• Why is the backpropagation algorithm used?
• What are online and batch learning? What is the

difference?
• How can one use ANN for classification? And regression?

What is next?
• Support Vector Machines : a powerful linear classifier

• Kernel methods

• Multiclass classification methods

References
• Loihi: http://ieeexplore.ieee.org/document/8259423/

• Waferscale: http://www.kip.uni-
heidelberg.de/cms/vision/projects/facets/neuromorphic_h
ardware/waferscale_integration_system/

• SpiNNaker: https://spinnaker.cs.manchester.ac.uk

• TrueNorth: http://www.research.ibm.com/articles/brain-
chip.shtml

http://ieeexplore.ieee.org/document/8259423/
http://www.kip.uni-heidelberg.de/cms/vision/projects/facets/neuromorphic_hardware/waferscale_integration_system/
https://spinnaker.cs.manchester.ac.uk/
http://www.research.ibm.com/articles/brain-chip.shtml

