
COMPUTATIONAL

INTELLIGENCE
(INTRODUCTION TO MACHINE LEARNING) SS18

Lecture 3:

• Classification with Logistic Regression

• Advanced optimization techniques

• Underfitting & Overfitting

• Model selection (Training- & Validation- & Test set)

CLASSIFICATION WITH

LOGISTIC REGRESSION

Logistic Regression

• Classification and not regression

• Classification = recognition

Logistic Regression

• “The” default classification model

• Binary classification

• Extensions to multi-class later in the course

• Simple classification algorithm

• Convex cost - unique local optimum

• Gradient descent

• No more parameter than with linear regression

• Interpretability of parameters

• Fast evaluation of hypothesis for making predictions

LOGISTIC REGRESSION
Hypothesis

Example (step function hypothesis)

i
Tumour

size (mm)

x

Malignant

?

y

1 2.3 0 (N)

2 5.1 1 (Y)

3 1.4 0 (N)

4 6.3 1 (Y)

5 5.3 1 (Y)

… …

Tumour size (x)

benign

malignant

decision boundary

0 1

labels

“labelled data”

1

0

Example (logistic function hypothesis)

Tumor size (x)

benign

malignant

decision boundary

1

0
0.5

Hypothesis: Tumor is malignant with probability p

Classification: if p < 0.5: 0

if p ≥ 0.5: 1

i
Tumor

size (mm)

x

Malignant

?

y

1 2.3 0 (N)

2 5.1 1 (Y)

3 1.4 0 (N)

4 6.3 1 (Y)

5 5.3 1 (Y)

… …

labels

„labeled data“

?

?

p=0.2, class 0

Example (logistic function hypothesis)

Tumor size (x)

benign

malignant

decision boundary

1

0
0.5

i
Tumor

size (mm)

x

Malignant

?

y

1 2.3 0 (N)

2 5.1 1 (Y)

3 1.4 0 (N)

4 6.3 1 (Y)

5 5.3 1 (Y)

… …

labels

„labeled data“

?

?

p=0.001, class 0

Hypothesis: Tumor is malignant with probability p

Classification: if p < 0.5: 0

if p ≥ 0.5: 1

Logistic (Sigmoid) function

• Advantages over step function for classification:
• Differentiable → (gradient descent)

• Contains additional information (how certain is the prediction?)

-4 -2 0 2 4
-10

-5

0

5

10

-4 -2 0 2 4
-10

-5

0

5

10

-4 -2 0 2 4
-10

-5

0

5

10

-4 -2 0 2 4

0

0.5

1

-4 -2 0 2 4

0

0.5

1

-4 -2 0 2 4

0

0.5

1

Logistic regression hypothesis (one input)

Classification with multiple inputs

i
Tumor

size

(mm)

x1

Age

x2

Maligna

nt?

y

1 2.3 25 0 (N)

2 5.1 62 1 (Y)

3 1.4 47 0 (N)

4 6.3 39 1 (Y)

5 5.3 72 1 (Y)

… …

Tumor size (x1)
A

g
e

 (
x
2

)

Multiple inputs and logistic hypothesis

Tumor size (x1)
A

g
e

 (
x
2

)

1. Reduce point in high-dimensional space

to a scalar z

2. Apply logistic function

i
Tumor

size

(mm)

x1

Age

x2

Maligna

nt?

y

1 2.3 25 0 (N)

2 5.1 62 1 (Y)

3 1.4 47 0 (N)

4 6.3 39 1 (Y)

5 5.3 72 1 (Y)

… …

?

?

p=0.8, class 1

decision

boundary

Classification with multiple inputs

Tumor size (x1)
A

g
e

 (
x
2

)

1. Reduce point in high-dimensional space

to a scalar z

2. Apply logistic function

?

?

p=0.999, class 1
i

Tumor

size

(mm)

x1

Age

x2

Maligna

nt?

y

1 2.3 25 0 (N)

2 5.1 62 1 (Y)

3 1.4 47 0 (N)

4 6.3 39 1 (Y)

5 5.3 72 1 (Y)

… …

Logistic regression hypothesis

1. Reduce high-dimensional input to a scalar

2. Apply logistic function

3. Interpret output as probability and predict class:

Class =

LOGISTIC REGRESSION
Cost function

Logistic regression cost function

Tumor size (x1)

A
g

e
 (

x
2

)

• How well does the hypothesis fit the data?

Prediction: 0.1

Actual value y: 0

Prediction: 0.98

Actual value y: 1

Prediction: 0.6

Actual value y: 0

Logistic regression cost function

Tumor size (x1)

A
g

e
 (

x
2

)

• Probabilistic model: y is 1 with probability:

Logistic regression cost function

• How well does the hypothesis fit the data?

• „Cost“ for predicting probability p when the real value is y:

• Mean over all training examples:

0 0.5 1
0

1

2

3

4

5

0 0.5 1
0

1

2

3

4

5

Multiple inputs and logistic hypothesis

• How well does the hypothesis fit the data?

Prediction: 0.1

Actual value y: 0

Prediction: 0.98

Actual value y: 1

Prediction: 0.6

Actual value y: 0

0 0.5 1
0

1

2

3

4

5

0 0.5 1
0

1

2

3

4

5

Comparison cost functions

Linear regression Logistic regression

0 0.5 1
0

1

2

3

4

5

0 0.5 1
0

1

2

3

4

5

-2 0 2
0

1

2

3

4

Mean over all training examples:

Why not mean squared error (MSE) again?

• MSE with logistic hypothesis is non-convex (many local minima)

• Logistic regression is convex (unique minimum)

• Cost function can be derived from statistical principles

(„maximum likelihood“)

non-convex function convex function

LOGISTIC REGRESSION
Explaining the cost function with probabilistic models

(more information in second half of the semester)

Cost functions and probabilistic models

• The “likelihood” of data:

𝑝 𝑦 = 𝑦1, … 𝑦𝑛 , 𝑋 = 𝑥1…𝑥𝑛 𝜃

i.e the probability of the given dataset as a function of parameters

Or if the output is assumed to depend on the input

𝑝 𝑦 = 𝑦1, … 𝑦𝑛 𝑋 = 𝑥1…𝑥𝑛 ; 𝜃)

• We want to maximize the likelihood of data

• We usually maximize the log likelihood instead
• (or minimize the negative log-likelihood)

• Because logarithm:
• Is monotonically increasing

• And products become sums

• more numerically stable for small numbers (like probabilities)

…

• Model the deviation around the prediction

45 50 55 60
170

175

180

185

190

knee height

b
o
d
y
 h

e
ig

h
t

Cost functions and probabilistic models
(linear regression)

• Model the deviation around the prediction:

(gaussian with mean y and standard deviation sigma)

The probability of each datapoint if thus given by:

• Maximization of the loglikehood is equivalent to

minimization of the MSE

Cost functions and probabilistic models
(linear regression)

Tumor size (x1)

A
g

e
 (

x
2

)

• Probabilistic model: y is 1 with probability:

Cost function and probabilistic models
(for logistic regression)

Cost function and probabilistic models

(for logistic regression)
Probabilistic model: y is 1 with probability: 𝑝 𝐶1 𝑋 = ℎ𝜃 𝒙 = 𝜎 𝑥𝑇𝜃

(y is a Bernoulli random variable (represents coin toss with an unfair coin))

The parameters should maximize the log-likelihood of the data

If data points are independent

Separating positive and negative examples

max
𝜃

log 𝑝 𝑦 𝑋; 𝜃)

max
𝜃

𝑖

log 𝑝 𝑦𝑖 𝑋; 𝜃)

max
𝜃

𝑡𝑖=1

log 𝑝 𝑦𝑖 = 1 𝑋; 𝜃) +

𝑡𝑖=0

log 𝑝 𝑦𝑖 = 0 𝑋; 𝜃)

𝜎(𝑥𝑇𝜃) 1 − 𝜎(𝑥𝑇𝜃)

𝑝 𝑦𝑖 , 𝑦𝑗 𝑋; 𝜃) = 𝑝 𝑦𝑗 𝑋; 𝜃) 𝑝 𝑦𝑖 𝑋; 𝜃)

Comparison cost functions
Linear regression

Modeling errors as gaussian noise

Logistic regression

Modeling the class as a bernoulli variable

0 0.5 1
0

1

2

3

4

5

0 0.5 1
0

1

2

3

4

5

-2 0 2
0

1

2

3

4

Mean over all training examples:

LOGISTIC REGRESSION
Learning from data

Minimizing the cost via gradient descent

• Gradient descent

• Gradient of logistic regression cost:

(simultaneous

update for

j=0…n)

(for j=0:)

„error“ „input“

Linear features

Tumor size (x1)

A
g

e
 (

x
2

)

linear decision boundary

Non-linear features

Tumor size (x1)

A
g

e
 (

x
2

)

non-linear decision boundary

Decision boundaries
linear decision boundary

Tumor size (x1)

A
g

e
 (

x
2

)

Tumor size (x1)
A

g
e

 (
x
2

)

non-linear decision boundary

Decision boundary is a property of hypothesis, not of data!

Linear vs. Logistic Regression

Linear Regression

• Regression

• Hypothesis

• Cost for one training example:

• Gradient

• Analytical:

Logistic Regression

• Binary classification (!)

• Hypothesis

• Cost for one training example:

• Gradient

• No analytical solution!

„error“ „input“ „error“ „input“

EVALUATION OF

HYPOTHESIS
Training and Test set

Training and Test set
• Training set: used by learning algorithm to fit parameters and find a

hypothesis.

• Test set: independent data set, used after learning to estimate the

performance of the hypothesis on new (unseen) test examples.

Regression example

E.g. 80% randomly chosen examples

from dataset are training examples,

the remaining 20% are test examples.

Must be disjoint subsets!
-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

x

y

training

test

Training and Test set workflow

Learning algorithm

„Hypothesis“ h

Training set

Test set Testing

Training error (cost)

Test error (cost)

Linear regression training vs. Test error

-2 -1 0 1 2
-1

0

1

2

x

y

training

-2 -1 0 1 2
-1

0

1

2

x

y

MSEtrain=0.01

training

hypothesis

-2 -1 0 1 2
-1

0

1

2

x
y

MSEtest=2.02

test

hypothesis

polynomial degree 14

-2 -1 0 1 2
-1

0

1

2

x

y

MSEtrain=0.01

training

hypothesis

-2 -1 0 1 2
-1

0

1

2

x
y

MSEtest=2.02

test

hypothesis

Classification Training / Test set

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training set Test set
„1“

„0“

„1“

„0“

Logistic regression training vs. test error

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Training Error: 0.05

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Test Error: 2.71

polynomial features

up to power 10

decision boundary

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Training Error: 0.05

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Test Error: 2.71

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Training Error: 0.05

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Test Error: 2.71

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Training Error: 0.05

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Test Error: 2.71

UNDERFITTING AND

OVERFITTING

Polynomial regression under-/overfitting

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

x

y

MSEtrain=0.22, MSEtest=0.29

training

test

polynomial fit degree 1

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

x

y

MSEtrain=0.01, MSEtest=0.01

training

test

polynomial fit degree 5

Polynomial regression under-/overfitting

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

x

y

MSEtrain=0.00, MSEtest=3.17

training

test

polynomial fit degree 15

Polynomial regression under-/overfitting

Polynomial regression under-/overfitting

underfitting

„just right“

overfitting

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

x

y

MSEtrain=0.22, MSEtest=0.29

training

test

polynomial fit degree 1

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

x

y

MSEtrain=0.01, MSEtest=0.01

training

test

polynomial fit degree 5

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

x

y

MSEtrain=0.00, MSEtest=3.17

training

test

polynomial fit degree 15

Logistic regression with polynomial terms

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Training set Test set

Logistic regression with polynomial terms

0 0.5 1
0

0.5

1
Training Error: 0.33

0 0.5 1
0

0.5

1
Test Error: 0.32

Terms up to power 1

decision boundary

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Training Error: 0.19

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Test Error: 0.19

Terms up to power 2

0 0.5 1
0

0.5

1
Training Error: 0.17

0 0.5 1
0

0.5

1
Test Error: 0.44

Terms up to power 20

Logistic regression with polynomial terms

0 0.5 1
0

0.5

1
Training Error: 0.33

0 0.5 1
0

0.5

1
Test Error: 0.32

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Training Error: 0.19

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Test Error: 0.19

0 0.5 1
0

0.5

1
Training Error: 0.17

0 0.5 1
0

0.5

1
Test Error: 0.44

underfitting

„just right“

overfitting

Under-/ and Overfitting

Model complexity
(e.g. degree of polynomial terms)

Training error (cost)

Test error (cost)

underfitting

overfitting

„just right“

Under- and Overfitting

• Underfitting:

• Model is too simple (often: too few

parameters)

• High training error, high test error

• Overfitting

• Model is too complex (often: too many

parameters relative to number of training

examples)

• Low training error, high test error

• In between:

• Model has „right“ complexity

• Moderate training error

• Lowest test error

Model

complexity

Training error (cost)

Test error (cost)

How to deal with overfitting

• Use model selection to automatically select the right model complexity

• Use regularization to keep parameters small (other lecture…)

• Collect more data

(often not possible or inefficient)

• Manually throw out features which are unlikely to contribute

(often hard to guess which ones, potentially throwing out the wrong ones)

• Find better features with less noise, more predictive of the output

(often not possible or inefficient)

MODEL SELECTION
Training, Validation and Test sets

Model selection

• Selection of learning algorithm and „hyperparameters“

(model complexity) that are most suitable for a given

learning problem

Model complexity

Training error (cost)

Test error (cost)

Idea

• Try out different learning

algorithms/variants
• Vary degree of polynomial

• Try different sets of features

• …

• Select variant with best

predictive performance

Model

complexity

Training error (cost)

„Prediction“ error (cost)

Training, Validation, Test set

• Training set: used by learning algorithm to fit parameters and
find a hypothesis for each learning algorithm/variant.

• Validation set: used to estimate predictive performance of
each learning algorithm/variant. The hypothesis with lowest
validation error (cost) is selected.

• Test set: independent data set, used after learning and model
selection to estimate the performance of the final (selected)
hypothesis on new (unseen) test examples.

E.g. 60/20/20% randomly chosen examples from dataset. Must
be disjoint subsets!

Training/Validation/Test set workflow

Hyperparameter

setting B

Training Set

Validation set
Model

selection

Hyperparameter

setting A

Hypothesis hA Hypothesis hB

Hyperparameter

setting C

Hypothesis hC

For example:

degree of

polynomial=1, 5, and 15

Test set Testing Test error/cost

Selected

Hypothesis h

Learning Algorithm with:

Training/Validation/Test set workflow

Learning

algorithm B

Training Set

Validation set
Model

selection

Learning

algorithm A

Hypothesis hA Hypothesis hB

Learning

algorithm C

Hypothesis hC

Test set Testing Test error/cost

For example:

Linear regression,

Polynomial regression,

Artificial Neural Network

Selected

Hypothesis h

GRADIENT DESCENT TRICKS,

AND MORE ADVANCED

OPTIMIZATION TECHNIQUES
For linear regression, logistic regression, ….

Minimizing the cost via gradient descent

• Gradient descent

• Gradient of logistic regression cost:

(simultaneous

update for

j=0…n)

(for j=0:)

„error“ „input“

GD trick #1: feature scaling

• Feature scaling and mean normalization
• Bring all features into a similar range

• E.g.: shift and scale each feature to have mean 0 and variance 1

• Do not apply to constant feature !

• Typically leads to much faster convergence

(when using

non-linear

features)

Mean of unscaled feature

Standard deviation

of unscaled feature

GD trick #2: monitoring convergence

• Diagnose typical issues with Gradient Descent:

0 500 1000
0.55

0.6

0.65

0.7

0.75

iteration

c
o
s
t

J

0 50 100
0

2

4

6

8

10

iteration

c
o
s
t

J

… slow convergence

(increase learning rate?)

…oscillations

(decrease learning rate)

0 5 10 15 20
0

20

40

60

iteration

c
o
s
t

J

…divergence

(decrease learning rate)

at iteration 300

GD trick #3: adaptive learning rate

• At each iteration

• Compare cost function value before and

after Gradient Descent update

• If cost increased:

• Reject update (go back to previous parameters)

• Multiply learning rate by 0.7 (for example)

• If cost decreased:

• Multiply learning rate by 1.02 (for example)

0 500 1000
0.55

0.6

0.65

0.7

0.75

iteration

c
o

s
t

J

0 5 10 15 20
0

20

40

60

iteration

c
o

s
t

J
Often eliminates slow convergence and divergence issues

Variants of Gradient Descent

Source: http://sebastianruder.com/optimizing-gradient-descent/index.html

• SGD: Stochastic Gradient Descent

• Momentum: with momentum term

• RMSProp: adaptive learning rate

http://sebastianruder.com/optimizing-gradient-descent/index.html

More advanced optimization methods

• Gradient methods = order 1 Newton methods = order 2

• Need Hessian matrix or approximations

• Avoid choosing a learning rate

• Conjugate gradient, BFGS, L-BFGS, …

• Tricky to implement (numerical stability, etc.)
• Use available toolbox / library implementations!
scipy.optimize.minimize

• Only use when fighting for performance

SUMMARY
And questions

Some questions…

• Logistic regression is a method for … regression/classification?

• What is the hypothesis for Logistic regression?

• What‘s the cost function used for logistic regression?

• Is the cost function convex or non-convex?

• What is under-/overfitting?

• What is model selection?

• What are training, validation and test sets?

• How does model selection work (procedure)?

• What does “adaptive learning rate” mean in the context of gradient

descent?

What is next?

• Neural Networks (Guillaume Bellec):

• Perceptron

• Feedforward Neural Network

• Backpropagation

