COMPUTATIONAL INTELLIGENCE

(INTRODUCTION TO MACHINE LEARNING) SS18

Lecture 3:

- Classification with Logistic Regression
- Advanced optimization techniques
- Underfitting & Overfitting
- Model selection (Training- & Validation- & Test set)

CLASSIFICATION WITH LOGISTIC REGRESSION

Logistic Regression

- Classification and not regression
- Classification = recognition

Logistic Regression

- "The" default classification model
 - Binary classification
 - Extensions to multi-class later in the course
- Simple classification algorithm
 - Convex cost unique local optimum
 - Gradient descent
 - No more parameter than with linear regression
- Interpretability of parameters
- Fast evaluation of hypothesis for making predictions

LOGISTIC REGRESSION

Hypothesis

Example (step function hypothesis)

"labelled data"

i	Tumour Maligna size (mm) ?	
	X	у
1	2.3	0 (N)
2	5.1	1 (Y)
3	1.4	0 (N)
4	6.3	1 (Y)
5	5.3	1 (Y)

∬ labels

Example (logistic function hypothesis)

Hypothesis: Tumor is malignant with probability p

Classification: if p < 0.5: 0 if $p \ge 0.5$: 1

"labeled data"

i	Tumor size (mm)	Malignant ?	
	x	У	
1	2.3	0 (N)	
2	5.1	1 (Y)	
3	1.4	0 (N)	
4	6.3	1 (Y)	
5	5.3	1 (Y)	

labels

个

Example (logistic function hypothesis)

Hypothesis: Tumor is malignant with probability p

Classification: if p < 0.5: 0 if $p \ge 0.5$: 1

"labeled data"

i	Tumor size (mm)	Malignant ?
	X	У
1	2.3	0 (N)
2	5.1	1 (Y)
3	1.4	0 (N)
4	6.3	1 (Y)
5	5.3	1 (Y)

labels

- Advantages over step function for classification:
 - Differentiable → (gradient descent)
 - Contains additional information (how certain is the prediction?)

Logistic regression hypothesis (one input)

$$h_{\theta}(x) = \sigma(z) = \sigma(\theta_0 + \theta_1 \cdot x)$$

Classification with multiple inputs

i	Tumor size (mm)	Age	Maligna nt?
	x1	x2	У
1	2.3	25	0 (N)
2	5.1	62	1 (Y)
3	1.4	47	0 (N)
4	6.3	39	1 (Y)
5	5.3	72	1 (Y)

Multiple inputs and logistic hypothesis

Classification with multiple inputs

i	Tumor size (mm)	Age	Maligna nt?
	x1	x2	У
1	2.3	25	0 (N)
2	5.1	62	1 (Y)
3	1.4	47	0 (N)
4	6.3	39	1 (Y)
5	5.3	72	1 (Y)

- 1. Reduce point in high-dimensional space to a scalar *z*
- 2. Apply logistic function

Logistic regression hypothesis

1. Reduce high-dimensional input $oldsymbol{x}$ to a scalar

$$z = \boldsymbol{x}^T \boldsymbol{\theta}$$

= $\theta_0 + \theta_1 \cdot x_1 + \dots + \theta_n \cdot x_n$

- 2. Apply logistic function $h_{\theta}(\boldsymbol{x}) = \sigma(\boldsymbol{x}^{T}\boldsymbol{\theta})$ $= \sigma(\theta_{0} + \theta_{1} \cdot x_{1} + \dots + \theta_{n} \cdot x_{n})$
- 3. Interpret output $h_{m{ heta}}(m{x})$ as probability and predict class:

$$Class = \begin{cases} 0 & \text{if } h_{\theta}(\boldsymbol{x}) < 0.5 \\ 1 & \text{if } h_{\theta}(\boldsymbol{x}) \ge 0.5 \end{cases}$$

LOGISTIC REGRESSION

Cost function

Logistic regression cost function

- How well does the hypothesis $h_{m{ heta}}(m{x}) = \sigma(m{x}^Tm{ heta})~$ fit the data?

Logistic regression cost function

• **Probabilistic model**: y is 1 with probability:

 $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sigma(\boldsymbol{x}^T \boldsymbol{\theta})$

Logistic regression cost function

- How well does the hypothesis $h_{m{ heta}}(m{x}) = \sigma(m{x}^Tm{ heta})\,$ fit the data?

• "Cost" for predicting probability *p* when the real value is *y*:

$$\operatorname{Cost}(p, y) = \begin{cases} -\log(1-p) & \text{if } y = 0 \\ -\log(p) & \text{if } y = 1 \end{cases},$$

Mean over all training examples:

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), y^{(i)})$$

Multiple inputs and logistic hypothesis

- How well does the hypothesis $h_{m{ heta}}(m{x}) = \sigma(m{x}^Tm{ heta})~$ fit the data?

Comparison cost functions

Mean over all training examples:

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), y^{(i)})$$

Why not mean squared error (MSE) again?

- **MSE** with logistic hypothesis is **non-convex** (many local minima)
- Logistic regression is convex (unique minimum)
- Cost function can be derived from statistical principles ("maximum likelihood")

LOGISTIC REGRESSION

Explaining the cost function with probabilistic models (more information in second half of the semester)

Cost functions and probabilistic models

 $\langle x^{(1)}, y^{(1)} \rangle \dots \langle x^{(m)}, y^{(m)} \rangle$

• The "likelihood" of data:

$$p(y = (y_1, \dots y_n), X = (x_1 \dots x_n)|\theta)$$

i.e the probability of the given dataset as a function of parameters Or if the output is assumed to depend on the input $p(y = (y_1, ..., y_n)|X = (x_1 ... x_n); \theta)$

- We want to maximize the likelihood of data
- We usually maximize the log likelihood instead
 - (or minimize the negative log-likelihood)
- Because logarithm:
 - Is monotonically increasing
 - And products become sums
 - more numerically stable for small numbers (like probabilities)

Cost functions and probabilistic models (linear regression)

Model the deviation around the prediction

Cost functions and probabilistic models (linear regression)

- Model the deviation around the prediction:
 - $x^T \theta = \mathcal{N}(y, \sigma)$ (gaussian with mean y and standard deviation sigma)

The probability of each datapoint if thus given by:

$$p(y^{(i)}, x^{(i)}|\theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y^{(i)} - x^{(i)T}\theta)^2}{2\sigma^2}\right)$$

 Maximization of the loglikehood is equivalent to minimization of the MSE

$$\log p(x, y | \theta) = \text{ constant } -\sum_{i=1}^{m} \frac{(x^{(i)T}\theta - y^{(i)})^2}{2\sigma^2}$$

Cost function and probabilistic models (for logistic regression)

• **Probabilistic model**: y is 1 with probability:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sigma(\boldsymbol{x}^T \boldsymbol{\theta})$$

Cost function and probabilistic models (for logistic regression)

Probabilistic model: y is 1 with probability: $p(C_1|X) = h_\theta(x) = \sigma(x^T\theta)$ (y is a Bernoulli random variable (represents coin toss with an unfair coin))

The parameters should maximize the log-likelihood of the data

$$\max_{\theta} \log p(y|X; \theta)$$

If data points are independent $p(y_i, y_j | X; \theta) = p(y_j | X; \theta) p(y_i | X; \theta)$

$$\max_{\theta} \sum_{i} \log p(y_i | X; \theta)$$

Separating positive and negative examples

$$\max_{\theta} \sum_{t_i=1} \log p(y_i = 1 | X; \theta) + \sum_{t_i=0} \log p(y_i = 0 | X; \theta)$$
$$\sigma(x^T \theta) \qquad 1 - \sigma(x^T \theta)$$

Comparison cost functions

Mean over all training examples:

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), y^{(i)})$$

LOGISTIC REGRESSION

Learning from data

Minimizing the cost via gradient descent

Gradient descent

$$\theta_j := \theta_j - \eta \cdot \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

Gradient of logistic regression cost:

$$\begin{split} \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) &= \frac{1}{m} \sum_{i=1}^m \left(\underbrace{h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)}}_{\text{,error}^{\text{"error"}}} \underbrace{\cdot x_j^{(i)}}_{\text{,input}^{\text{"input"}}} \right. \end{split}$$
(for j=0: $x_0^{(i)} = 1$)

Linear features

$$x_1 = \text{Tumor Size, } x_2 = \text{Age}$$
$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sigma(-10 + 2 \cdot x_1 + 0.05 \cdot x_2)$$

Non-linear features

$$\phi_1 = \text{Tumor Size}, \ \phi_2 = \text{Age}, \ \phi_3 = \text{Tumor Size}^2,$$
$$\phi_4 = \text{Age}^2, \ \phi_5 = \text{Tumor Size} \cdot \text{Age}, \ \dots$$
$$h_{\theta}(\phi) = \sigma(-3 + 1.2 \cdot \phi_1 + 0.07 \cdot \phi_2 - 0.9 \cdot \phi_3 + \dots)$$

Decision boundaries

 $h_{\theta}(\boldsymbol{x}) = \sigma(-10 + 2 \cdot x_1 + 0.05 \cdot x_2) \qquad h_{\theta}(\phi) = \sigma(-3 + 1.2 \cdot \phi_1 + 0.07 \cdot \phi_2 - 0.9 \cdot \phi_3 + \dots)$

Decision boundary is a property of hypothesis, not of data!

Linear vs. Logistic Regression

Linear Regression

- Regression
- Hypothesis $h_{\boldsymbol{ heta}}(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{ heta}$
- Cost for one training example:

$$\operatorname{Cost}(h, y) = (h - y)^2$$

Gradient

$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) = \frac{2}{m} \sum_{i=1}^m \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)} \right) \cdot x_j^{(i)}$$

• Analytical:

$$\boldsymbol{ heta}^* = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Logistic Regression

- Binary classification (!)
- Hypothesis $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sigma(\boldsymbol{x}^T \boldsymbol{\theta})$
- Cost for one training example:

$$\operatorname{Cost}(p, y) = \begin{cases} -\log(1-p) & \text{if } y = 0 \\ -\log(p) & \text{if } y = 1 \end{cases},$$

Gradient

$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^m \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)} \right) \cdot x_j^{(i)}$$

No analytical solution!

EVALUATION OF HYPOTHESIS

Training and Test set

Training and Test set

- **Training set**: used by learning algorithm to fit parameters and find a hypothesis.
- **Test set**: independent data set, used after learning to estimate the performance of the hypothesis on **new (unseen) test examples.**

$$\begin{array}{c|c} & \bullet & \bullet \\ \langle \boldsymbol{x}^{(1)}, y^{(1)} \rangle & & \langle \boldsymbol{x}^{(1)}_{\text{test}}, y^{(1)}_{\text{test}} \rangle \\ \langle \boldsymbol{x}^{(2)}, y^{(2)} \rangle & & \langle \boldsymbol{x}^{(2)}_{\text{test}}, y^{(2)}_{\text{test}} \rangle \\ & & & \vdots \\ \langle \boldsymbol{x}^{(m)}, y^{(m)} \rangle & & \langle \boldsymbol{x}^{(m_{\text{test}})}, y^{(m_{\text{test}})}_{\text{test}} \rangle \end{array}$$

E.g. 80% randomly chosen examples from dataset are training examples, the remaining 20% are test examples. Must be **disjoint subsets**!

Training and Test set workflow

Linear regression training vs. Test error

MSEtrain=0.01

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2$$

$$J_{\text{test}}(\boldsymbol{\theta}) = \frac{1}{m_{\text{test}}} \sum_{i=1}^{m_{\text{test}}} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{\text{test}}^{(i)} \right) - y_{\text{test}}^{(i)} \right)^2$$

Classification Training / Test set

Logistic regression training vs. test error

UNDERFITTING AND OVERFITTING

Х

Logistic regression with polynomial terms

Logistic regression with polynomial terms Training Error: 0.33 Test Error: 0.32 1 1 XX Terms up to power 1 0 Q. 0 0.5 0 0.5 0 decision boundary 00 00 Ο 0 () 0.5 0.5 0 0 Training Error: 0.19 Test Error: 0.19 0.8 0.8 0 0.6 ×&° 0.6 Terms up to power 2 0.4 0.4 0 Ø 00⁰ 0.2 × 0.2 0, 0 0.5 0.5 0

Logistic regression with polynomial terms

Under-/ and Overfitting

(e.g. degree of polynomial terms)

Under- and Overfitting

- Underfitting:
 - Model is too simple (often: too few parameters)
 - High training error, high test error
- Overfitting
 - Model is too complex (often: too many parameters relative to number of training examples)
 - Low training error, high test error
- In between:
 - Model has "right" complexity
 - Moderate training error
 - Lowest test error

Model complexity

How to deal with overfitting

- Use model selection to automatically select the right model complexity
- Use regularization to keep parameters small (other lecture ...)

- Collect more data
 (often not possible or inefficient)
- Manually throw out features which are unlikely to contribute (often hard to guess which ones, potentially throwing out the wrong ones)
- Find better features with less noise, more predictive of the output (often not possible or inefficient)

MODEL SELECTION

Training, Validation and Test sets

Model selection

 Selection of learning algorithm and "hyperparameters" (model complexity) that are **most suitable** for a given learning problem

Model complexity

Idea

•

- Try out different learning algorithms/variants
 - Vary degree of polynomial
 - Try different sets of features

 Select variant with best predictive performance

Model complexity

Training, Validation, Test set

- **Training set**: used by learning algorithm **to fit parameters** and find a hypothesis for each learning algorithm/variant.
- Validation set: used to estimate predictive performance of each learning algorithm/variant. The hypothesis with lowest validation error (cost) is selected.
- Test set: independent data set, used after learning and model selection to estimate the performance of the final (selected) hypothesis on new (unseen) test examples.

E.g. 60/20/20% randomly chosen examples from dataset. Must be disjoint subsets!

Training/Validation/Test set workflow

Training/Validation/Test set workflow

GRADIENT DESCENT TRICKS, AND MORE ADVANCED OPTIMIZATION TECHNIQUES

For linear regression, logistic regression,

Minimizing the cost via gradient descent

Gradient descent

$$\theta_j := \theta_j - \eta \cdot \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

Gradient of logistic regression cost:

$$\begin{split} \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) &= \frac{1}{m} \sum_{i=1}^m \left(\underbrace{h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)}}_{\text{,error}^{\text{"error"}}} \underbrace{\cdot x_j^{(i)}}_{\text{,input}^{\text{"input"}}} \right. \end{split}$$
(for j=0: $x_0^{(i)} = 1$)

GD trick #1: feature scaling

- Feature scaling and mean normalization
 - Bring all features into a similar range
 - E.g.: shift and scale each feature to have mean 0 and variance 1

- Do not apply to constant feature $\, x_0/\phi_0 \,$!
- Typically leads to much faster convergence

GD trick #2: monitoring convergence

Diagnose typical issues with Gradient Descent:

GD trick #3: adaptive learning rate

At each iteration

- Compare cost function value $J(\theta)$ before and after Gradient Descent update

- If cost increased:
 - Reject update (go back to previous parameters)
 - Multiply learning rate η by **0.7** (for example)
- If cost decreased:
 - Multiply learning rate η by **1.02** (for example)

500

iteration

1000

0.55∟ 0

Variants of Gradient Descent

- SGD: Stochastic Gradient Descent
- Momentum: with momentum term
- RMSProp: adaptive learning rate

Source: http://sebastianruder.com/optimizing-gradient-descent/index.html

More advanced optimization methods

Gradient methods = order 1 -

Newton methods = order 2

- Need **Hessian matrix** or approximations
- Avoid choosing a learning rate
- Conjugate gradient, BFGS, L-BFGS, ...
- Tricky to implement (numerical stability, etc.)
 - Use available toolbox / library implementations!
 scipy.optimize.minimize
 - Only use when fighting for performance

SUMMARY

And questions

Some questions...

- Logistic regression is a method for ... regression/classification?
- What is the hypothesis for Logistic regression?
- What's the cost function used for logistic regression?
- Is the cost function convex or non-convex?
- What is under-/overfitting?
- What is model selection?
- What are training, validation and test sets?
- How does model selection work (procedure)?
- What does "adaptive learning rate" mean in the context of gradient descent?

What is next?

- Neural Networks (Guillaume Bellec):
 - Perceptron
 - Feedforward Neural Network
 - Backpropagation