
COMPUTATIONAL 

INTELLIGENCE
(INTRODUCTION TO MACHINE LEARNING) SS18 

Lecture 3:

• Classification with Logistic Regression

• Advanced optimization techniques

• Underfitting & Overfitting

• Model selection (Training- & Validation- & Test set)



CLASSIFICATION WITH 

LOGISTIC REGRESSION



Logistic Regression

• Classification and not regression

• Classification = recognition



Logistic Regression

• “The” default classification model

• Binary classification

• Extensions to multi-class later in the course

• Simple classification algorithm

• Convex cost - unique local optimum

• Gradient descent

• No more parameter than with linear regression

• Interpretability of parameters

• Fast evaluation of hypothesis for making predictions



LOGISTIC REGRESSION
Hypothesis



Example (step function hypothesis)

i
Tumour 

size (mm)

x

Malignant

?

y

1 2.3 0 (N)

2 5.1 1 (Y)

3 1.4 0 (N)

4 6.3 1 (Y)

5 5.3 1 (Y)

… …

Tumour size (x)

benign

malignant

decision boundary

0 1

labels

“labelled data”

1

0



Example (logistic function hypothesis)

Tumor size (x)

benign

malignant

decision boundary

1

0
0.5

Hypothesis: Tumor is malignant with probability p

Classification: if p < 0.5: 0

if p ≥ 0.5: 1

i
Tumor 

size (mm)

x

Malignant

?

y

1 2.3 0 (N)

2 5.1 1 (Y)

3 1.4 0 (N)

4 6.3 1 (Y)

5 5.3 1 (Y)

… …

labels

„labeled data“

?

?

p=0.2, class 0



Example (logistic function hypothesis)

Tumor size (x)

benign

malignant

decision boundary

1

0
0.5

i
Tumor 

size (mm)

x

Malignant

?

y

1 2.3 0 (N)

2 5.1 1 (Y)

3 1.4 0 (N)

4 6.3 1 (Y)

5 5.3 1 (Y)

… …

labels

„labeled data“

?

?

p=0.001, class 0

Hypothesis: Tumor is malignant with probability p

Classification: if p < 0.5: 0

if p ≥ 0.5: 1



Logistic (Sigmoid) function

• Advantages over step function for classification:
• Differentiable → (gradient descent)

• Contains additional information (how certain is the prediction?)
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Logistic regression hypothesis (one input)



Classification with multiple inputs

i
Tumor 

size

(mm)

x1

Age

x2

Maligna

nt?

y

1 2.3 25 0 (N)

2 5.1 62 1 (Y)

3 1.4 47 0 (N)

4 6.3 39 1 (Y)

5 5.3 72 1 (Y)

… …

Tumor size (x1)
A

g
e

 (
x
2

)



Multiple inputs and logistic hypothesis

Tumor size (x1)
A

g
e

 (
x
2

)

1. Reduce point in high-dimensional space

to a scalar z

2. Apply logistic function

i
Tumor 

size

(mm)

x1

Age

x2

Maligna

nt?

y

1 2.3 25 0 (N)

2 5.1 62 1 (Y)

3 1.4 47 0 (N)

4 6.3 39 1 (Y)

5 5.3 72 1 (Y)

… …

?

?

p=0.8, class 1

decision

boundary



Classification with multiple inputs

Tumor size (x1)
A

g
e

 (
x
2

)

1. Reduce point in high-dimensional space

to a scalar z

2. Apply logistic function

?

?

p=0.999, class 1
i

Tumor 

size

(mm)

x1

Age

x2

Maligna

nt?

y

1 2.3 25 0 (N)

2 5.1 62 1 (Y)

3 1.4 47 0 (N)

4 6.3 39 1 (Y)

5 5.3 72 1 (Y)

… …



Logistic regression hypothesis

1. Reduce high-dimensional input      to a scalar

2. Apply logistic function

3. Interpret output             as probability and predict class:

Class = 



LOGISTIC REGRESSION
Cost function



Logistic regression cost function

Tumor size (x1)

A
g

e
 (

x
2

)

• How well does the hypothesis                                      fit the data?

Prediction: 0.1

Actual value y: 0

Prediction: 0.98

Actual value y: 1

Prediction: 0.6

Actual value y: 0



Logistic regression cost function

Tumor size (x1)

A
g

e
 (

x
2

)

• Probabilistic model: y is 1 with probability:



Logistic regression cost function

• How well does the hypothesis                                      fit the data?

• „Cost“ for predicting probability p when the real value is y:

• Mean over all training examples:
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Multiple inputs and logistic hypothesis

• How well does the hypothesis                                      fit the data?

Prediction: 0.1

Actual value y: 0

Prediction: 0.98

Actual value y: 1

Prediction: 0.6

Actual value y: 0
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Comparison cost functions

Linear regression Logistic regression
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Mean over all training examples:



Why not mean squared error (MSE) again?

• MSE with logistic hypothesis is non-convex (many local minima)

• Logistic regression is convex (unique minimum)

• Cost function can be derived from statistical principles

(„maximum likelihood“)

non-convex function convex function



LOGISTIC REGRESSION 
Explaining the cost function with probabilistic models

(more information in second half of the semester)



Cost functions and probabilistic models

• The “likelihood” of data:

𝑝 𝑦 = 𝑦1, … 𝑦𝑛 , 𝑋 = 𝑥1…𝑥𝑛 𝜃

i.e the probability of the given dataset as a function of parameters

Or if the output is assumed to depend on the input

𝑝 𝑦 = 𝑦1, … 𝑦𝑛 𝑋 = 𝑥1…𝑥𝑛 ; 𝜃)

• We want to maximize the likelihood of data

• We usually maximize the log likelihood instead
• (or minimize the negative log-likelihood)

• Because logarithm:
• Is monotonically increasing

• And products become sums

• more numerically stable for small numbers (like probabilities)

…



• Model the deviation around the prediction
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Cost functions and probabilistic models
(linear regression)



• Model the deviation around the prediction:

(gaussian with mean y and standard deviation sigma)

The probability of each datapoint if thus given by:

• Maximization of the loglikehood is equivalent to

minimization of the MSE

Cost functions and probabilistic models
(linear regression)



Tumor size (x1)

A
g

e
 (

x
2

)

• Probabilistic model: y is 1 with probability:

Cost function and probabilistic models
(for logistic regression)



Cost function and probabilistic models

(for logistic regression)
Probabilistic model: y is 1 with probability: 𝑝 𝐶1 𝑋 = ℎ𝜃 𝒙 = 𝜎 𝑥𝑇𝜃

(y is a Bernoulli random variable (represents coin toss with an unfair coin) )

The parameters should maximize the log-likelihood of the data

If data points are independent 

Separating positive and negative examples

max
𝜃

log 𝑝 𝑦 𝑋; 𝜃)

max
𝜃



𝑖

log 𝑝 𝑦𝑖 𝑋; 𝜃)

max
𝜃



𝑡𝑖=1

log 𝑝 𝑦𝑖 = 1 𝑋; 𝜃) + 

𝑡𝑖=0

log 𝑝 𝑦𝑖 = 0 𝑋; 𝜃)

𝜎(𝑥𝑇𝜃) 1 − 𝜎(𝑥𝑇𝜃)

𝑝 𝑦𝑖 , 𝑦𝑗 𝑋; 𝜃) = 𝑝 𝑦𝑗 𝑋; 𝜃) 𝑝 𝑦𝑖 𝑋; 𝜃)



Comparison cost functions
Linear regression

Modeling errors as gaussian noise

Logistic regression

Modeling the class as a bernoulli variable
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LOGISTIC REGRESSION
Learning from data



Minimizing the cost via gradient descent

• Gradient descent

• Gradient of logistic regression cost:

(simultaneous

update for

j=0…n)

(for j=0:                )

„error“ „input“



Linear features

Tumor size (x1)

A
g

e
 (

x
2

)

linear decision boundary



Non-linear features

Tumor size (x1)

A
g

e
 (

x
2

)

non-linear decision boundary



Decision boundaries
linear decision boundary

Tumor size (x1)

A
g

e
 (

x
2

)

Tumor size (x1)
A

g
e

 (
x
2

)

non-linear decision boundary

Decision boundary is a property of hypothesis, not of data!



Linear vs. Logistic Regression

Linear Regression

• Regression

• Hypothesis 

• Cost for one training example:

• Gradient

• Analytical: 

Logistic Regression

• Binary classification (!)

• Hypothesis 

• Cost for one training example:

• Gradient

• No analytical solution!

„error“ „input“ „error“ „input“



EVALUATION OF 

HYPOTHESIS
Training and Test set



Training and Test set
• Training set: used by learning algorithm to fit parameters and find a 

hypothesis.

• Test set: independent data set, used after learning to estimate the 

performance of the hypothesis on new (unseen) test examples. 

Regression example

E.g. 80% randomly chosen examples

from dataset are training examples, 

the remaining 20% are test examples. 

Must be disjoint subsets!
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Training and Test set workflow

Learning algorithm

„Hypothesis“ h

Training set

Test set Testing

Training error (cost)

Test error (cost)



Linear regression training vs. Test error
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Classification Training / Test set
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Logistic regression training vs. test error
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UNDERFITTING AND 

OVERFITTING



Polynomial regression under-/overfitting
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Polynomial regression under-/overfitting
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Polynomial regression under-/overfitting



Polynomial regression under-/overfitting

underfitting

„just right“

overfitting
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Logistic regression with polynomial terms
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Logistic regression with polynomial terms
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Logistic regression with polynomial terms
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Under-/ and Overfitting

Model complexity
(e.g. degree of polynomial terms)

Training error (cost)

Test error (cost)

underfitting

overfitting

„just right“



Under- and Overfitting

• Underfitting:

• Model is too simple (often: too few 

parameters)

• High training error, high test error

• Overfitting

• Model is too complex (often: too many 

parameters relative to number of training 

examples)

• Low training error, high test error

• In between:

• Model has „right“ complexity

• Moderate training error

• Lowest test error

Model

complexity

Training error (cost)

Test error (cost)



How to deal with overfitting

• Use model selection to automatically select the right model complexity

• Use regularization to keep parameters small (other lecture…)

• Collect more data 

(often not possible or inefficient)

• Manually throw out features which are unlikely to contribute

(often hard to guess which ones, potentially throwing out the wrong ones)

• Find better features with less noise, more predictive of the output

(often not possible or inefficient)



MODEL SELECTION
Training, Validation and Test sets



Model selection

• Selection of learning algorithm and „hyperparameters“ 

(model complexity)  that are most suitable for a given 

learning problem

Model complexity

Training error (cost)

Test error (cost)



Idea

• Try out different learning 

algorithms/variants
• Vary degree of polynomial

• Try different sets of features

• …

• Select variant with best 

predictive performance

Model

complexity

Training error (cost)

„Prediction“ error (cost)



Training, Validation, Test set

• Training set: used by learning algorithm to fit parameters and 
find a hypothesis for each learning algorithm/variant.

• Validation set: used to estimate predictive performance of 
each learning algorithm/variant. The hypothesis with lowest 
validation error (cost) is selected.

• Test set: independent data set, used after learning and model 
selection to estimate the performance of the final (selected) 
hypothesis on new (unseen) test examples. 

E.g. 60/20/20% randomly chosen examples from dataset. Must 
be disjoint subsets!



Training/Validation/Test set workflow

Hyperparameter

setting B

Training Set

Validation set
Model 

selection

Hyperparameter

setting A

Hypothesis hA Hypothesis hB

Hyperparameter

setting C

Hypothesis hC

For example: 

degree of 

polynomial=1, 5, and 15

Test set Testing Test error/cost

Selected 

Hypothesis h

Learning Algorithm with:



Training/Validation/Test set workflow

Learning 

algorithm B

Training Set

Validation set
Model 

selection

Learning 

algorithm A

Hypothesis hA Hypothesis hB

Learning 

algorithm C

Hypothesis hC

Test set Testing Test error/cost

For example: 

Linear regression,

Polynomial regression,

Artificial Neural Network

Selected 

Hypothesis h



GRADIENT DESCENT TRICKS,

AND MORE ADVANCED 

OPTIMIZATION TECHNIQUES
For linear regression, logistic regression, ….



Minimizing the cost via gradient descent

• Gradient descent

• Gradient of logistic regression cost:

(simultaneous

update for

j=0…n)

(for j=0:                )

„error“ „input“



GD trick #1: feature scaling

• Feature scaling and mean normalization
• Bring all features into a similar range

• E.g.: shift and scale each feature to have mean 0 and variance 1

• Do not apply to constant feature                !

• Typically leads to much faster convergence

(when using

non-linear 

features)

Mean of unscaled feature

Standard deviation

of unscaled feature



GD trick #2: monitoring convergence

• Diagnose typical issues with Gradient Descent:
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GD trick #3: adaptive learning rate

• At each iteration

• Compare cost function value          before and 

after Gradient Descent update

• If cost increased:

• Reject update (go back to previous parameters)

• Multiply learning rate      by 0.7 (for example)

• If cost decreased:

• Multiply learning rate      by 1.02 (for example)
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Often eliminates slow convergence and divergence issues



Variants of Gradient Descent

Source: http://sebastianruder.com/optimizing-gradient-descent/index.html

• SGD: Stochastic Gradient Descent

• Momentum: with momentum term

• RMSProp: adaptive learning rate

http://sebastianruder.com/optimizing-gradient-descent/index.html


More advanced optimization methods

• Gradient methods = order 1 Newton methods = order 2

• Need Hessian matrix or approximations

• Avoid choosing a learning rate

• Conjugate gradient, BFGS, L-BFGS, …

• Tricky to implement (numerical stability, etc.)
• Use available toolbox / library implementations! 
scipy.optimize.minimize

• Only use when fighting for performance



SUMMARY
And questions



Some questions…

• Logistic regression is a method for … regression/classification?

• What is the hypothesis for Logistic regression?

• What‘s the cost function used for logistic regression?

• Is the cost function convex or non-convex?

• What is under-/overfitting?

• What is model selection? 

• What are training, validation and test sets?

• How does model selection work (procedure)?

• What does “adaptive learning rate” mean in the context of gradient 

descent?



What is next?

• Neural Networks (Guillaume Bellec):

• Perceptron

• Feedforward Neural Network

• Backpropagation


