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Introduction ﬁ-IG-rlanl

Graphical Models (GMs)

“Graphical models are a marriage between probability theory and graph theory.
They provide a natural tool for dealing with two problems that occur
throughout applied mathematics and engineering — uncertainty and complexity
—..." [Jordan, 1999]
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Directed GMs
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Directed GMs: Bayesian networks

> Represent a joint distribution P over some set of random variables
Z={Z,...,Zn}.
» Explicit representation of P is hard.

» A Bayesian network is a directed acyclic graph G = (Z, E) which
represents factorization properties of the distribution.

» Each node Z; is represented as conditional distribution given its parents
Zr[j, ie. p(Z]|ZH])
> Joint distribution:

P(Z) = HP(ZJ'\ZHJ-)

» Application: Hidden Markov model, expert systems, ...
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Example
> P(Zis) = P(Z1)P(Z2|21)P(Zs|21) P(Z4) Z2) P(Zs5| Z3) P(Zg| Za, Zs)

Graph
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Conditional independence

Definition: d-separation [Pearl, 1988]

Z; and Z; (i # j) are d-separated if for all paths between Z; and Z; there is
an intermediate variable Z; (i # j # k) such that
> the connection is serial or diverging and the state of Zj, is known.

> the connection is converging and neither the state of Zj nor the state of
any descendant of Zj, is known.
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Canonical examples

Serial connection

@——>)

> Z; L ZJ|Z]c
> P(Zi, Zy, Z;) = P(Z:)P(Zk|Z:)P(Z;| Zk)

>

P(Z,Z:, Z0) = P(Zi, Zy,Z;) _ P(Z;)P(Zi|Z:)P(Z;) Z1)

P(Zi, Zr) P(Z;)P(Zy|Z)

= P(Z;|Zy)
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Canonical examples

Diverging connection

> ZZ 1 ZJ|Zk

> P(Z;, Zy, Z;) = P(Z)P(Z:|Zv)P(Z;| Zy,)

>

P(Zi, 2y, Z;) _ P(Zi)P(Zi|Zx) P(Z;|Z1)
P(Zy) P(Zy)

P(Z;, Zi|Zx) = = P(Zi|Zx)P(Z;|Zk)

B sPscLab page 9/21
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Canonical examples

Converging connection

@&

> 7 1 Z,
> P(Zi, Zk, Z;) = P(Zk|Zi, Z;)P(Zi) P(Z;)
| 4

P(Z;,Z) ZP Zi, i, Z;) = P(Z:)P(Z;)
>

P(Z;,Z;|Zy) = P(Z}:(giv)zj) _ P(Zk‘Zivi?)Zigzi)P(Zj)

» Explaining away phenomenon
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Undirected GMs
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Undirected GMs: Markov networks

> Represent a joint distribution P over some set of random variables
Z ={Z1,...,Zn}.

» A Markov network is an undirected graph G = (Z, E) which represents
factorization properties of the distribution.

» Application: Markov random field (image segmentation/denoising),
Conditional random field, Ising model, ...
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Conditional independence

Definition
Any two subsets of variables are conditionally independent given a separating
subset: Za L Zg|Zc, where every path from a node in set A to a node in set

B passes through set C.

Example

(& ~ J\/\ ~ J

Zy Zc Zp
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Factorization of joint distribution
Definition: Clique

A clique C'is a subset of nodes Z¢ in G such that there exists an edge between
all pairs of nodes in the subset.

Definition: Maximal clique

A maximal clique C is a clique C such that adding any other node in the graph
makes it no longer a clique.

Example
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Factorization of joint distribution

» Joint distribution is a product of potential functions ¥~(Zs) over
maximal cliques of G

P(2) = o [ ve(Zo)
e}

> Partition function: W =3, [z Ys(Zs)
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Examples
Some UGMs can not be represented by DGMs
2 Zy L Z4|{Za, Zs} 2 b L L%, 25}
1 4 2,43
O okt lo g ORI
2 3 1, 44
(2) Zs ¥ 24|42, 24}

Some DGMs can not be represented by UGMs

(=) A )~ arss
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Convert DGM to UGM

> Add edges between all pairs of parents of each node Z; (moralization).

» Drop the arrows on the original edges.

» Initialize each clique potential to 1.

» Multiply each conditional distribution of the DGM into one of the clique
potentials.

Example

Directed GM Undirected GM (Moral Graph)
B sPscLab
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Factor Graphs
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» Undirected GMs and directed GMs can be formulated as factor graph.
» Aim: Capturing factorizations between variables.
» A factor graph is a bipartite undirected graph.

» Consists of a set of F factor nodes F};(-) € F and variables nodes
Z=A{Z,...,Zn}.

» Each factor Fj(-) depends on a subset of variable nodes Z; C Z.

» Joint distribution is a product of factor nodes Fj(-)
1 |7
P(Z) =3 [1F72).
j=1

> Normalization constant: W =3", H‘jﬂl F;(Z;)
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Example: Markov chain
> P(Z1.4) = P(Z1)P(Z2|21)P(Z3| Z2) P(Z4| Z3)

Directed GM

@

®

Undirected GM

@

®

Factor graph

®

@@

F1(Z1,Z2) Fa2(Z2,Z3) F3(Z3,Z4)

®
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Research challenges for GMs:

» Learning

» Inference
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