Lecture 2:
- Linear Regression
- Gradient Descent
- Non-linear basis functions
LINEAR REGRESSION
MOTIVATION
Why Linear Regression?

- Simplest machine learning algorithm for regression
 - Widely used in **biological, behavioral and social sciences** to describe and to extract relationships between variables from data
 - Prediction of **real-valued outputs**
 - Easy to implement, fast to execute
 - **Benchmark** algorithm for comparison with more complex algorithms

- Introduction to **notation and concepts** that we will need again later in the course
 - Data format, vector & matrix notation
 - Learning from data by minimizing a **cost function**
 - Gradient descent
 - Non-linear features and basis functions
 - Preparation for neural networks
Applications of (linear) regression

- Brain computer interfaces
 - https://www.youtube.com/watch?v=Ae6En8-eaww

- Neuroprosthetic control
 - https://www.youtube.com/watch?v=X_AI4MiY6L4
LINEAR REGRESSION WITH ONE INPUT
Linear regression with one input

\[\langle x^{(1)}, y^{(1)} \rangle \ldots \langle x^{(m)}, y^{(m)} \rangle \]

- Training set
- Learning algorithm
 - Hypothesis: \[h = \theta_0 + \theta_1 \cdot x \]
 - Parameters: \[\theta = (\theta_0, \theta_1) \]

Test input \(x \) \(\rightarrow \) „Hypothesis“ \(h \) \(\rightarrow \) Prediction
A regression problem

- We want to learn to predict a **person’s height** based on his/her **knee height** and/or **arm span**

- This is useful for patients who are **bed bound** or in a wheelchair and cannot stand to take an accurate measurement of their height

<table>
<thead>
<tr>
<th>Knee Height [cm]</th>
<th>Arm span [cm]</th>
<th>Height [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>166</td>
<td>171</td>
</tr>
<tr>
<td>56</td>
<td>172</td>
<td>175</td>
</tr>
<tr>
<td>52</td>
<td>174</td>
<td>168</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Example Data

<table>
<thead>
<tr>
<th>Knee height [cm]</th>
<th>Arm span [cm]</th>
<th>Height [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>166</td>
<td>171</td>
</tr>
<tr>
<td>56</td>
<td>172</td>
<td>175</td>
</tr>
<tr>
<td>52</td>
<td>174</td>
<td>168</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$m=30$ data points
Example Data

<table>
<thead>
<tr>
<th>Knee Height [cm]</th>
<th>Arm span [cm]</th>
<th>Height [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>166</td>
<td>171</td>
</tr>
<tr>
<td>56</td>
<td>172</td>
<td>175</td>
</tr>
<tr>
<td>52</td>
<td>174</td>
<td>168</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

![3D Scatter Plot](image)

- **x-axis**: Knee height [cm]
- **y-axis**: Armspan [cm]
- **z-axis**: Body height [cm]
Linear regression with one input

<table>
<thead>
<tr>
<th>Knee Height [cm]</th>
<th>Height [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>171</td>
</tr>
<tr>
<td>56</td>
<td>175</td>
</tr>
<tr>
<td>52</td>
<td>168</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

Which hypothesis is better? **In what sense** is it better?

Hypothesis

\[
h_{\theta}(x) = \theta_0 + \theta_1 \cdot x
\]

Parameters \(\theta = (\theta_0, \theta_1) \)
Formalization of problem

- Given m training examples
 $$\langle x^{(1)}, y^{(1)} \rangle \ldots \langle x^{(m)}, y^{(m)} \rangle$$

- Goal: learn parameters
 $$\theta = (\theta_0, \theta_1)$$

 such that
 $$h_\theta(x^{(i)}) = \theta_0 + \theta_1 \cdot x^{(i)} \approx y^{(i)}$$

 for all training examples $i=1\ldots30$.

<table>
<thead>
<tr>
<th>Knee Height [cm]</th>
<th>Height [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>171</td>
</tr>
<tr>
<td>56</td>
<td>175</td>
</tr>
<tr>
<td>52</td>
<td>168</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$m=30$ data points
Least Squares Objective

- Minimize Error

\[J(\theta_0, \theta_1) = \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right)^2 \]

\[\theta_0 = 150 \]
\[\theta_1 = 0.6 \]
Least Squares Objective

- Minimize Error

\[
J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2
\]

\[
\theta_0 = 150 \\
\theta_1 = 0.6 \\
J(\theta_0, \theta_1) = 10.77
\]
Least Squares Objective

- Minimize Error

\[J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right)^2 \]

\(\theta_0 = 140 \)
\(\theta_1 = 0.75 \)

\[J(\theta_0, \theta_1) = 5.94 \]
Cost function illustrated

\[J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 \]

Properties of cost function:

- Quadratic function
- "Bowl"-shaped
- Unique local and global minimum (under "regular" conditions)
Minimizing the cost

- Two ways to find the parameters $\theta = (\theta_0, \theta_1)$ minimizing
 \[
 J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h^{(i)}_\theta (x^{(i)}) - y^{(i)} \right)^2
 \]

 - Gradient descent
 - Direct analytical solution (setting derivatives = 0)
GRADIENT DESCENT
Descending in the steepest direction

Gradient descent on some arbitrary cost function $J(\theta_0, \theta_1)$...
Gradient descent algorithm

- Repeat until convergence

\[\theta_j := \theta_j - \eta \cdot \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \]

(simultaneously updating \(\theta_0 \) and \(\theta_1 \))

- negative gradient = descent
- learning rate ("eta")
- partial derivative of \(J(\theta_0, \theta_1) \) with respect to \(\theta_j \)
Gradient is orthogonal to contour lines

\[J(\theta_0, \theta_1) \]

A contour line is a line along which

\[J(\theta_0, \theta_1) = \text{const} \]
Potential issues with gradient descent

- May get stuck in local minima
- Learning rate too small: slow convergence
- Learning rate too large: oscillations, divergence

\[\eta \text{ too small} \]

\[\theta_j \]

\[\eta \text{ too large} \]

\[\theta_j \]
LINEAR REGRESSION WITH GRADIENT DESCENT
(ONE INPUT)
Application of gradient descent

- Linear regression cost

\[J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right)^2 \]

\[h_\theta(x) = \theta_0 + \theta_1 \cdot x \]

- Gradient descent

\[\theta_j := \theta_j - \eta \cdot \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \]

(simultaneous update)

\[\theta_0 := \theta_0 - 2\eta \cdot \frac{1}{m} \sum_{i=1}^{m} \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) \]

"learning rate"

\[\theta_1 := \theta_1 - 2\eta \cdot \frac{1}{m} \sum_{i=1}^{m} \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) \cdot x^{(i)} \]

"error" "input"
Predicting height from knee height

- Optimal fit to training data

\[\theta_0 = 137.4 \]
\[\theta_1 = 0.8 \]
LINEAR REGRESSION

MORE GENERAL FORMULATION: MULTIPLE FEATURES
Multiple inputs (features)

- Notation:
 \(m \) ... number of training examples
 \(n \) ... number of features
 \(\mathbf{x}^{(i)} \) ... input features of \(i \)th training example (vector-valued)
 \(x_{j}^{(i)} \) ... value of feature \(j \) in \(i \)th training example

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Knee Height} & \text{Arm span} & \text{Age} & \text{Height} \\
\mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \mathbf{y} \\
\hline
50 & 166 & 32 & 171 \\
56 & 172 & 17 & 175 \\
52 & 174 & 62 & 168 \\
\vdots & \vdots & \vdots & \vdots \\
\hline
\end{array}
\]

\[
\mathbf{x}^{(2)} = \begin{pmatrix} 56 \\ 172 \\ 17 \end{pmatrix} \\
\mathbf{x}_3^{(2)} = 17
\]
Linear hypothesis

- Hypothesis (one input):
 \[h_\theta(x) = \theta_0 + \theta_1 \cdot x \]

- Hypothesis (multiple input features):
 \[h_\theta(x) = \theta_0 + \theta_1 \cdot x_1 + \cdots + \theta_n \cdot x_n \]

Example: \(h(x) = 50 + 0.5 \cdot \text{kneeheight} + 0.3 \cdot \text{armspan} + 0.1 \cdot \text{age} \)

- More compact notation:
 \[h_\theta(x) = \mathbf{x}^T \mathbf{\theta} \]

\(x_0 = 1 \)

*Introduce Why? Notation convenience!
Multiple inputs (features) revisited

- Notation:
 - m ... number of training examples
 - n ... number of features

- $x^{(i)}$... input features of i^{th} training example (vector-valued)
- $x_j^{(i)}$... value of feature j in i^{th} training example

<table>
<thead>
<tr>
<th></th>
<th>Knee Height</th>
<th>Arm span</th>
<th>Age</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>1</td>
<td>50</td>
<td>166</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>56</td>
<td>172</td>
<td>17</td>
<td>175</td>
</tr>
<tr>
<td>1</td>
<td>52</td>
<td>...</td>
<td>174</td>
<td>62</td>
</tr>
<tr>
<td>1</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$n = 3$

$x^{(2)} = \begin{pmatrix} 1 \\ 56 \\ 172 \\ 17 \end{pmatrix}$

$x_0^{(2)} = 1$

$x_3^{(2)} = 17$
Matrix and vector notation

<table>
<thead>
<tr>
<th></th>
<th>Knee Height</th>
<th>Arm Span</th>
<th>Age</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₀</td>
<td>50</td>
<td>166</td>
<td>32</td>
<td>171</td>
</tr>
<tr>
<td>x₁</td>
<td>56</td>
<td>172</td>
<td>17</td>
<td>175</td>
</tr>
<tr>
<td>x₂</td>
<td>52</td>
<td>174</td>
<td>62</td>
<td>168</td>
</tr>
</tbody>
</table>

\(x^{(i)} = \begin{pmatrix} x^{(i)}_0 \\ x^{(i)}_1 \\ \vdots \\ x^{(i)}_n \end{pmatrix}\) features of i'th training example

\(X = \begin{pmatrix} x^{(1)}_0 & x^{(1)}_1 & \cdots & x^{(1)}_n \\ x^{(2)}_0 & x^{(2)}_1 & \cdots & x^{(2)}_n \\ \vdots & \vdots & \ddots & \vdots \\ x^{(m)}_0 & x^{(m)}_1 & \cdots & x^{(m)}_n \end{pmatrix}\) design matrix \(m \times (n+1)\)

\(y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{pmatrix}\) output/target vector \(m \times 1\)

\(X = \begin{pmatrix} 1 & 50 & 166 & 32 \\ 1 & 56 & 172 & 17 \\ 1 & 52 & 174 & 62 \end{pmatrix}\)

\(y = \begin{pmatrix} 171 \\ 175 \\ 168 \end{pmatrix}\)
LINEAR REGRESSION WITH GRADIENT DESCENT (GENERAL FORMULATION)
Linear regression problem statement

- **Hypothesis:** \(h_\theta(x) = x^T \theta \)

- **Cost function:** \(J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right)^2 \)

Goal is to find parameters which minimize the cost
Gradient descent (multiple features)

with **one** input feature:

\[
\begin{align*}
\theta_0 &:= \theta_0 - 2\eta \cdot \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) \\
\theta_1 &:= \theta_1 - 2\eta \cdot \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) \cdot x^{(i)}
\end{align*}
\]

"error" \hspace{1cm} "input"

(simultaneous update)

with **n** input features:

\[
\begin{align*}
\theta_j &:= \theta_j - 2\eta \cdot \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) \cdot x_j^{(i)}
\end{align*}
\]

"error" \hspace{1cm} "input"

(simultaneous update for \(j=0\ldots n \))

For \(j = 0 \): define for convenience \(x_0^{(i)} = 1 \)
LINEAR REGRESSION
ANALYTICAL SOLUTION
Analytical solution

• Set all partial derivatives of cost function $J(\theta) = 0$

• Solving system of linear equations yields:

$$\theta^* = \left(X^T X \right)^{-1} X^T y$$

Moore-Penrose Pseudoinverse of X

• Note: This analytical solution requires that columns of X are linearly independent ("regular" conditions)
Example: analytical solution applied to problem with one input

<table>
<thead>
<tr>
<th>Knee Height [cm]</th>
<th>Height [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>171</td>
</tr>
<tr>
<td>56</td>
<td>175</td>
</tr>
<tr>
<td>52</td>
<td>168</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Example: analytical solution applied to problem with one input

<table>
<thead>
<tr>
<th>Knee Height [cm]</th>
<th>Height [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>171</td>
</tr>
<tr>
<td>56</td>
<td>175</td>
</tr>
<tr>
<td>52</td>
<td>168</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
 X &= \begin{pmatrix}
 1 & 50 \\
 1 & 56 \\
 1 & 52 \\
 \vdots \\
 1 & 30 \times 2
 \end{pmatrix} \\
 y &= \begin{pmatrix}
 171 \\
 175 \\
 168 \\
 \vdots \\
 30 \times 1
 \end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
 \theta^* &= \left(X^T X \right)^{-1} X^T y \\
 &= \begin{pmatrix}
 137.4 \\
 0.8
 \end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
 X^T X &= \begin{pmatrix}
 30 & 1577 \\
 1577 & 83222
 \end{pmatrix} \\
 \left(X^T X \right)^{-1} &= \begin{pmatrix}
 7.994 & -0.152 \\
 -0.152 & 0.003
 \end{pmatrix} \\
 X^T y &= \begin{pmatrix}
 5383 \\
 283210
 \end{pmatrix}
\end{align*}
\]
Predicting height from knee height

\[\theta_0 = 137.4 \]
\[\theta_1 = 0.8 \]

\[\theta^* = \left(X^T X \right)^{-1} X^T y \]
\[= \begin{pmatrix} 137.4 \\ 0.8 \end{pmatrix} \]
<table>
<thead>
<tr>
<th>Gradient descent</th>
<th>Analytical solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Need to choose learning rate η</td>
<td>• No need to choose η</td>
</tr>
<tr>
<td>• Iterative algorithm (needs many iterations to converge)</td>
<td>• Direct solution (no iteration)</td>
</tr>
<tr>
<td>• Works well even when number of input features is large</td>
<td>• Slow if n is too large (inverting $n \times n$ matrix)</td>
</tr>
</tbody>
</table>
NON-LINEAR FEATURES
(NON-LINEAR BASIS FUNCTIONS)
Non-linear trends in data

- How can we learn non-linear hypotheses?

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>-0.27</td>
</tr>
<tr>
<td>-1.22</td>
<td>2.63</td>
</tr>
<tr>
<td>0.17</td>
<td>-0.13</td>
</tr>
</tbody>
</table>

\[h_\theta(x) = \theta_0 + \theta_1 \cdot x + \theta_2 \cdot x^2 \]
Linear fit to this “non-linear” data

Hypothesis: \(h_\theta(x) = \theta_0 + \theta_1 \cdot x \)

Optimal parameters: \(\theta^* = \left(X^T X \right)^{-1} X^T y \)
Linear fit to this “non-linear” data

\[h_\theta(x) = 1.85 - 0.76 \cdot x \]
Non-linear (quadratic) fit

\begin{align*}
\begin{array}{|c|c|}
\hline
x & y \\
\hline
0.01 & -0.27 \\
-1.22 & 2.63 \\
0.17 & -0.13 \\
\vdots & \vdots \\
\hline
\end{array}
\end{align*}

\begin{align*}
\phi_0 &= 1 \\
\phi_1 &= x \\
\phi_2 &= x^2
\end{align*}

\[
\Phi = \begin{pmatrix}
1 & 0.01 & 0.01^2 \\
1 & -1.22 & (-1.22)^2 \\
1 & 0.17 & (0.17)^2 \\
\vdots & \vdots & \vdots
\end{pmatrix}
\quad y = \begin{pmatrix}
-0.27 \\
2.63 \\
-0.13 \\
\vdots
\end{pmatrix}
\]

design matrix with non-linear features

Hypothesis: \(h_\theta(\phi) = \theta_0 + \theta_1 \cdot \phi_1 + \theta_2 \cdot \phi_2 \)

Optimal parameters: \(\theta^* = \left(\Phi^T \Phi \right)^{-1} \Phi^T y \)
Non-linear (quadratic) fit

\[h_\theta(x) = 0.02 \cdot 1 - 0.95 \cdot x + 0.99 \cdot x^2 \]
Non-linear (sinusoid) fit

\[\phi_0 = 1 \quad \phi_1 = x \quad \phi_2 = \cos(x) \]

\[
\Phi = \begin{pmatrix}
1 & 0.01 & \cos(0.01) \\
1 & -1.22 & \cos(-1.22) \\
1 & 0.17 & \cos(0.17) \\
\vdots & & \\
\end{pmatrix} \quad y = \begin{pmatrix} -0.27 \\
2.63 \\
-0.13 \\
\vdots \end{pmatrix}
\]

design matrix with non-linear features

Hypothesis: \[h_\theta(\phi) = \theta_0 + \theta_1 \cdot \phi_1 + \theta_2 \cdot \phi_2 \]

Optimal parameters: \[\theta^* = \left(\Phi^T \Phi \right)^{-1} \Phi^T y \]
Non-linear (sinusoidal) fit

\[h_\theta(x) = 3.12 \cdot 1 - 1.07 \cdot x - 3.5 \cdot \cos(x) \]
Image: JPEG = cosine-basis

Each block of 8x8 pixels is represented in a Fourier basis of cosine filters.

Better representation of edges and corners Allows for compression.
Non-linear input features (in general)

• Feature 2 for each training example i is computed by applying a non-linear basis function:

$$\phi_2^{(i)} = \phi_2(\mathbf{x}^{(i)})$$

• Allows to learn a variety of non-linear functions with the same technique(s):
 • Analytical
 $$\theta^* = \left(\Phi^T \Phi\right)^{-1} \Phi^T y$$
 or gradient descent
Polynomial regression

- Features are powers of x

$$\phi_0 = x^0, \phi_1 = x^1, \phi_2 = x^2, \ldots, \phi_n = x^n$$

What happened here? Next lecture…
Radial basis functions

- "Gaussian"-shaped RBFs:
 - Each basis function j has a **center** c_j in the input space.
 - The **width** of the basis functions is determined by σ.

\[
\phi_j(x) = \exp\left(-\frac{1}{2\sigma^2} \cdot \|x - c_j\|^2\right)
\]

With parameters:
- $c_1 = -1$
- $c_2 = 1$
- $c_3 = 3$
Radial basis functions

- "Gaussian"-shaped RBFs:
 - Each basis function j has a center c_j in the input space
 - The width of the basis functions is determined by σ.

$$\phi_j(x) = \exp \left(-\frac{1}{2\sigma^2} \cdot \|x - c_j\|^2 \right)$$

![Graph showing Gaussian RBFs with different centers and a specific width $\sigma = 0.5$.]
Radial basis functions

• „Gaussian“-shaped RBFs:
 • Each basis function j has a center c_j in the input space
 • The width of the basis functions is determined by σ.

\[\phi_j(x) = \exp \left(-\frac{1}{2\sigma^2} \cdot \|x - c_j\|^2 \right) \]

\[\sigma = 1.5 \]

\[c_1 = -1 \quad c_2 = 1 \quad c_3 = 3 \]
Fitting a single RBF to data

\[h_\theta(x) = \theta_0 + \theta_1 \cdot \phi_1(x) \]

\[h_\theta(x) = 6.9 - 7.3 \cdot \phi_1(x) \]
Fitting RBFs to data

\[h_\theta(x) = \theta_0 + \theta_1 \cdot \phi_1(x) + \theta_2 \cdot \phi_2(x) + \theta_3 \cdot \phi_3(x) \]

\[h_\theta(x) = 21.7 - 11.4 \cdot \phi_1(x) - 10.6 \cdot \phi_2(x) - 14.9 \cdot \phi_3(x) \]
SUMMARY (QUESTIONS)
Some questions…

• Hypothesis for linear regression = ?
• Cost function for linear regression = ?
• How many local minima may the cost function for lin. reg. have (under regular conditions)?
• Name two ways to minimize the cost function?
• General gradient descent formula?
• Linear regression with gradient descent formula?
• What issues can arise during gradient descent?
• What is the design matrix? What are its dimensions?
• Analytical solution for linear regression = ?
 • What are the components of the solution?
• Pros and Cons of gradient descent vs. analytical solution?
• How can one learn non-linear hypotheses with linear regression?
• What is polynomial regression?
• What are radial basis functions?
What is next?

- Classification with Logistic Regression
- Gradient descent tricks & more advanced optimization techniques
- Underfitting & Overfitting
- Model selection (Training, Validation and test set)