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Kurzfassung

Phonetische Transkriptionen sind eine wichtige Ressource in verschiedenen For-
schungsgebieten wie zum Beispiel der Spracherkennung oder der Linguistik. Die
manuelle Erstellung von phonetischen Transkriptionen ist eine miihevolle Aufgabe,
daher erscheint die Entwicklung einer Anwendung, die fiir gegebene Audiodaten
automatisch phonetische Transkriptionen erzeugt, sinnvoll.

Fiir die Entwicklung dieses neuen phonetischen Transcribers wurde eine Metho-
de #dhnlich der datenbasierten Sprachsynthese angewendet. In der datenbasierten
Sprachsynthese wird ein Wort durch die Verkniipfung von Audiosignalen aus ei-
ner Datenbank, die anhand ihrer Transkriptionen ausgewihlt werden, erzeugt. Fiir
den phonetischen Transcriber wird dieser Prozess umgekehrt: Um eine phonetische
Transkription eines Wortes zu erstellen, wird die Aufnahme des Wortes mit den
Audiosignalen in der Datenbank verglichen, dann werden die Transkriptionen der
dghnlichsten Signale zur neuen Transkription verkniipft.

Als Datenbank wurde die ADABA (Osterreichische Aussprachdatenbank) ver-
wendet, die Aufnahmen von sechs verschiedenen Sprechern aus Osterreich, Deutsch-
land und der Schweiz enthélt. Die Transkriptionen der ADABA bestehen aus mehr
phonetischen Symbolen als iibliche breite Transkriptionen fiir das Deutsche (89 Sym-
bole statt 45 im SAMPA-Deutsch). Die Anwendung ist momentan auf einen Sprecher
beschrénkt, um solch detailreiche Transkriptionen zu erméglichen. Die Audiodaten
wurden in Triphone segmentiert, ein Mechanismus zur Auswahl von Kandidaten-
Triphonen fiir den Mustervergleich wurde entwickelt und fiir den Vergleich wurde
ein Dynamic Time Warping Algorithmus implementiert.

Die Anwendung wurde mit verschiedenen Einstellungen optimiert. Die Ergeb-
nisse aus den Tests mit der endgiiltigen Implementierung wurden mit den Referenz-
transkriptionen der ADABA ausgewertet. Die erreichte Phone-Erkennungsrate von
91.94% ist vergleichbar mit den Erkennungsraten, die von anderen existierenden
Transkriptions-Anwendungen unter dhnlichen Bedingungen erreicht worden sind.

Schlagwdrter: Automatische phonetische Transkription (APT), Dynamic Time
Warping Algorithm (DTW), Osterreichische Aussprachedatenbank (ADABA), Au-

tomatische Spracherkennung



Abstract

Phonetic transcriptions are an important resource in different research areas such
as speech recognition or linguistics. Establishing phonetic transcriptions by hand is
an exhausting process therefore it seems reasonable to develop an application that
automatically creates phonetic transcriptions for given audio data.

To build this automatic phonetic transcriber a new method similar to data-based
speech synthesis is applied. In data-based speech synthesis a word is synthesized by
recombining audio samples from a database according to their phonetic transcrip-
tion. In the case of the phonetic transcriber this process is reversed: To obtain the
transcription of a word its recording is compared to audio samples in the database
and then the transcriptions of the most similar samples are concatenated to a new
transcription.

The data is taken from ADABA (Austrian Phonetic Database) that contains
recordings of six speakers from the major varieties of German. The transcriptions
in ADABA contain more phonetic symbols than common broad transcriptions for
German (89 symbols instead of 45 for standard SAMPA-German). The applica-
tion is currently restricted to a single speaker to allow for such detailed phonetic
transcriptions. The audio data was segmented into triphones, a triphone candidate
selection was developed and for the pattern comparison a dynamic time warping
algorithm was implemented.

The transcription framework was optimized with several settings. The results
from the tests with the final implementation are evaluated with respect to the refer-
ence transcriptions in the ADABA database. The achieved phone recognition rate
of 91.94% is comparable to rates reported from other existing phonetic transcription
tools tested under similar conditions.

Keywords: Automatic Phonetic Transcription (APT), Dynamic Time Warp-
ing Algorithm (DTW), Austrian Phonetic Database (ADABA), Automatic Speech
Recognition (ASR)
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Chapter 1

Introduction

The purpose of phonetic transcriptions is the documentation of the phonetic con-
tent of speech. This information is important for several different research areas. In
linguistics phonetic transcriptions are used to investigate different pronunciations,
e.g., to study the pronunciation styles of different speakers depending on their prove-
nience. In speech communication phonetic transcriptions are used to build lexica
with reference pronunciations. For speech synthesis they are necessary to know what
a word that has to be synthesized should sound like. In speech recognition they are
used to map the recognized phones onto words.

The manual creation of phonetic transcriptions is an exhausting task. It demands
a large amount of time and thus is expensive. For this reason the use of an auto-
matic transcription tool seems desirable. An automatic transcriber speeds up the
transcription process. Even if the established transcriptions are not 100% correct,
the amount of work for a human transcriber can be significantly reduced, because
instead of creating the whole transcriptions only a validation and a correction of
erroneous transcriptions is necessary.

Transcriptions from human transcribers are error prone because transcribing is
not an objective task. The transcriptions of different transcribers vary. Even those
of a single transcriber may deviate, e.g., due to fatigue. Automatic transcriptions
contain errors too, however these errors are systematic. They can be reproduced,
whereas the errors of human transcribers are random errors. The automatic tran-
scriptions could thus form a guideline that is more objective even if the possibility
of errors has to be considered. Furthermore an automatic transcriber could be used
to check existing manual transcriptions, for example in speech databases, for con-
sistency. This allows a validation of these transcriptions.

In existing systems for automatic phonetic transcription (APT) different meth-
ods are applied, but in most cases simply systems originally designed for automatic
speech recognition (ASR) are used. The majority of these APT systems is model-
based, i.e. they perform the recognition by using statistical models for the phones.
The creation of the models can be seen as generalization of the used data, thus
possibly important information may be lost. A different approach, also employed in
speech recognition, is explored for the development of this application: In template-
based speech recognition no modeling is applied. The utterances that have to be
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recognized are not compared to a model but directly to stored reference data sam-
ples. The appealing property of this approach is that in contrast to other systems
no information is discarded due to modeling.

The objective of this diploma thesis was to develop a new tool explicitly de-
signed for automatic phonetic transcription that is based on the techniques used
for template-based speech recognition. This transcriber should be evaluated by
comparing the automatic transcriptions to the reference transcriptions of a prede-
fined test set. The reference transcriptions from the database that was intended
to be used provide a larger phoneme set than normally considered for German in
similar tasks (89 phonetic symbols instead of 45 in standard SAMPA-German). Ini-
tially, the main question was if an automatic transcription tool could achieve such
detailed transcriptions at all. The used recordings are of high quality (studio en-
vironment, 44.1 kHz sampling frequency), so it was assumed that this would favor
correct automatic transcriptions. Finally, the results should be put in context to
other transcription systems to decide if the template-based approach is suitable for
the task of automatic transcription.

The thesis is organized as follows: Chapter 2 gives an overview of existing systems
for APT and deals with the matter of validation. Chapter 3 outlines the basic ideas
for the implementation of the new transcription tool. In chapter 4 the database that
was used for the implementation and for testing is described. Chapter 5 presents the
details of the implementation and the underlying theory. In chapter 6 the results
from the simulations in the development phase and the final test phase are presented
and discussed. Chapter 7 gives an outlook on possible improvements and extensions
and chapter 8 finally concludes the work.



Chapter 2

State of the art in automatic
phonetic transcription

Most of the current automatic transcription systems are derived from systems used
for automatic speech recognition (ASR). The tasks of automatic transcription and
speech recognition are similar, however it has been shown that the systems opti-
mized for automatic speech recognition do not necessarily yield the best results for
automatic transcription [1].

The systems derived from ASR either create transcriptions by using phone recog-
nition or by applying forced recognition, which is also known as forced or Viterbi
alignment [2]. Other existing approaches establish transcriptions by using neural
networks [3] or by application of a morph dictionary [4].

2.1 Existing Approaches

2.1.1 Phone recognition

Phone recognition can be done by using a speech recognizer based on Hidden Markov
Models (HMMs). It is possible to employ phone recognition without any restrictions
or to implement a phone language model. This model describes the phonotactic rules
of the language and allows restricting the number of possible phone sequences.

With phone recognition usually an accuracy between approximately 50% and
70% can be achieved [2]. The phone accuracy is measured as follows: The number of
inserted phones is subtracted from the number of identical phones in automatic and
reference transcription. Then the resulting number is divided by the number of total
phones in the reference transcription (see also section 6.1.1). Wester et al. measured
a phone accuracy level of 63% in one of their phone recognition experiments [5]. For
further use in other applications such phone recognition levels generally are too
low. However, the results may be improved by filtering the output, this can for
example be realized by the application of e.g., decision trees or forced recognition.
Furthermore one advantage of phone recognition is that it does not depend on
orthographic input [2].
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2.1.2 Forced Alignment

Many of the currently used systems for automatic phonetic transcription employ the
technique of forced alignment or forced recognition. Systems that implement this
technique are for example described by Cucchiarini [2], Schiel [6], Binnenporte [7],
Rapp [8], Sjolander [9], and Jande [10]. For the forced alignment approach the
orthographic representation of the spoken words is needed. Additionally the lexicon
of the speech recognizer has to contain the pronunciation variants of the words
that allow multiple pronunciations. Then with the forced alignment procedure the
best matching pronunciation within the given variants is found. This is done by
employing the Viterbi algorithm [11,12].

There are several methods for establishing a lexicon that contains pronunciation
variants for the forced alignment. One possibility is to rewrite pronunciation rules
that are either taken from literature or derived from speech data. These rules can
then be applied to a lexicon with canonical transcriptions. Another possibility for
obtaining pronunciation variants is the direct extraction from a speech corpus. The
first approach, also called rule-based approach, has the advantage that it can be
applied to all lexicon entries, so many pronunciation variants can be generated.
With the second method only variants that actually occur in the corpus can be
considered, but still there might be the advantage that word-specific phenomena
can be captured that cannot be modeled by the rule-based approach [7].

From the lexicon with pronunciation variants a state transition network that
describes the different pronunciations can be created for each word. The Viterbi
algorithm searches the most likely path through this network and thus finds the most
probable pronunciation for the recording that finally is taken as transcription [10].
Often the start and end points of each phone are determined as well, i.e. the
utterance is segmented. This is of no importance for the phonetic transcription but
is interesting for other applications [6,8,9]'.

The achievable performance of an alignment system seems to be comparable
to the performance of a human transcriber as reported by Cucchiarini et al. [2].
Transcribing is a task that is based on subjective decisions so transcriptions from
human listeners often tend to be different. Even transcriptions from a single listener
may vary at different occasions. For the interlistener agreement - the agreement
between listeners - rates from 75% to 85% were observed. For the comparison of
manual and automatic transcriptions agreement levels between 72% and 80% were
found, thus the results from forced alignment seem satisfying because the agreement
rates are in the same range as those achieved by human transcribers [2].

2.1.3 Neural networks

A completely different approach for automatic transcription is the use of neural
networks proposed by Chang et al. [3]. The system uses two neural network stages
and a Viterbi-like decoder. The first neural network performs a classification of

!Some of the above mentioned sources focus rather on the temporal alignment than on the
recognition of phones.
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each frame along five articulatory-based dimensions (place of articulation, manner of
articulation, voicing, lip-rounding, front-back articulation). These phonetic features
are passed to the second neural network that maps them onto phonetic-segment
labels. More precisely, the output of the second neural network is a vector of phone-
probability estimates for each frame. From this matrix then a linear sequence of
phone-labels over the whole utterance is generated by using a Viterbi-like decoder.

A comparison of the transcriptions generated by this system with the transcrip-
tions produced by a human transcriber shows that 80% of the words are transcribed
identically, so the quality of the automatic transcriptions seems comparable to those
of human transcribers. Furthermore the system provides the advantage of being rela-
tively robust in case of acoustic interference and variation of speaking-style. Another
advantage is the independence from word-level transcriptions, the system does not
need an orthographic representation of the text. Currently the system is tested on
a corpus of American English but it may be easily extended to different corpora or
even languages as most of the articulatory features are also found in other languages
of the world [3].

2.1.4 Morphologically based automatic phonetic transcrip-
tion

The system presented by Wothke [4] creates phonetic transcriptions from the or-
thographic representation of words without the use of audio data. The aim is the
generation of an extended dictionary for a speech recognizer, where multiple pronun-
ciation variants for a word are desired to make the speech recognizer more robust.

The approach provides an improvement of a simple rule-based transcription gen-
eration. Consider German as the target language: In German the pronunciation
of a letter depends on the morphological context so the simple application of rules
tends to be erroneous. The proposed solution for this problem is a segmentation into
morphs i.e. prefix, stem, and suffix. After this first step a letter-to-phone mapping
is applied and thus a phonetic transcription created. In the segmentation step multi-
ple segmentations for words with identical orthographic representation but different
morphology are created. For each segmentation the possible pronunciation variants
are considered and the corresponding phonetic transcriptions are generated.

Tests showed that for 92.2% of the words in a test set the system found a seg-
mentation and for more than 99% this segmentation was correct. Furthermore for
98% of the words a correct transcription was found, i.e. at least one of the proposed
transcriptions was considered as correct.

This system performs well for the purpose of establishing a dictionary with pro-
nunciation variants, however this task is completely different from generating a pho-
netic transcription of an actually spoken utterance. Nevertheless the system might
be used to provide possible transcriptions to another system such as an aligner (see
section 2.1.2). The aligner then chooses the most likely transcription with regard to
the given audio information [4].
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2.1.5 Comparison of the existing approaches

From the four proposed approaches, the phonetic recognition and the method using
neural networks are most flexible. Both methods transcribe an actual utterance
without restriction to given pronunciation variants and there is no need for ortho-
graphic input. The main drawback of phone recognition is that the performance is
not good enough to build a powerful stand-alone transcription tool. The approach
using neural networks shows results comparable to those of a human transcriber and
thus seems promising.

The forced alignment method is often employed and thus proposed in many
papers [6,8,9]. However the possible transcriptions are limited to those variants
given in the pronunciation dictionary. So the accuracy of the transcriptions hardly
depends on the degree of detail of the transcriptions in the dictionary. Despite this
restriction the reported results show that they are comparable to results achieved
by human transcribers.

The approach with the morphological segmentation finally is designed for dif-
ferent purposes and can only be used to cover a part of the process of automatic
phonetic transcription of an actual utterance.

2.1.6 Idea for a new approach

An ideal application for automatic transcription would be able to transcribe what
has actually been said in an utterance or more precisely how it has been said. It is
desirable that this transcription does not depend on any given canonical transcrip-
tion or its derivation. Nevertheless some prior knowledge is necessary to produce
a transcription of a new utterance as it is not possible to generate it from scratch.
Thus it is very important that the knowledge serving as a basis for new transcriptions
is as objective as possible. The next section deals with the problem of objectivity for
phonetic transcriptions, before in the following part a new approach for automatic
phonetic transcriptions with a high degree of detail is presented.

2.2 Validation of phonetic transcriptions

2.2.1 Reliability and validity

Before using automatic phonetic transcriptions in an application it is necessary to
determine their quality. The evaluation of automatic transcriptions is a crucial task:
Often they are compared to manual transcriptions but these are either prone to vari-
ation caused by the subjectivity of any human transcriber. Phonetic transcriptions,
whether produced automatically or by a human transcriber, can be seen as a kind
of measurement of a speech signal. They should achieve the quality standards de-
manded from any other measurement. The quality of a measuring instrument can
be described by means of reliability and validity. The reliability of a measuring
device shows if repeated measurements of the same object yield the same results.
So it is an indication for the consistency of the measurements and the accuracy of
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the instrument. The validity determines if the measuring device indeed measures
what it is intended to measure.

One problem that occurs when transcriptions are produced by human tran-
scribers is that of inter-subject and intra-subject variation. Obviously transcrip-
tions by different transcribers may yield different results (inter-subject variation),
but even transcriptions by the same transcriber may vary at different trials (intra-
subject variation). So the reliability for human made transcriptions is not guar-
anteed. On the other hand automatic transcriptions by a machine are reliable as
a computer can be programmed in such a way that it always produces the same
results [13,2, 14].

Another problem concerns the validity of a transcription. Finding the transcrip-
tion of a word cannot be compared with other measurements in terms of validity
as there is no “true” criterion score (as suggested by the test theory). Experiments
showed that it is not straightforward to determine whether a phone in an utterance
is present or not. For example, in an experiment described by Kessens and Strik [1]
nine experts were asked to decide whether a phone in an utterance was spoken or
not. In only 246 of 467 cases all the listeners took the same decision, this means
that the degree of agreement is less than 53%. For experiments the quality of an au-
tomatic transcription is usually derived by its similarity to a manual transcription.
However the results of the experiment by Kessens and Strik demonstrate that the
validity of an automatic transcription cannot simply be determined by comparing
it with any manual transcription. It is preferable to define a reference transcription
for the evaluation such as a consensus transcription (see next section) [13,2,5].

2.2.2 Obtaining a reference transcription

Several possibilities exist for obtaining a reference transcription. One is to create
a consensus transcription, this means that at least two experts work together and
need to agree on each phonetic symbol of the transcription during the transcription
process. The process of reaching a consensus can be seen as approach to find “true”
criterion scores and to minimize transcription errors.

Another possibility is to involve more than one listener and to take only the
transcriptions on which all the listeners or at least a majority of them agree, and to
reject the rest of the transcriptions (majority vote procedure) [13,2,5].

2.2.3 Performance of a phonetic transcriber

As already mentioned, in most approaches speech recognizers are used for phonetic
transcription. It seems probable that a speech recognizer with a low word error rate
also provides a good transcription quality if it is used for automatic transcription.
However experiments showed that this is not necessarily the case.

Kessens and Strik [1] conducted a series of experiments with a continuous speech
recognizer (CSR) employed as transcription tool. The CSR was a standard HMM
recognizer and the transcriptions were produced by using it in forced recognition
mode. Some of the CSR properties were varied for the test series (e.g. the topology
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of the HMMs or the acoustic resolution of the HMMSs, for more details see [1]) and
then each version of the CSR realized the same task which was to decide whether
a phone in a transcription variant was present or not. For each test set the word
error rate (WER) was computed from the number of substitutions S, deletions D,
insertions I and the total number of words N.
WER = 100% x 22+ 1 (2.1)
N

Furthermore the agreement between the automatic and the reference transcription
was calculated. The reference transcription was produced with the majority vote
procedure, in this case 5 of 9 listeners had to agree on the transcription. The
database that was used for the experiments is the VIOS database [15], that contains
spontaneous speech.?

For the measurement of the agreement between the reference and the automatic
transcription two measures were applied: The percentage agreement and Cohen’s
kappa [1]. The percentage agreement is defined as follows:

#agreements
Py = 100% x 2.2
0 % #agreements + #disagreements (2:2)
The Cohen’s kappa corrects for chance agreement:
Py— P.
=0 2.
"T 00— 7, (2:3)

with —-1<k<1
P. = percentage agreement on the basis of chance

With Cohen’s kappa measurements that were made under different conditions can
be compared.

For different test settings the values for the agreement varied between 73.9% and
79.9% and the kappa values between 0.47 and 0.58, both for spontaneous speech
(VIOS database). To inspect the relation between the word error rate and kappa
another test was performed with an independent test set. Normally the CSR with
the lowest word error rate is considered the best. Thus it is interesting to investigate
if this CSR is also the best for automatic transcription. One would expect that the
CSR with the lowest WER also produces the transcriptions with the highest degree
of agreement with a reference transcription. However, this is not the case, as the
experiment by Kessens and Strik showed [1]: the test set with the lowest WER had
the lowest kappa value, and another test set with a high kappa value had a high
WER. So the assumption that a low WER results in a high degree of agreement
between the automatic transcription and the reference transcription does not hold.
Obviously, recognizing words is a different task than creating automatic phonetic
transcriptions.

2Further tests that were made with read speech from another database are not taken into
consideration in this summary.
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This result can be explained by the fact that for speech recognition a kind of
generalization has to be performed to map actual pronunciations onto models. On
the other hand, in the case of automatic transcription details should be kept to
allow for detailed transcriptions. Thus the objectives of automatic transcription
and automatic speech recognition are contradictory.



Chapter 3

A new approach for automatic
phonetic transcription

Most of the described systems for automatic phonetic transcription are modified
speech recognizers. However, it has been shown that phonetic transcription is not
the same task as speech recognition [1]. Therefore it is desirable to design a tool
especially for phonetic transcription.

Furthermore for some purposes, like linguistic studies, it would be preferable to
have more detailed transcriptions than commonly used in current approaches, e.g.,
to investigate different regional pronunciation styles.

Therefore I present a new approach for automatic transcriptions that is disposed
for the production of transcriptions with a high degree of detail. In the following
sections the underlying concepts for the design of the transcription tool will be
presented. In the subsequent chapters the used database and the different parts of
the transcription tool will be described.

3.1 The idea

The idea for the design of the transcription tool is inspired by the technique of
concatenative speech synthesis [16]. In concatenative synthesis speech samples are
stored in a database. For the synthesis of a new utterance the proper audio samples
are chosen from the database according to their transcription. They are concate-
nated in order to form the new utterance. For the phonetic transcription this pro-
cedure is inversed: To transcribe the audio sample of a new word, the database is
searched for similar audio segments. Then the best matching segments are chosen
and their transcription are concatenated to a new transcription. A similar technique
is used in so called translation memory systems [17,18]. These systems assist trans-
lators by proposing translation chunks for a text that has to be translated. For this
purpose segments from the text are searched in a database that contains finished
translations. If a matching segment exists, it is presented to the translator who can
use it, change it or create a new translation. New translations are stored in the
database and thus it will be enhanced. This feature is also useful for a transcription

15
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tool: Automatic transcriptions can be created and then validated or corrected by
a human transcriber. These approved transcriptions can be added to the database
what makes an improvement and an adaptation, e.g., to different speakers, speaker
styles or regional variants possible.

3.2 No modeling, just data

To find a matching audio segment in the database a pattern comparison between the
new audio sample and the samples in the database is necessary. Most current speech
recognition systems realize this task by comparing the new audio sample to a model
that has been established in a training step. Normally this is done by using HMMs
(for more detailed information see for example [19,11]). Although they are known to
have certain weaknesses they are the dominant technique for speech recognition. The
main disadvantage of HMMs is that the data is generalized to form a compact model,
thus useful information like long-span time dependencies and speaker information
gets lost [20,21]. A completely different approach was proposed by de Wachter et
al. [20,22]. Instead of creating a model, pattern comparison is done straight from
the data according to the motto: “no modeling, just data” [20]. This approach is
called example-based or template-based speech recognition, where the underlying
technique is the dynamic time warping algorithm (DTW) [12]. When using a large
vocabulary, a constraint of this approach is the explosion of the search space. The
extent of the search space can be reduced by applying a candidate selection that
chooses potentially interesting speech samples [20].

3.3 The basics for the new transcription tool

The new transcription tool was designed to produce high detailed transcriptions for
Austrian German as the used corpus is taken from the ADABA database [23,24].
The tool should not only recognize the basic phonemes used in Austrian German
but also the diacritics contained in the transcriptions of ADABA. This is a main
difference to many speech recognizers or transcription tools as in most cases the tran-
scription is rather broad. At the beginning it was not clear if the DTW-algorithm
would be able to distinguish speech segments at such a high degree of detail. For
simplification the first version of the tool is speaker dependent, i.e. it has only been
implemented and tested for one speaker. The different units for the realization are on
the one hand derived from concatenative speech synthesis (the synthesis of segments)
and on the other hand from template-based speech recognition (pattern comparison
with DTW). The new transcription system and the system for template-based speech
recognition have the dynamic time warping algorithm in common, while the imple-
mentation of the other parts is quite different. In case of the automatic transcriber
the segments in the database are triphones. In the implementations presented by
de Wachter et al. monophones are used. However they point out that it is also
possible to use longer segments or even combine templates of different length in one
speech recognizer [22]. The candidate selection for the APT tool uses orthographic
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input in combination with a look up table (LUT). In template-based ASR the can-
didate selection is based on more elaborate algorithms (k-nearest neighbor selection
combined with time filtering [20,22]).

HMM parameters AQUARELL Triphone database AQUARELL
AT TN AT TN
. . silak  mafinp
488’8* Ylterbl dilak DTW
—-8—-8—-8—» alignment Kap Apiwae
kap ¢
' » | Synthesis

’akvalReol’ ¢

’7akvalReol’

Figure 3.1: Schematic comparison of the model-based forced alignment approach (left)
and the new template-based approach (right) for the automatic phonetic transcription of
the word ’Aquarell’.

In chapter 4 the properties of the recordings and transcriptions of the ADABA
will be described. Then in chapter 5 the realization of the new tool for automatic
phonetic transcription is presented.



Chapter 4

The ADABA speech corpus

ADABA is a pronunciation database for Austrian German. It resulted from the
project “Varieties of Austrian German - Standard pronunciation and varieties of
standard pronunciation” that was conducted by Rudolf Muhr from 2000 to 2007.
ADABA provides the first representative corpus of spoken Austrian German, one of
the three major varieties of German [23,24].

4.1 Contents of the ADABA

ADABA contains recordings of six speakers, one male and one female each from
Austria, Germany and Switzerland. The aim was to investigate and demonstrate
the differences in the pronunciations of the Austrian, German and Swiss speakers.
Each speaker read a list of 12 964 single or multi word utterances which resulted in a
total number of 75 964 audio files'!. The word list was composed from the following
sources [25,23]:

1. Basic vocabulary: 4854 words from the word list of the Austrian Language
Diploma, which constitutes a basic vocabulary for learners of Austrian German
as a foreign language.

2. Frequent word forms: 5540 of the 10 000 most frequent word forms from the
project “Deutscher Wortschatz” of the University of Leipzig.

3. Frequent word forms: A selection of the 30 000 most frequent word forms form
the “Institut fiir Deutsche Sprache” in Mannheim.

4. Phonetically rich words: 753 of 1540 phonetically rich words proposed by
Werner Konig. The list contains rare and phonetically complex words.

5. Frequent loan and foreign words: A selection of 2500 words from the Duden
Dictionary of foreign words.

1Some of the words are contained in the database twice due to different pronunciation variants.
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After elimination of entries that appeared more than once the result was first a
list of 13645 entries, later this list was reduced to 12 964 words due to difficulties
concerning the quality of the recordings.

The speakers are all trained speakers from broadcasting companies. For the
recordings the speakers had no special instructions regarding the pronunciation ex-
cept to realize the utterances that same way as they would do during their work.
This should guarantee a uniform context for all speakers and enforce the naturalness
and the representativeness of the pronunciation.

In addition to the word list that was read by six speakers ADABA contains
further speech material. As this was not used for the automatic phonetic transcrip-
tion this will not be discussed further here, more information can be found in [25]
and [23].

4.2 The transcription process

The entire audio data of the six speakers was transcribed three times. This could
only be done with much time and effort. In total 17 transcribers worked on the
transcriptions at different times. Because of the great amount of data and the
number of involved persons it is clear that during the transcription process variation
occurs between the transcribers as well as between the different transcriptions of
one person. Three iterations were necessary in oder to reduce inter-transcriber and
intra-transcriber variation.

The transcriptions in ADABA represent the average realizations of the individual
speakers as well as the realizations in the different national varieties. In some cases
the actual pronunciation may vary slightly from the transcription due to following
reasons: Each transcription should not only map the absolute phonetic content but
should also be posed in the right relation to the realizations of the other speakers.
Definitions concerning the whole corpus were necessary to make a distinction be-
tween the varieties possible. Another problem is that the differences between the
pronunciations of the six speakers sometimes are diminishing. The question what
differences should be considered and where to set the boundaries between differ-
ent phonetic realizations had to be answered. Furthermore the symbols of the IPA
proved insufficient in some special cases like e.g., the transcription of the different
/r/-realizations and the different schwa-variants. These reasons led to the definition
of an average transcription [25].

One further important consideration during the transcription process was the
need for comprehensibility and reproducibility. A too narrow transcription was
considered as not meaningful, as the potential user of ADABA was assumed to have
an average knowledge of phonetics and a narrow transcription necessitates a great
number of diacritics. The use of many diacritics would have resulted in a higher
amount of time and further decreased the understandability of the transcriptions.
As a tradeoff the number of diacritics was limited. However they were used to mark
slight but relevant differences of pronunciation to ensure a correct description of the
pronunciations.



CHAPTER 4. THE ADABA SPEECH CORPUS 20

4.3 The used symbol set

The symbol set used in the ADABA is based on the IPA symbol inventory [26].
Some further symbols and symbol combinations are added to the standard symbols
to model certain specific pronunciation characteristics. These symbols and their
explanations can be found in [25].

For machine-aided processing the transcriptions were exported from ADABA in
SAMPA format as this form is easier to handle. The phoneme set is an extended
version of the standard SAMPA symbol set, SAMPA AUSTRIA proposed by Muhr
(see [24] for details).

4.4 Technical Details

As described earlier ADABA contains 75 964 audio files, most are recordings of one
word, some of multiple words. The recordings in the published version of ADABA
are available in the ogg file format (8 kHz sampling frequency, compressed). For
research purposes, Muhr provided the recordings in wav file format with 44.1 kHz
sampling frequency. The recordings were conducted in a recording studio of the
Institute of Electronic Music and Acoustics (IEM) at the University of Music and
Dramatic Arts Graz. They offer a high quality so they were considered to serve the
purpose of highly detailed transcription.

For the research on automatic transcription the recordings of the Austrian male
speaker were used, only some audio files were excluded for technical reasons. All in
all 12 728 audio files were involved in the training, development and testing process,
the total duration of all files is about five hours.

4.5 Tests and modifications of the ADABA tran-
scriptions

Muhr proposes a basic phoneme set of 22 consonants and 14 vowels for Austrian
German [25]. However with the diacritics taken into consideration the transcrip-
tions of the Austrian male speaker showed a much higher variety. As some phones
occurred only rarely the following strategy was applied: First a test for all tran-
scriptions was performed to validate if all symbols indeed are phonetic symbols and
are not included erroneously. Then the resulting phoneme set was reduced either
by mapping infrequent symbols to frequent ones or by exclusion of some words that
contain rare phonemes.
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4.6 Testing of phoneme symbols

A list of the occurring phoneme symbols in all transcriptions belonging to the Aus-
trian pronunciation dataset? was generated and then manually checked. In addition
to the symbols belonging to the extended phoneme set with diacritics other symbols
or combinations of symbols were found that clearly dated from errors in the tran-
scription or from formal errors (like annotations included in the transcriptions or a
wrong transcription format). All found errors were corrected; the modifications are
documented in [27]. This initial analysis led to substantial feedback to the authors
of ADABA which will be considered for future releases.

4.7 Modifications

After the correction of the incorrect symbols, again a list containing all phonemes
of the Austrian corpus was created. This list contained 128 phonemes, 32 of them
occurred only once and 7 only twice. As a phoneme that occurs only once or twice
in a corpus is not representative for a language, modifications were carried out to
eliminate these phonemes. Another reason was that it was planned to segment the
audio data with the aid of HMMs and a statistical model that is estimated from
only one or two examples is not robust against variation. The modifications were
realized the following way: Either the transcription was modified in a way that it
became similar to a transcription with the same or a similar phonetic content, e.g.:

’ Word \ Phoneme \ Transcription \ Modification \ Comment ‘
| diion | [y0] | ['dyOn] | ["dyn]l [ as hauchdinn |

Table 4.1: Example for a phone modification

In some other cases no modifications were applied because the transcription occurred
only in the dictionary and there was no file in the audio corpus. Furthermore, for
some transcriptions no modifications were realized because no similar transcription
was found. This concerned mainly loan or foreign words that contain phonemes that
are not typical for the German language, two examples are shown in table 4.2.

’ Word ‘ Phoneme | Transcription ‘
commonwealth [T] [ko_om@n" ve _0lT]
tagliatelle [1_j] [tal_jia"te_ol@]

Table 4.2: Examples for excluded words

The [T] in commonwealth clearly does not belong to the German phoneme inventory,
neither does the [1_j] in tagliatelle3. In total 14 words were excluded for this reason.

2In the pronunciation dictionary of ADABA there are further entries without recordings.
3The corresponding IPA symbols are [0] and [1'], respectively.
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Finally the list of occurring phonemes could be reduced to 89. This is still a high
number if compared to the number of phonemes considered normally for German
(about 45, see [28]) in other speech communication tasks like recognition. Therefore
a question from the beginning of the project was if the transcription task was at all
possible with this high number of phonemes or if a reduction was necessary to achieve
a reasonable performance. The results that answer this question are discussed in
section 6.2.4.



Chapter 5

The Transcriptor

The transcriptor is a new tool for the automatic creation of highly detailed phonetic
transcriptions. In this chapter the different parts of the transcription framework are
described in detail. Several steps were necessary to implement the tool:

e The audio data from the database was segmented and integrated in a database.

e A candidate selection for the segments that are passed to the pattern compar-
ison was realized.

e The algorithm for the pattern comparison was chosen and implemented.
e A synthesis procedure to create the new transcription was developed.

Some of these steps were realized using well-known algorithms or already existing
tools, others were done in a rather experimental manner.

5.1 Establishing the internal database

In concatenative speech synthesis, speech segments from a database are combined
to synthesize new speech utterances. For the transcription tool, the database should
contain transcription segments that are combined to the transcription of a new audio
sample. To find the most appropriate transcription units in the database a pattern
comparison between the audio sample of the new word and the triphones in the
database is performed!. Then the transcriptions of the best matching triphones are
synthesized to the transcription of the new word.

The units used in speech synthesis are e.g., words, syllables, triphones, biphones
or monophones [16]. A different approach is to use segments of different lengths.
First, an approach with different length segments was discussed for this work, but to
keep it simpler segments with a fixed number of phones were chosen. It was decided
to take triphones as tradeoff between length and number of examples. Long segments
have the advantage that they are normally more natural than the concatenations

'More precisely, the comparison is not done for each triphone but a choice retrieved from the
candidate selection.
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of short segments. On the other hand with short segments the number of examples
per segment is high and thus many comparisons are necessary. The selection of
triphones was inspired by a technique applied in concatenative synthesis: There
segments often are cut in the middle of the phones because this is the steadiest part.
By doing so the transitions between the phones are kept, whereas a concatenation
at the transitions would increase the risk of distortions [16]. In our approach the
segments are cut at the phone boundaries, but taking triphones ensures that the
middle phone is kept with all transitions. The concatenation of the transcriptions
is performed in an overlapping manner, thus the first and the third phone in a
transcription serve as concatenation point.

To establish the database, both the audio samples from the data and the tran-
scriptions had to be segmented into triphones and then joined in a data structure
that can be accessed by the pattern comparison algorithm. This data structure will
be called the internal database.

The steps that had to be performed for the creation of the database are explained
in the following sections.

5.1.1 Segmentation of the audio data

For the segmentation of the audio samples the Hidden Markov Toolkit (HTK) by
the University of Cambridge [19] was used. The realized steps were:

Creating the dictionary

Extracting the features

Training the Hidden Markov Models (HMMs)

Aligning the audio data

e Segmenting the audio data into triphones

Creating the dictionary

For the training of the HMMs HTK needs a dictionary or lexicon that contains
the phonetic transcriptions of all words that occur in the training corpus. This
dictionary has to be in the following form:

AACHEN ax 0bsn

AAL al

AAS as

AB arp

ABBAU apapro

ABBAUEN apbapro@bsn
ABBIEGEN a p

big@n
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The ADABA database provides a feature to export all transcriptions in the database
in a text file?, however the entries in the file are in a quite different form than those
needed for HTK, as can be seen here:

Aachen [0];[[a:x@\n]]/[[a:xN=]]

Aal [0];[[a:1]]

Aas [0];[[a:s]]

ab [0]; [[ap]]

Abbau [0]; [["ap_(pa_(o]]/[[ap’"ba_(o]]
abbauen [0]; [[ap"ba_(0.@\n]]l/[[...ba (on=]]
abbiegen [0];[[ap”"bi:g0n]]/[[..bi:gN=]]

absoiut giiltig [0];[["apsolu:t gyltik]]1-[[..tiC]]/
[[apso”lu:t ...]]1-[[..iC]]

These transcriptions are from the two Austrian speakers. Transcriptions before the
slash are transcriptions of the utterances of the male speaker and transcriptions
after the slash are those for the female speaker. The hyphen denotes that there are
two pronunciation variants that have to be split into two separate entries.

To convert the exported transcriptions to a HTK-compatible form, they were
formatted with Perl scripts. The realized tasks were: Extraction of the words and
transcriptions of the Austrian male speaker, splitting of entries with multiple pro-
nunciation variants, formatting of the words, simplification of the transcriptions,
insertion of spaces between the phonetic symbols, substitution of symbols that are
not compatible with HTK, and checking of all occurring phones. The following two
examples illustrate the steps to create the new lexicon.

Example 1:

absolut giiltig [0];[["apsolu:t gyltik]]-[[..tiC]1/
[[apso”lu:t ...]]1-[[..iC]]

¢ Simplification

absolut giiltig ["apsolu:t gyltik]-[..tiC]/[apso”lu:t ...]-[..iC]
l Extraction

absolut giiltig ["apsolu:t gyltik]-[..tiC]
l Splitting of pronunciation variants

absolut giiltig ["apsolu:t gyltik]
absolut giiltig ["apsolu:t gyltiCl

2This file was used to check the number of occurring phones as described in the previous chapter.
For all tasks here the file with the already limited phoneme set was taken.
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¢ Formatting

ABSOLUT GUELTIG apsolutgylticC
ABSOLUTGUELTIG apsolutgy ltik

Example 2:
abbauen [0]; [[ap"ba_(0.@\n]]l/[[...ba (on=]]

$ Simplification
abbauen [ap'ba_(0.@\nl/[...ba (on=]

$ Extraction
abbauen [ap”ba_(o.@\n]

l Formatting
ABBAUEN a p b a ( o @\n

$ Formatting for HTK
ABBAUEN a p b apr o @bs n

For the simplification of the transcriptions all stress markers, the length markers,
and the symbol for a syllable break were deleted, see also table 5.1.

| | IPA symbol | SAMPA Austria symbol |

Primary stress

Secondary stress , %
Long ! ;
Half-long . \

Syllable break

Table 5.1: Discarded phonetic symbols

The resulting symbol set contains only symbols for phonemes and diacritics. The
diacritics are always treated in combination with one phonetic symbol. This leads
to a final phoneme set of 89 symbols.

Some of the SAMPA symbols are not compatible with HTK, so they were sub-
stituted by combinations of letters. Table 5.2 shows all the modifications®.

Finally all occurring phone symbols were listed to validate that all of them rep-
resent a phoneme. Non-valid phone symbols were corrected as described in section
4.6 before the dictionary was created again.

3Note: The backslash occurs in combination with various symbols in the SAMPA notation.
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’ IPA symbol \ SAMPA Austria symbol \ Substitution ‘

5 2 ;)
3 3 #3
v 6 #6
e 9 #9
[var] [var]\ [var]_bs
- ( pr
. + -pl
‘ — Sy
’ > _€j

Table 5.2: Substituted phonetic symbols

Extracting the features

The feature extraction was done with the HTK-tool HCopy, the chosen features
are Mel Frequency Cepstral Coefficients (MFCCs) which are widely used in speech
communication [12]. For every audio sample that is proposed in a list, HCopy creates
a file with MFCCs, the encoding was done for each recording of the Austrian male
speaker.

The settings for the MFCCs were the basic settings proposed in the HTK
book [19]. The number of extracted coefficients is 12 plus the overall energy, which
leads to 13 parameters per frame. The filterbank has 26 channels and the frames
have a distance of 10 ms. No delta and acceleration coefficients were calculated.
Delta and acceleration coefficients could improve the results, however for the basic
implementation they were not used to restrict the memory requirements.

Training the HMMs

In the next step the HMMs were trained, this was done with the HTK-tool HERest.
The HMMs are monophone HMMs with five states and single Gaussian probability
distributions. The flat start approach was applied for training, as the training data
is not segmented with timestamps. This means that initially, HMMs with identical
parameters for mean and variance are used for each phone. Then the HMMs are
retrained (see also section 3.2 [19]). The reestimation was performed five times.

Aligning the audio data

The main purpose of the alignment is to determine the phone boundaries to subse-
quently cut the audio samples. Additionally, the forced alignment procedure finds
the actual pronunciation of an utterance if multiple pronunciation variants are avail-
able in the dictionary. This is normally used for a bootstrap process: First models
are trained with one fixed pronunciation per word, and then the alignment is em-
ployed to find the best matching pronunciation in the dictionary. For further use
the models can be retrained by using the new phone level transcriptions.
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The dictionary retrieved from ADABA contains several words with multiple pro-
nunciation variants. Accordingly, some words or utterances are recorded twice with
different pronunciations. As it was unknown initially which audio file belonged to
which transcription in the lexicon, the forced alignment had to be applied.

For the Austrian male speaker 256 words with each two different recordings were
found. Before the forced alignment two audio files with different pronunciations are
assigned with the same transcription. After the forced alignment 178 words have
different transcriptions for the different variants, 78 words remain with the same
transcription for the two audio samples.

This means that the alignment does not yield optimal results as words that are
intended to be transcribed differently are not recognized to be different. The pronun-
ciation variants mostly concern the pronunciation of the suffix -ig’. The Austrian
speakers sometimes pronounce it as [i¢] and sometimes as [ik]. The pronunciation
li¢] is preferred by the recognizer. Ome possible reason is that the models are not
properly trained to provide a good discrimination. This may be explained by the
fact that the transcriptions with [i¢] occur before [ik] in the dictionary. During the
bootstrap process the transcriptions with [i¢] are chosen for both types of audio files
and therefore the model for [¢] is also trained with data from [k]. In other words,
the model for [¢] may be contaminated. However, further tests would be necessary
to prove this assumption.

The aligning of the audio data was realized by using the HTK-tool HVite. After
the forced alignment step the phone level transcription can be retrieved with the
phoneme boundaries as shown in the example below.

“/AACHEN__AT M_1.1ab"
0 700000 sil

700000 2300000 a
2300000 3800000 x
3800000 4600000 @_bs
4600000 6500000 n
6500000 9400000 sil

All new phone level transcriptions with the time stamps are stored in the file
aligned.mlf, which will be used in the next step.

Segmenting the audio data into triphones

With the help of aligned.mlf as a result from the forced alignment step the audio
samples can be cut into triphones. To get all possible phone sequences the words
were split into overlapping triphones. This is done by again using HCopy that
can use the time stamps in the file aligned.mlf to cut segments out of the audio
samples. For this purpose the file aligned.mlf has to be passed to HCopy, with
the option -n i [j] the number of the phones that should be cut can be defined
(e.g. with -n 1 3 the segment from phone 1 to 3 will be cut).
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To automate this procedure some processing had to be done beforehand. The
transcriptions of all words were analyzed to find the number of phones in each
transcription. Then several lists were generated, each containing all words with
a certain minimum number of phones. From these lists a second set of lists was
produced. These specify the words that can be cut at a certain phone position. Each
list is used for one segment position. For example, the list of words that should be
cut at the phone positions 3 to 5 contains all words with at least 5 phones. After
that, a script was generated that calls HCopy for each possible segment (e.g. the
segment with phone 1 to 3, phone 2 to 4 etc.). With this final script all possible
segments for all words were produced in one step.

5.1.2 Segmentation of the transcriptions

HCopy provides an additional useful feature: it is possible to output the transcrip-
tions of the new segments in a so-called master label file. This was done in every
call of HCopy. As it is not preferable to have several files with transcriptions, the
master label files were combined in one file for further use.

5.1.3 Creation of the database

After the establishing of both the audio and the transcription segments, a database
that can be accessed by the pattern comparison algorithm was created. As working
environment Matlab was chosen. To establish the database, the feature files from
HTK and the corresponding transcriptions in the master label file had to be imported
into Matlab. The procedure was realized as follows: First the name of the segment,
its reference transcription and an intermediate transcription, which I will refer to
later, is saved in a Matlab cell array. Then for each segment the corresponding
feature file is searched in a specified directory, is read and the coefficients are stored
in the Matlab cell array. The reading process is done by using the file readmfc.m
that extracts the MFCCs from the feature file and returns them in a matrix.
The resulting data structure is the following:

Filename Referc?nc‘e ]ntermgdiqte MFCCs
transcription | transcription
AACHEN__01-03.mfc sil a x’ 'sil a x’ <13x38 double>
AACHEN_02-04.mfc | ’ax @Q_bs’ a x n_sy’ <13x39 double>

AACHEN_03-05.mfc | ’'x @_bs n’ 'x nsy sil’ | <13x42 double>

Table 5.3: Internal triphone database

The mentioned intermediate transcription is necessary for the candidate selection
which will be explained in the next section.
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5.2 Candidate selection

The triphone database contains about 79 500 entries, this leads to a search space
of impracticable size. Informal tests showed that on a standard PC about 300 com-
parisons per minute are executed, this means that the transcriptions process for one
word would need approximately 4.5 hours on this machine. For this reason a candi-
date selection was implemented, that proposes probably matching segments to the
pattern comparison algorithm. This mechanism reduces the number of comparisons
and makes the transcription process faster.

The candidate selection is based on the creation of a rough automatic tran-
scription (in the remainder called intermediate transcription) that is based on the
orthographic representation of the word. This means that for all triphones in the
database and for each new word that has to be transcribed the orthographic rep-
resentation has to be known. For the segments in the database this is known (the
word is a part of the filename integrated in the database to maintain a maximum
of possible information from the data extracted from ADABA). For a new word
this information has to be provided by the user. This is a small limitation of the
method, however for other approaches like forced alignment this information has to
be known too.

5.2.1 Implementation

Int diat . — Look | — i
— ! erm§ L.%L ¢ L Segmentation |: 00 : Triphone
transcription —»{ up —

LU-Table

Figure 5.1: The candidate selection during the transcription process is realized by the
creation of an intermediate transcription, its segmentation into triphones and a look-up
for promising candidate triphones that are then passed to the pattern comparison unit.

The implementation of the candidate selection consists of two parts: In course
of the creation of the internal database all triphones in the database have to be
associated with a triphone derived from the intermediate transcription of the cor-
responding word. Then during the transcription process the following procedure is
applied (see figure 5.1): For each new word the intermediate transcription has to
be created and segmented into triphones. Then identical triphones are searched in
a look up table that contains indices to the triphones in the database. For each
segment of the intermediate transcription a list of identical triphones is passed to
the pattern comparison unit.
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5.2.2 Creation of the intermediate transcription

The intermediate transcription is derived with a rule-based grapheme to phoneme
conversion. For the triphones in the database that intermediate transcription has to
be created from the whole word and not from the triphone itself as the context of
the letters in the word has to be taken into consideration. So the intermediate tran-
scription is created from the word, then segmented and associated to the triphones
of the reference transcriptions in the database (see next section).

The rule set is derived from the results of the project “Varieties of Austrian
German - Standard pronunciation and varieties of standard pronunciation” (see
also [23]). The applied rules work with a smaller phoneme set than that of the refer-
ence transcription to reduce the complexity. The rules were optimized to fit the data
of the Austrian male speaker, as this first implementation is restricted to a single
speaker. For the optimization the intermediate transcriptions were compared with
simplified reference transcriptions that use only symbols from the reduced phoneme
set. The number of correctly converted phones was computed for each rule. For
those rules where two conversions were possible, the rule that yielded more correct
phones was taken. For optimization a simple tool that computes the number of
correctly transcribed phones after the application of a certain rule was used. A
preliminary analysis showed that about 50% of the resulting intermediate transcrip-
tions are identical with the simplified reference transcriptions. Future modifications
could include a more sophisticated optimization process or a more detailed rule set.
Another possibility is the integration of an existing grapheme to phoneme converter.

5.2.3 Alignment of the transcription segments

After the creation of the intermediate transcriptions for the internal database an-
other problem had to be solved: The intermediate and reference transcriptions are
not always of the same length, thus if both are segmented there are some segments
that have no equivalent in the other transcription. For this reason an alignment
procedure between the segments of the intermediate transcription and the segments
of the reference transcription was realized. This was done by implementing a simple
dynamic programming algorithm. For each segment the Levenshtein distance (see
section 6.1.1) to all segments of the other transcription is calculated. Then the best
path through the distance matrix and the alignment between the segments of the
intermediate transcription and the reference transcription are computed. As result
a list with the name of the segment, the segment of the reference transcription and
the segment of the intermediate transcription as shown below is produced.

AACHEN_ 01-03.mfc sil a x sil a x
AACHEN__ 02-04.mfc a x Q@bs a X n.sy
AACHEN__03-05.mfc x @bs n X n_sy sil
AACHEN__ 04-06.mfc @bs n sil x n_sy sil
AAL__01-03.mfc sil a 1l sil a 1
AAL__02-04.mfc al sil a1l sil
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This list is imported in Matlab to build the internal database, as described in section
5.1.3.

To ensure that the candidate selection passes a reasonable choice of triphones to
the pattern comparison unit it was tested, the results follow in section 6.1.2.

5.3 Pattern comparison

In order to find the most similar triphones in the database for a new word a pattern
comparison algorithm was implemented. In the next two sections some theoretical
considerations for pattern comparison will be discussed. These sections are a short
summary of the excellent treatise on pattern comparison by Rabiner and Juang
[12]. After the theoretical parts the implemented algorithms and the details of the
implementation will be presented.

5.3.1 Basic considerations

Pattern comparison can be done in many ways, the goal is to find a mathematical
representation for the similarity between two speech patterns that is subjectively
meaningful. This means that there has to be a correlation between the numerical
value of the distance and the subjectively perceived distance of two compared speech
patterns [12].

The approach chosen here is pattern-based (or equivalently, template-based [22])
meaning that the speech is represented by a time sequence of feature vectors. Thus
if we have a new word we get a test pattern 7

T = {t17t27t37"'7t1}

with t; representing a feature vector at the time 7 and the total number of frames
of speech I. Further we define a set of reference patterns {R', R?,..., RV}, each
reference pattern is also represented by a sequence of feature vectors

RI={r] r] ... 1)}

The aim is to compute a value for the dissimilarity, also referred to as distance,
between the test pattern 7 and each reference pattern R to find the reference
pattern with the minimum dissimilarity. In case of the phonetic transcription, the
transcription of this reference pattern is then taken for the synthesis of the new
transcription?.

Problems that occur when searching the global dissimilarity of two patterns are
as follows:

e Normally the test and reference patterns are not of the same length.

4More precisely, for each word the pattern comparison process is performed several times as the
new transcription is established from several segments
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e The patterns might not line up in a simple manner, as different sounds may
vary in duration to a different degree.

e To determine the global dissimilarity of two audio samples it is necessary to
evaluate the local dissimilarity between pairs of their feature vectors.

Thus for comparison a local dissimilarity measure and a global technique for time
alignment is needed, with that a global dissimilarity measure can be determined by
the accumulated local distances between the feature vectors in the time-aligned
patterns [12].

One solution that can handle the described problems is the application of the
dynamic time warping algorithm: Starting from the local distances between the
feature vectors an optimal alignment is computed by minimizing the accumulated
local distance. The accumulated distance from the best alignment is then taken
as measure for the global dissimilarity. In the next section the problem of time
alignment and normalization will be discussed. Then the general dynamic time
warping algorithm and a modified version will be presented. The details of the
underlying dynamic programming technique can be found in [12].

5.3.2 Time alignment and normalization

Different samples of the same speech utterance are rarely realized at the same speak-
ing rate. However, when two utterances or tokens of utterances are compared, the
dissimilarity neither should be influenced by speaking rate variation nor by dura-
tion variation. Hence a time normalization has to be performed to ensure that the
dissimilarity measure provides a meaningful result.

As an example, take two speech patterns X' and )). These patterns are defined
by their sequences of feature vectors (x1,Xs, ..., %7, ) and (y1,y2,...,yr,), Where x;
and y; are the feature vectors at the time 7, and 4,, respectively. The dissimilarity
between X and ) is calculated with the aid of the short-time spectral distances®
d(x;,,yi,), in a simpler notation d(iy, i,), with i, = 1,2,..., T, and i, = 1,2,...,T,.
The spectral distance can be measured in several ways, for more details see section
4.5 in [12].

The sequential order of a speech pattern provides important information and
thus may only be changed to a certain degree. When comparing the spectral pairs
d(x;,,yi,) the indices must obey specific order constraints. For example the temporal
order of the feature vectors should be kept and during the alignment the modification
of the time axis (the “warping”) should not exceed a certain limit.

One simple solution for the problem of time alignment is a linear time normal-
ization method. However this is not very meaningful, as a linear alignment assumes
that the time variation is independent of the produced sound. This is not the case
in reality, where different sounds vary in duration to a different degree.

5or distortions
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A more general approach is to use two warping functions ¢, and ¢,, which
normalize the indices ¢, and i, of two speech patterns to a common time axis :

iy = 60 (k) (5.1)
and

iy = ¢y(k). (5.2)
Based on these warping functions a measure for the global pattern dissimilarity
dy(X,)) can be defined as the accumulated distance over the whole utterance

do(X,Y) = Y d(du(k), by (k))m(k) /M. (5-3)

Here d(¢.(k), ¢,(k)) is the short-time spectral distance between x, and y,, m(k)
denotes a weighting coefficient and My is a normalization factor.

Finally what is missing for the definition of a dissimilarity between X and Y
is the specification of the path ¢ = (¢,,¢,). As the number of possible paths is
large, the task of finding an appropriate warping function to determine the global
dissimilarity is of crucial importance and has to be done properly.

One popular approach is to minimize d, (X, )) over all possible paths and define
the dissimilarity between X and ), denoted as d(X,)), such that

A(X,Y) = mindy(X, ). (5.4)

where ¢ is restricted by certain conditions, that will be discussed in the following
section.

This definition of d(X,)) seems intuitively meaningful when X and ) provide
utterances of the same word. Choosing the path with the minimum accumulated
distance means that the dissimilarity is evaluated along the path that results in the
best alignment [12].

Time-normalization constraints

For a reasonable alignment of two speech utterances the application of some con-
straints to the warping algorithm is recommended. These are [12]:

e endpoint constraints

e monotonicity constraints

local continuity constraints

global path constraints

slope weighting.

For the implementation of the algorithm for time alignment not all of these con-
straints are indeed necessary, see section 5.3.3 for the details of the implementation.
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Endpoint constraints When isolated tokens of speech utterances are compared,
the endpoints of the token usually define the beginning and the endpoint of the
pattern. For time normalization the variations only within these endpoints are
considered. This leads to the following set of constraints for the warping function:

beginning point  ¢,(1) =1, oy(1) =1 (5.5)
ending point 0.(T) =Ty, ¢y(T)=T,. (5.6)

In some situations, e.g., noisy environments, the endpoints may not be reliably
determined. In this case the above constraints have to be relaxed.

Monotonicity constraints For speech utterances the temporal order is of ex-
treme importance to the linguistic meaning. For example, the two words “we” and
“you” provide spectral sequences that are almost time-reversed. If no constraints
for the warping function are given and time reversal is allowed, the computed dis-
similarity of these two utterances would be small, what obviously is not meaningful
for the speech comparison. Therefore it is useful to set a monotonicity constraint to
keep the correct temporal order of a feature sequence, such that

bulk +1) > 6, (k) (5.7)
byl +1) = 6,(). (5.8)

This means that any allowed path in the distance matrix has no negative slope thus
time-reversed warping is not possible.

Local path constraints For the correct recognition or transcription of a word the
presence or absence of a particular sound (or phone) is often crucial. For this reason
such an important sound should not be omitted during the time alignment. This
can be ensured by imposing a set of local continuity constraints. The constraints
can take many forms, one example is:

Go(k +1) — ¢a(k) <1 (5.9)
¢y(k +1) — ¢y (k) < 1 (5.10)

A more convenient form of representation is to define a path as a sequence of steps
each given by a pair of coordinate increments, such as

P — (p,q1), (p2,2) - - - (prs qr) (5.11)

Then the possible paths can be easily depicted by a graph as for example the three
paths P; — (1,1)(1,0), P, — (1,1) and P3 — (1,1)(0, 1)in figure 5.2. Figure 5.3
shows three examples of the local continuity constraints proposed by Rabiner and
Juang [12].

The best local continuity constraint for a certain application cannot be determined
analytically, as it is complicated to model the speaking rate and duration changes
in speech. Therefore the best continuity constraint for a special purpose can only
be found experimentally.
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P, 7)1 ( ) )( ) )
P2 P2 - (17 1)
P3
. . Ps — (17 1)(0, 1)

Figure 5.2: Example for local continuity
constraints [12]

Py Ps
Py — (1,1)(1,0)
II 7)2 — (1, 1)
Pr P Ps — (1,1)(0,1)
[ ] 7)3 ]
731 — (2, 1)
111 Py — (1,1)
P3 — (17 2)

Figure 5.3: Local constraints and the resulting
path specifications

Slope weighting Slope weighting is another possibility of controlling the search
for an optimal time alignment. As can be seen in equation 5.3 the weighting function
m(k) determines the contribution of each local distance to the overall distance. The
weighting function can either be used on a “global” scale or on a “local” scale. The
first will not be discussed longer here (see [12]), as only the latter is of importance
in the currently realized system. On the “local” scale the weighting function can be
combined with the local path constraints, that way a preference for the paths that
are allowed locally is implemented. Normally these weighting functions are referred
to as slope weighting functions because of their relation to the slope of the local
path constraints.

Similar to the path constraints many heuristic slope weighting functions can be
applied. The following set of slope weighting functions was presented by Sakoe and
Chiba [12]:
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Type (a) m(k) = minf[¢,(k) — du(k — 1), ¢, (k) — ¢y(k —1)]  (5.12)
Type (b) m(k) = max[p,(k) — da(k — 1), ¢y(k) — ¢y(k —1)]  (5.13)
Type (¢) m(k) = ¢u(k) — ¢u(k —1) (5.14)
Type (d) m(k) = ¢u(k) — du(k — 1) + ¢y(k) — ¢y (k — 1) (5.15)

Figure 5.4: Type III local continuity constraints
with four types of slope weighting [12]

The effect of applying slope weighting is demonstrated in figure 5.4. It shows the
Type III continuity constraints with the above four weighting functions. The number
along each path denotes the weighting value. Higher distances mark less favorable
or less likely paths, therefore a higher weighting value can be used to define less
preferable paths.

Normalization factor As normally speech patterns of different lengths are com-
pared, an overall normalization is necessary to get an average accumulated distance
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that is independent of the lengths of the compared patterns. For this reason an over-
all normalization factor My is used, whos value depends on the used slope weighting
type. Usually it is defined as follows

T
My => " m(k), (5.16)

k=1
so it equals the sum of the components of the weighting function. For the slope
weighting types (c) and (d) the normalization factors can be computed in the fol-

lowing way:

T

MY = S [6u(k) = ¢alk — 1)] = ¢(T) — 6,(0) = T, (5.17)
k=1
M = > [6a(k) — dulk — 1) + 6y (k) — ¢, (k — 1)]
— 6u(T) = 62(0) + 6 (T) — 6,(0) = Ty + T, (5.18)

They are independent of the best path and the chosen constraints. However the
normalization factor for the slope weighting functions of type (a) and (b) depends
on the actual path. This is not practicable when the search for the best path is
realized with a dynamic programming algorithm. For this reason an arbitrary but
meaningful normalization factor is taken that is independent of the actual warping
function. Thus for the slope weighting types (a) and (b) normally

a b
MY =MD =T, (5.19)

is chosen.

5.3.3 Dynamic time warping algorithm (DTW)

The dynamic time warping algorithm (DTW) provides a solution for the time align-
ment problem that implies the discussed constraints. The algorithm finds the best
path through a matrix containing the pairwise distances from two feature sequences
in order to derive the global distance between the two underlying speech patterns.
Assume a distance matrix of size T, by T, and let the path start at (1,1) and
end at (T3, T,), then the dynamic programming algorithm can be summarized as
follows [12]:

1. Initialization

Da(1,1) = d(1, 1)m(1).

D, is the matrix containing the accumulated local distances, so D4(1,1) is
the value for the accumulated local distance at point (1,1). m(1) is the slope
weighting factor.
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2. Recursion
For 1 <, <7T,,1 <14, <7, compute

D) = i D) + C((2 1) i),
z by

where D (i, i,) and Da(i},,i;,) denote the local accumulated local distance

in point (i,4,) and point (i, ), respectively. The term (((i}, ), (iz,iy))

represents the weighted accumulated distance between the points (i, 7,) and

(iz,iy), thus in each recursion step the point (i, ;) from which the point

(is,1,) can be reached with the minimum accumulated distance is searched.

3. Termination
Da (Tza Ty)
M )
where d(X,)) is the global pattern dissimilarity defined by the accumulated
local distance in point (7}, 7,) and normalized by the normalization factor M.

d(X,Y) =

Implementation Settings

For the implementation of the transcriptor several settings for the DTW algorithm
were tested. For the local path constraints the settings shown in figure 5.5 were
chosen. In our special case the comparison is done between two utterances with a
great difference in length, as a triphone is compared to a word (e.g., a triphone of
36 ms compared to a word of 103 ms as illustrated in figure 5.6). For this reason
the possible paths should not be restricted, with these settings the path can reach
every point in the distance matrix. For the same reason no global path constraints
were implemented. The endpoint constraints were neglected as the audio files were
assumed to be cut properly. As spectral distance measure the Euclidean distance
was used.

1

.

Figure 5.5: Implemented
slope weighting factors for the
DTW

To find the optimal implementation settings different slope weighting factors
and different values for the normalization factor were tried. The best settings were
achieved with the initial slope weighting factors as shown in figure 5.5 and with a
normalization to the length T, of the feature vector of the word (the results are
discussed in detail in section 6.2.3).

Figure 5.6 shows an example for the resulting distance matrix D, where the word
“Aquarell” and the triphone “sil a k” are compared. In figure 5.7 the matrix D4
with the accumulated distances and the best path found by the DTW are shown.
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Figure 5.6: Distance matrix D between the word “Aquarell”
and an example for the triphone “sil a k”; dark colors indicate low

distances and light colors high distances.

Accumulated distance

Segment 'sil a k’

20 40 60 80 100
Word 'Aquarell’
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L 13000
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Figure 5.7: Matrix D4 with accumulated distances, computed
between the word “Aquarell” and the same example for the tri-

phone “sil a k” as in figure 5.6; the line marks the best path.

40
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5.3.4 Segmental DTW

A variation of the dynamic time warping algorithm was proposed by Park and Glass
[29]. The algorithm called segmental DTW finds matching subsequences in pairs
of speech utterances. It was used for unsupervised word discovery in information
retrieval and speech segment clustering. However, this solution seems to be well
applicable on the problem of finding matching segments in the database for a new
word that has to be transcribed.

In standard DTW two utterances with possibly the same content (i.e. phones)
are aligned to determine a measure for the distance between them and to decide
whether the content is the same or not. However, this is not useful if matching
words within utterances composed of more words should be found. The segmental
DTW algorithm provides a solution for this problem.

As in standard DTW| a distance matrix with the pairwise distances between the
feature vector sequences is computed. Instead of searching the best path from point
(1,1) to point (T}, T,)) multiple paths with different beginning and ending points are
investigated. This is done by dividing the distance matrix into several overlapping
diagonal bands and then searching the best path within each of these bands. Figure
5.8 shows one band of a distance matrix as example. The overlapping bands serve
not only the purpose of allowing multiple alignments but also avoid an extreme
degree of warping that would overly distort the sub-utterances.

end point Distance
18
16 155
150
14
145
> 40
4
o 10
€ 35
£
T 8 30
)
25
6 L
[' 20
4 HH
H 15
dllil I 10
ﬁ 10 20 30 40 50 60 70 80 90 100
starting point Word 'Aquarell’

Figure 5.8: Distance matrix between the word “Aquarell” and
the triphone “a k v” with the minimum distance of all examples;
the dashed lines indicates the band with minimum distance, it can
be seen that within this band the distances are small.

Each resulting path is then trimmed by searching the least average subsequence
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with the minimum length L. The minimum length constraint is implemented to
avoid incorrect matches between short sub-sequences in two utterances. The sub-
sequence with the minimum average represents the part of the aligned path that
yields a good alignment.

The process results in one path fragment for each diagonal band in the distance
matrix. The path fragment with the smallest distance is taken as the best alignment
and the distance is used as the distance between the two initial speech utterances.

In the pattern comparison unit of the transcriptor a similar problem as described
by Park and Glass has to be solved: In one approach a triphone in a whole word
shall be identified, in the other a word in a longer speech utterance shall be found.
Obviously both approaches deal with the problem of finding a smaller sub-unit in
a speech pattern. Thus the segmental DTW was judged a meaningful solution
that might yield better results than the standard DTW. For this reason it was
implemented in addition to the normal DTW.

Implementation Settings

For the overlapping bands a width of 10 frames was chosen, this is equivalent to
a duration of 100 ms. The slope of the bands was defined to be 45 degree as the
two speech patterns were assumed to align roughly in a linear way. As local path
constraints the same constraints as for the standard DTW were implemented. For
simplicity the starting point and the end point in each sub-band were chosen to be
fixed, no search for an optimal path with a certain minimum length as proposed be
Park and Glass was realized. As starting point the leftmost possible point in the first
row of the sub-band was taken. The endpoint was defined as the rightmost point
in the last row (see figure 5.8). This might yield a result that is not optimal but
the error was assumed to be negligible, as all paths in the sub-bands had the same
starting and end point conditions and the possible influence of some suboptimal
local distances at the beginning and the end is small. As for the standard DTW the
Euclidean distance was used as distance measure.

For each comparison the band that provides the smallest accumulated distance
is found and its distance is taken as the global distance between the current triphone
and the new word.

The use of the segmental DTW is intuitively more meaningful than the use of
the DTW algorithm as not a whole word and a triphone are compared, but the
triphone is compared to a segment that is cut out of the whole word with the aid of
the sub-band.
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5.3.5 Implementation of the pattern comparison

Features of the

new word

Triphone Best

lists

triphones

silak afqp .

dlak Triphone
Kap ApAwye database
kap

Figure 5.9: The features of the triphones chosen by the
candidate selection are compared to the features of the new
word, the three best matching triphones for each segment of
the new word are passed to the synthesis unit.

For each new word that has to be transcribed, an intermediate transcription is
created from the orthographic representation and then segmented into triphones.
With these triphones the candidate triphones from the database are chosen by the
candidate selection unit as described in section 5.2.1. The audio data of all can-
didate segments is compared to the audio sample of the new word via the DTW
or segmental DTW algorithm. The resulting distances of the candidates for each
triphone are stored, ordered and the three segments with the least distances are
found. These segments and the corresponding distances are passed to the synthesis
unit to assemble the transcription for the new word.

Fallback strategy

Sometimes it may occur that a triphone is not present in the look up table, then
for this segment no candidates and obviously no best matching segments are found.
For this case a fallback strategy is implemented.

For the candidate selection a parameter that defines the minimum number of
candidates is given, the default value is set to three. If less than three candidates
or even no candidates are found, one of the three phonemes in the intermediate
transcription is replaced by its phone class then in another look up table the corre-
sponding candidates are searched. This is done for all three phonemes separately. If
still the necessary minimum number of candidates is not achieved, two phonemes at
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a time or even all three are replaced and the corresponding candidates are searched
with these specifications. The applied substitutions are summarized in table 5.4
(note that for trills there is only the symbol 'R’, thus no substitution is necessary).
The phone classes are derived from the IPA-chart [26].

Substituted symbols of

Phone class . . L
intermediate transcription

Plosive b,d, g k,t

Nasal N, N=, m, m=, n, n=
Fricative C,S,f, h, s v, x
Approximant j

Lateral approximant | 1, 1=

Vowel i’ 3,6,@\, @ a,a(e,io,

(7 p7 u?y

Table 5.4: Phone classes for the fallback strategy
If for some reason, e.g., an error in the orthographic representation, no candidate

at all is found the parameter that passes the segments to the transcription unit is
left empty.

5.4 Transcription synthesis

Best
triphones | = Synthesis | —- ( Transcription

Figure 5.10: The synthesis unit creates the transcription
from the best triphones.

From the pattern comparison unit the three best matching segments and their global
distances for each triphone in the new word are passed to the synthesis unit. Two
different approaches to identify the best phones from the triphones were tested, the
minimum distance procedure (MDP) and the majority vote procedure (MVP). The
majority vote procedure proved better and is implemented in the final version. The
test results are discussed in section 6.2.3.

sii f R|f R alR a kh|ja g @|g @ sil
siit £ R|f R\ a|R a k a g Qg @ sil
sii f R|f R a|R a k a g Qlg @ sil

Table 5.5: Three best triphones for each segment of the word “Frage”

Table 5.5 shows the most similar triphones for each segment of the unknown
audio sample for the word “Frage”. For both procedures the triphones are split into
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phones, then the phones are aligned according to their position, as illustrated in
table 5.6.

sil | f| R sil | f|R
sil [ f|R sil [ f|R
sil | f| R sil | f| R
f|R |a fIR |a
f{R\|a f{R\|a
flR |a flR |a
R |a]|kh R | a|kh
R|alk R |al|k
R|lalk R |al|k
alg| @ alg Q
alg| @ alg @)
alg|@ alg @
g | @] sil g @ | sil
g | @ | sil g @ | sil
g | @ | sil g @ | sil

Table 5.6: The phones are aligned according to their intended position in the final
transcription.

5.4.1 Minimum distance procedure

The minimum distance procedure uses the global distances of the triphones to decide
which phones are selected for the transcription. Based on the triphones from the
pattern comparison the phone combination with the smallest overall distance is
found. This is done the following way: When the triphones are split into phones,
for each phone the corresponding distance is saved. Then for each phone position
the phone with the smallest distance is taken. The combination of these phones
determines the transcription of the new word.

5.4.2 Majority vote procedure

Table 5.7: Ranked list of occurring phones
and the resulting transcription.

In the majority vote approach the synthesis unit extracts the phones that occur
most often for each position after the alignment. A list of the occurring phones is
created for each position and the number of occurrence of each phone is counted.
The phones are ranked according to their counter (as shown in table 5.7). If there
is one phone that is the clear winner, it is selected for this certain position in the
transcription. Note that in this case the global distance of the phones or triphones is
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not used. However if there are two or more phones with the same counter, the global
distance is applied as selection criterion: for each phone the sum of the distances is
built and the phone with the minimum sum is chosen for the transcription.

5.5 Transcription process summary

After the description of the different units of the transcriptor, the whole transcription
process will be summed up shortly in this section.

For the transcription of a new word, the audio file or the file containing the
encoded MFCCs, and the orthographic representation of the word are necessary.
The transcription process can be performed either with the transcription function
in Matlab directly or via the GUI, that calls the transcription function. If the input
is an audio file, the data is encoded with the tool HCopy from HTK, else if the data
is already available as encode feature file it is read.

For the candidate selection the string containing the orthographic representation
of the word is taken and converted to the intermediate transcription. The intermedi-
ate transcription is then segmented into triphones. These two steps, the conversion
and the segmentation are conducted by Perl scripts. Each of the resulting triphones
is searched in a look up table to find triphones in the database that have the same
intermediate transcription. If the triphone is found in the look up table the list with
the corresponding triphones in the database is passed to the pattern comparison
unit.

All triphones are compared with the data from the new word and the best three
matching triphones are found. This is done for every segment from the intermediate
transcription of the new word.

Finally the three best matching triphones per segment of the intermediate tran-
scription are passed to the transcription synthesis unit that composes the new tran-
scription from the proposed triphones.
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Tests and results

6.1 Validation

The evaluation addresses two main issues: the quality of the transcriptions for
several test settings and the validation of the candidate selection.

6.1.1 Transcriptions

For the evaluation of the automatic transcriptions the transcriptions from ADABA
that were already involved in the segmentation step were used as reference transcrip-
tions. As already mentioned these contain only phonetic symbols and no length or
stress markers.

The comparison between automatic and reference transcription was performed by
calculating the Levenshtein distance that provides an intuitively meaningful measure
for the difference of two transcriptions. Furthermore it indicates the number of
modifications a human transcriber had to perform to correct possible erroneous
transcriptions.

To enable a comparison with other existing applications the rate of correct phones
and the phone accuracy were calculated. For some test settings additionally the
number of substitutions, deletions and insertions was computed to further investigate
the occurring errors.

Levenshtein distance

The Levenshtein distance, also called edit distance, is a simple measure to determine
the distance between two strings. It is named after V. Levenshtein who published
an article where this distances measure was probably introduced first [30].

The method to compute the distance is based on the transformation of one string
into the other by applying a series of operations on the characters of the first string.
These operations are insertion, deletion and substitution. For example, take the two
words “vintner” and “writers”: The first string can be transformed into the second
by substituting the v in vintner with the w from writer, inserting an r after the w,
deleting the first and the second n, and finally inserting an s at the end. The two

47



CHAPTER 6. TESTS AND RESULTS 48

v intner
wri t ers
SIMDMDMMI

Figure 6.1: Transformation of the string “vintner” into the string
“writer” with the series of applied edit operations: S stands for substitu-
tion, I for insertion, D for deletion and M for match (no operation) [30].

strings are shown in figure 6.1 along with the corresponding operations performed
on each character, where the symbol I denotes the insertion operation, S is taken for
the substitution, D marks a deletion and M means match (no operation has to be
applied) [30]. The Levenshtein distance is then defined as the minimum number of
operations that are necessary to transform the first string into the second. Hence,
for the given example the distance equals 5.

The value for the distance as well indicates the number of operations that have
to be performed by a human transcriber during the correction of an erroneous au-
tomatic transcription, i.e. when he transforms the automatic transcription to the
correct reference transcription. Thus it is a meaningful measure for the degree of
correctness of the automatic transcriptions and it equally describes the effort that
is necessary if the automatic transcriptions should be corrected.

The computation of the Levenshtein distance is realized via a simple dynamic
programming algorithm, as described in [30].

Measures for the correctness of phones

The performance of automatic transcription or speech recognition systems is often
evaluated using the rate of correct phones and the phone accuracy.

The rate of correct phones is derived by the number of substitutions S and
deletions D of phones [19]

N-D-S
Percent correct = —xN 100% (6.1)

where N is the total number of phones in the reference transcription. As the number
of insertions I is not taken into consideration, good results for this measure could
be achieved by permitting many insertions. This is not desirable though.
The phone accuracy considers the insertion errors and hence is more representa-
tive [19]. It is defined as
N-S-D-1

Phone accuracy = N x 100% (6.2)

and thus is equal to the number of correct or identical phones (N —S— D) subtracted
by the number of insertions and divided by the total number of phones [31].
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Another measure is the percentage disagreement® between the validated tran-
scription and the reference transcription [7].

Percentage disagreement = % x 100% (6.3)
The percentage disagreement is equivalent to the phone error rate (PER) [7]. A
further measure is the percentage agreement presented in section 2.2.3.

The performance of the systems that were presented in chapter 2 is mostly mea-
sured either by the percentage agreement or the percentage disagreement between
automatic and reference transcriptions. However some authors present the number
of identical or correct phones, thus the results cannot always be compared directly.

6.1.2 Candidate selection

The candidate selection strongly influences the performance of the whole automatic
transcription process. Its primary function is the reduction of the search space i.e.
the reduction of the number of triphones that are taken from the database and
passed to the pattern comparison unit. This means that the candidate selection has
some side-effects. On the one hand it predefines possible transcriptions and already
accomplishes part of the transcription task by simply applying rules, on the other
hand in some cases it may reject possibly well matching segments and thus prevent
a good transcription.

Tests have shown that this rule-based candidate selection alone achieves a rate
of correct transcriptions (i.e. identical with the reference transcriptions) of around
30% for the test corpus of the Austrian male speaker (see section 6.2.4). This has to
be considered when evaluating the results of the whole transcription process. The
performance of the DTW algorithm alone can only be estimated objectively when
the improvement after the candidate selection is evaluated. To ensure the correct
function of the candidate selection the measures precision and recall were calculated
for one test run. The scores for precision and recall indicate if the selection chooses
useful candidates, the results are discussed in section 6.2.4 .

Precision and Recall

The measures precision and recall are used in information retrieval. They indicate if
the documents that are found by an information request are relevant. For example
let R be the set of relevant documents for an information request and | R| the number
of these documents. The processing of the information request yields an answer set
A with a number of |A| documents. Furthermore, consider the intersection of the
datasets R and A that contains |R,| documents.

!Note that this definition is not consistent with the definition for the percentage agreement given
by Kessens and Strik in [1] that was mentioned in section 2.2.3, i.e. that percentage agreement
and the percentage disagreement here do not sum up to 100%.
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Then the precision is defined as the number of relevant documents that were
found divided by all documents that were found [32].

| Ra
|A]

The recall is defined as the number of relevant documents that were found divided
by the number of all relevant documents (that should have been retrieved) [32].

Precision =

(6.4)

| R
| B
The values for both measures range between 0 and 1. For the precision a score of
1 means that all documents that were found are relevant. For the recall the score 1
denotes that all existing relevant documents could be retrieved.

In case of the candidate selection, the whole process of creating an intermediate
transcription, segmenting it and reading the list of triphones with the same interme-
diate transcription belongs to the information request. The candidates that provide
the same intermediate transcription as the new word are assumed to have a reference
transcription that fits as transcription for the new word.

To verify if the candidate selection indeed chooses candidate triphones that are
relevant in the sense that they provide possibly matching transcriptions, the ref-
erence transcriptions from the new words are compared to the reference triphones
that correspond to the intermediate triphones retrieved by the candidate selection.
For this purpose the reference transcriptions from the new words are segmented into
triphones. This is the set of relevant documents R. The reference triphones that

belong to the intermediate triphones returned by the candidate selection form the
dataset A.

Recall =

(6.5)

6.2 Tests

The transcriptor was developed and tested using the results of several simulations.
First some informal tests were performed to estimate the performance of the overall
transcription system and to ensure that the candidate selection works well. Then
the standard DTW and the segmental DTW algorithm were tested with several
settings in an initial test run. With the parameters that yielded the best results for
the initial tests some further optimizations were performed to find the best settings
for the final implementation.

6.2.1 Data preparation

For the simulations the data of the Austrian male speaker in ADABA was random-
ized and divided into a training, a development and a test set. The training set
contains 10819 files (85% of the data), the development set 636 (5%) and the test
set 1274 (10%). The audio files were used in three versions: the original wav files
from ADABA, a version that was downsampled to 16kHz and another downsampled
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to 32kHz2. The initial tests were performed with each of these sets to investigate
the influence of downsampling.

6.2.2 Training

The training set was used to train the HMMs in HTK, align the audio data, segment
it into triphones, and establish the internal database as described in section 5.1. For
the first informal tests the alignment was performed with all data, in the final
evaluation this step was performed with the training data only to guarantee the
independence of the development and the test set from the internal database (i.e.
no information from the development or test set was used for the segmentation of
the audio data for the internal database).

6.2.3 Development

The optimization of the settings for the DTW algorithm was performed with the
development set. As initial test the standard and the segmental DTW algorithm
were tested with different settings for the normalization factor and with the audio
files of different sampling rate. Then with the settings that yielded the best results
some further test runs were performed to investigate the transcription synthesis, the
slope weighting factors and the minimum number of triphone candidates.

The segmental DTW yielded better results and thus was implemented in the
final version of the transcriptor.

Initial Tests: DTW

The DTW algorithm was tested with three different normalization factors, with
the data sets of 16 kHz, 32 kHz and 44.1 kHz sampling frequency and with the two
synthesis variants majority vote procedure (MVP) and minimum distance procedure
(MDP). In table 6.1 the average Levenshtein distances for the different settings

f MVP MDP
 n T, [neT, T[T, [T,
16kHz || 0.825 | 1.256 1.028 1.181 | 2.445 1.675
32kHz || 0.868 | 1.263 1.028 1.239 | 2.362 1.701
44kHz || 0.887 | 1.274 | 1.020 | 1.201 | 2.421 | 1.723

Table 6.1: Standard DTW: Average Levenshtein distances for the de-
velopment set with different sampling frequencies, different normaliza-
tion factors and the synthesis variants majority vote procedure (MVP)
and minimum distance procedure (MDP).

are shown. The distances demonstrate that the choice of T, (the length of the
feature vector of the new word) as normalization factor yields the best results both

2The downsampling was realized with praat [33].
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for the majority vote procedure and for the minimum distance procedure over all
sampling frequencies. The choice of T}, as normalization factor is reasonable as this
normalization factor compensates best the influence of the length of the new word
on the path and on the final global distance.

The majority vote procedure performs better than the minimum distance pro-
cedure. The Levenshtein distances for the majority vote procedure are lower for all
settings. Apparently the number of occurrences of the phones allows a more robust
decision than the evaluation of the distance alone. Probably the distance itself is not
sufficiently objective or representative for a decision between the different triphones.

The best results are achieved with the files of 16 kHz sampling frequency. This
may be explained by the fact that in the frequency range up to 8 kHz the most im-
portant information for speech is present. The higher frequency ranges probably do
not contribute so much useful information to the pattern comparison unit. In HTK
the filterbank is placed from zero up to the Nyquist frequency (half the sampling
frequency). Therefore the bandwidth of the filters is narrower for the downsam-
pled files. This allows for a better discrimination of the phonetic content. In other
words the MFCCs of the downsampled files contain information of the more relevant
frequency ranges in a higher resolution and thus yield better results.

’ Utterances H Phones ‘
Correct 313 || Correct 4387
Total number 636 || Total number 4807
Percentage correct | 49.21% || Percentage correct | 91.26%
Average LD 0.825 || Phone accuracy 89.08%

Table 6.2: Best results for the development set with the standard
DTW: MVP with normalization to T, and files of 16 kHz sampling
frequency.

The simulation with the files with 16 kHz sampling frequency together with the
normalization factor T} yielded the best overall result for the Levenshtein distance.
The details of the evaluation are shown in table 6.2. Additionally to the Levenshtein
distance the number of correct utterances and phones, the total number of utter-
ances and phones, and the percentage of correct utterances and phones is given.
The rate of correct utterances is 49.21%. This seems not high however one has to
take into consideration that already one false phone leads to a utterances that is not
correctly transcribed. The rate of correct phones and the phone accuracy are much
more significant values as in most other applications not the percentage of correct
utterances but the percentage of correct phones or the phone accuracy are evalu-
ated. The rate of correct (or identical) phones is 91.26% and the phone accuracy
equals 89.08%. These values are good compared to other applications (for a further
discussion see section 6.2.4).

The details of the evaluation of the simulations with the other settings can be
found in section A.1.1 in the appendix.
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Initial Tests: Segmental DTW

The segmental DTW was tested like the standard DTW with three different nor-
malization factors, the three data sets of different sampling frequency and with
both synthesis variants. In table 6.3 the resulting average Levenshtein distances are
shown.

f MVP MDP

I mr T e n T (nen
16kHz || 0.932 | 0.748 | 0.873 1.436 | 0.923 1.325
32kHz || 0.906 | 0.778 0.854 | 1.442 | 0.983 1.379
44kHz || 0.909 | 0.778 0.858 1.492 | 1.003 1.412

Table 6.3: Segmental DTW: Average Levenshtein distances for the de-
velopment set with different sampling frequencies, different normaliza-
tion factors and the synthesis variants majority vote procedure (MVP)
and minimum distance procedure (MDP).

The results with the normalization factor T} (the length of the triphone from the
database) are the best for all data sets and both synthesis variants. This is mean-
ingful as a normalization to the length T}, does not make sense because the distance
matrix is divided into bands where the length T, does not influence the length of the
band but the length is derived from T},. Thus the normalization to T} is reasonable
as it is able to compensate the influence of the path length best. Again the majority
vote procedure yields better results than the minimum distance procedure for all
settings, thus it seems to be the better choice. The results for the data sets of the
different sampling frequency also show that the files with the sampling frequency of
16 kHz mostly yield the best results. They confirm the results from the tests with
the standard DTW.

The best overall result is achieved with the normalization to T}, the majority vote
procedure and the files of 16 kHz sampling frequency. The details of the evaluation
for these settings can be seen in table 6.4.

] Utterances H Phones ‘
Correct 314 || Correct 4435
Total number 636 || Total number 4807
Percentage correct | 49.37% || Percentage correct | 92.26%
Average LD 0.748 || Phone accuracy 90.10%

Table 6.4: Best results for the development set with the segmental
DTW: MVP with normalization to T, and files of 16 kHz sampling
frequency.

Compared to the standard DTW the results for the segmental DTW are slightly

better. The average Levenshtein distance is 0.748 (DTW: 0.825), the rate of correct

phones 92.26% (DTW: 91.26%) and the phone accuracy 90.10% (DTW: 89.08%).
The details of the evaluation for all settings are presented in section A.1.2.
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Optimization of the synthesis variant

The majority vote procedure yielded better results than the minimum distance pro-
cedure for all settings of the initial tests. One further test was performed to opti-
mize the majority vote procedure. When the number of occurrences of two phones
is equal, the distance is considered for the decision between the two phones. In
one variant of the algorithm the sum of the distances is taken as criterion, in a
second variant the minimum of the distances leads to the decision. During the ini-
tial tests the sum-of-distances variant was applied. For comparison, another test
was performed with the minimum-of-distances variant. The tests were realized with
the standard and the segmental DTW algorithm for the files of 16 kHz sampling
frequency. The normalization factors were T, for the standard DTW and 7, for the
segmental DTW. The resulting Levenshtein distances are shown in table 6.5.

Algorithm MVP Wlt.h
sum | min.

DTW 0.826 | 0.829

Segmental DTW || 0.748 | 0.744

Table 6.5: Average Levenshtein distances for the MVP with the sum
and the minimum as selection criterion (f; = 16kHz, DTW: normaliza-
tion to T}, segmental DTW: T})).

For the standard DTW the sum-of-distances variant with the sum is slightly better,
for the segmental DTW the minimum-of-distances variant results in a slightly lower
Levenshtein distance. However the differences are really small and no real preference
for one of the two algorithm variants can be derived. This can be explained by the
fact that the cases where two phones have the same number of occurrence are rare, so
the implementations do not lead to no significantly different results. As the influence
on the final result is apparently not substantial the initial sum-of-distances variant
was kept.

Optimization of the candidate selection

The candidate selection is implemented with a fallback strategy for the case that not
enough triphone candidates are found in the look-up table. The desired minimum
number of candidates can be passed to the algorithm. The default value for the
initial tests was 3. During the optimization a test was performed for a minimum
number of 10 candidates. Again, both algorithms were tested with the files of 16
kHz sampling frequency and their optimal values for the normalization factors. The
Levenshtein distances for the tests with a minimum number of 3 and 10 candidates
are listed in table 6.6.

The results show that a higher number of required triphone candidates does not
lead to better transcriptions. The quality of the transcriptions even decreases. The
corresponding phone accuracy rates are 89.08% with 3 candidates and 87.77% with
10 candidates for the standard DTW, and 90.10% and 89.76% for the segmental
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Algorithm 1;/[111.| nuilg].
DTW 0.825 | 0.9245
Segmental DTW || 0.748 | 0.774

Table 6.6: Average Levenshtein distances with different minimum num-
bers of required triphone candidates (MVP, f; = 16kHz, DTW: normal-
ization to T}, segmental DTW: T}).

DTW. A possible explanation is that the candidates that are chosen by the fallback
strategy are not well matching. However to fully explain this result, the effects of the
fallback strategy would have to be investigated in detail. Because of these results
the default for the minimum number of required candidates is set to 3.

Optimization of the slope weighting factors

Both DTW algorithms were further tested with different settings for the slope
weighting factors. The tested settings are the three slope weighting types (b), (c)
and (d) presented in section 5.3.2. The slope weighting factors for the local path
constraints of type I are illustrated in figure 6.2.

1 1 1
: 1 } 1 : 1 1 0 : 2 1 1
(b) () (d)
Figure 6.2: Slope weighting factors resulting from the slope weighting
types (b), (c¢) and (d) for the local path constraints of type I.
Type (a) slope weighting is not used as it weights only the diagonal path with a

nonzero factor. As default setting for the initial tests the slope weighting of type
(d) was used.

Slope weighting type
() | (o [ @
DTW 0.973 | 0.976 | 0.825
Segmental DTW | 0.769 | 0.756 | 0.748

Algorithm

Table 6.7: Average Levenshtein distances with the different slope
weighting types (b), (¢) and (d) (MVP, f; = 16kHz, DTW: normal-
ization to T}, segmental DTW: T})).

Type (d) slope weighting yields the best results for both algorithms, however for the
segmental DTW the differences are small. For the final tests the slope weighting of
type (d) was kept.
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Optimization of the bandwidth for the segmental DTW

For the segmental DTW the width W of the bands from the distance matrix is
a further parameter. The default value for the initial tests was 10 frames, what
corresponds to a length of 100 ms as the features were extracted every 10 ms. The
reference value proposed by Park and Glass is 75 ms [29]. Additionally to this basic
setting a bandwidth of 20 samples was tested, the results are shown in table 6.8.

W
10 [ 20
| Segmental DTW [ 0.748 [ 0.789 |

Algorithm

Table 6.8: Average Levenshtein distances with different values for the
bandwidth W used in the segmental DTW (MVP, f; = 16kHz, normal-
ization to T}).

Broadening the bandwidth to 20 frames does not improve the results, therefore the
initial setting of 10 frames was kept.

6.2.4 Test results

After the optimization, the best settings were taken to perform a simulation with
the test set. Again, the standard and the segmental DTW algorithm were tested.
The results from these final tests were evaluated in detail. The analyzed measures
comprise the Levenshtein distance, the rate of correct phones, the phone accuracy,
and an additional statistic of the number of substitutions, deletions and insertions.
To verify the performance of the candidate selection the values for precision and
recall were calculated. For the intermediate transcriptions the same measures as
for the automatic transcriptions were computed to illustrate the improvement from
intermediate to automatic transcription.

’ Utterances H DTW \ Seg. DTW ‘
Correct 608 654
Total number 1273 1273
Percentage correct || 47.76% 51.37%
Average LD 0.857 0.752

’ Phones H DTW \ Seg. DTW ‘
Correct 8559 8691
Total number 9453 9453

Percentage correct || 90.54% 91.94%
Phone accuracy 88.46% 89.88%

Table 6.9: Results for the test set with the best settings from the
optimization (MVP, f, = 16kHz, DTW: norm. to T}, seg. DTW: T).
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Table 6.9 summarizes the results from the simulations with the test set. It can be
seen that the segmental DTW yields better values than the standard DTW for all
measures, however the differences are not great.

DTW Segmental DTW
S| D] I |[Total| S [ D | I |Total
Number || 791 | 103 | 197 | 1091 | 654 | 108 | 195 957
In % 8.371(1.09 | 2.08 | 11.54 | 6.92 | 1.14 | 2.06 | 10.12

Table 6.10: Substitutions (5), deletions (D) and insertions (/) com-
puted from the simulation results with the test set

In table 6.10 the substitutions, deletions and insertions are listed. Substitution
errors occur more often than deletions or insertions, this is the case for the standard
and for the segmental DTW. The rates of deletions and insertions are almost equal
for both algorithms, while the rate of substitutions is lower for the segmental DTW.
Thus the better performance of the segmental DTW is obviously based on a lower
rate of substitutions.

A possible explanation why the number of deletions and insertions is rather low
compared to the number of substitutions, is that the number of phones for the
transcription is determined by the intermediate transcription. The intermediate
transcription leads to a certain number of positions that are filled with the best
phones retrieved by the pattern comparison algorithm. The length of the transcrip-
tion is only varied if at the beginning or at the end two consecutive silence symbols
(’sil’) occur. In this case, one of the symbols is deleted and the length of the tran-
scription is changed. In all other cases the length of the transcription is fixed. Thus
it is very important that the candidate selection creates intermediate transcriptions
that have the correct length. As the number of deletions and insertions is low the
candidate selection obviously fulfills this condition in most cases.

Compared to the results from other applications as those presented in chap-
ter 2, the results achieved with this transcription method are good. Commonly
an agreement rate of about 80% between automatic and reference transcriptions is
considered as good, as this is also the agreement rate achieved between human tran-
scribers (interlistener agreement). Naturally, the experiments described in literature
have different purposes and use different data, for this reason it is not meaningful
to compare the mere figures, but they provide an orientation.

Some reported values are: 72% to 80% agreement between manual and machine
transcriptions [34, 35, 2], a percentage disagreement of 12%-27% (7,14, 13] or 80%
to 88% identical labels [3,36]. The results for the DTW lie within this range with
a phone accuracy of 88.46% and a percentage disagreement of 11.54%. The values
for the segmental DTW are even better with a phone accuracy of 89.88% and a
percentage disagreement of 10.12%.

For the comparison to other experimental results one has to take into consider-
ation that the transcriptor is currently restricted to a single speaker only and that
the used recordings are of high quality (studio recordings), what surly is a reason
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for the excellent results. Still, the degree of detail of the transcriptions (the number
of phones) is higher than the number used in most speech recognition or automatic
transcription tasks. It was not clear from the beginning if it was even possible to
create such detailed transcriptions automatically, thus the results are very satisfying.
The transcriptor creates detailed transcription that are to a high degree concordant
to the transcriptions from the human transcribers.

Evaluation of the candidate selection

For the analysis of the candidate selection the same measures as for the automatic
transcriptions were calculated for the intermediate transcriptions. Both results were
compared to investigate the improvement from intermediate to automatic transcrip-
tion, so whether the achieved improvement justifies the use of DTW. If the improve-
ment from intermediate to automatic transcription were low this would mean that
the pattern comparison does not contribute much to establish a correct transcription
and hence does not perform as required.

Utterances - Tran:%;criptions
intermediate | final
Correct 364 654
Total number 1273 1273
Percentage correct 28.59% | 51.37%
Average LD 1.394 0.752
Phones . Tran§criptions
intermediate | final
Correct 7880 8691
Total number 9453 9453
Percentage correct 83.36% | 91.94%
Phone accuracy 81.22% | 89.88%

Table 6.11: Comparison of the results of the intermediate transcrip-
tions (after the candidate selection) and the results of the automatic
transcriptions (after application of the DTW) for the test set (MVP f
= 16kHz, DTW: normalization to T, segmental DTW: T})).

The results achieved with the intermediate transcription only are shown in table
6.11, opposed to the results after the application of the segmental DTW. The rate
of correctly transcribed utterances after the intermediate transcription is 28.59%,
thus about one third of the transcriptions can be predicted by the application of
rules only. The rate of correct phones is 83.36%, meaning that the rules apparently
work well for the given data set. It has to be noted that the rules are optimized for
one (the Austrian male) speaker. In the case of a generalization of the transciptor
for more speakers it may be necessary to modify the rules. It is possible that some
rules model specific properties of the pronunciation of the Austrian male speaker.
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These rules would have to be discarded or modified to enable correct results for
other speakers. Of course, if the rules are generalized the results may become worse
as the possible degree of detail decreases.

DTW Segmental DTW
S | D | I |[Total|| S | D | I | Total
Number | 1459 | 114 | 202 | 1775 || 654 | 108 | 195 957
In % 15.43 | 1.21 | 2.14 | 18.78 || 6.92 | 1.14 | 2.06 | 10.12

Table 6.12: Substitutions (5), deletions (D) and insertions (/) com-
puted from the simulation results with the test set (MVP f; = 16kHz,
DTW: normalization to T}, segmental DTW: T)).

The difference of the rate of correctly transcribed utterances before and after the
DTW is about 20% absolute. The average Levenshtein distance from the automatic
transcriptions is about half of the average distance from the intermediate transcrip-
tions. The statistics on the number of substitutions, deletions and insertions in table
6.12 demonstrate that DT'W causes a reduction from 1459 to 957 substitution errors.
The number of deletion and insertion errors remains almost the same. This can be
explained by the fact that the number of phones is fixed quite strictly as already
discussed in the preceeding section. The results make clear that DTW is able to
refine and improve the basic intermediate transcriptions and thus it is meaningful
to include the DTW algorithm in the transcription process.

Precision and Recall

600 \
[ TIrelevant triphones found
I irrelevant triphones found
500} I missed triphones ,
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£
Z 200} 1
100 b
0

Found triphones Triphones that should have been found

Figure 6.3: Average number of found triphones (left) and relevant
triphones (right) per utterance for the test set.

Furthermore the values for precision and recall were calculated. Figure 6.3 illus-
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trates the average number of triphones that were found and that should have been
found per utterance. The left bar represents the number of triphones that were
found, the lower segment illustrates the triphones that are relevant and the other
segment shows those which are not relevant. The right bar represents the number
of triphones that should have been found. The lower segment shows the triphones
that indeed were found, the other one those that were not found. The corresponding
values for precision and recall are listed in table 6.13.

’ Average number of triphones ‘

relevant & found 376.88
total found 5H81.68
total relevant 446.37

’ Average precision and recall ‘

Precision 0.641
Recall 0.843

Table 6.13: Statistic of found, missed and relevant triphones for the
test set, and the resulting values for precision and recall.

The average score of the recall is 0.84, this means that on average a high number
of relevant triphones was found. Thus the implementation of the candidate selection
is obviously satisfying. The value for the precision with 0.64 is lower than the value
for the recall, it shows that the search is not exact, it yields also many triphones
that are not relevant. This is however not so much of a problem, it leads only to a
higher number of candidates that have to be processed.

Precision and Recall

0.9
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Figure 6.4: Boxplots for precision (left) and recall (right).
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A boxplot for the different values of precision and recall for each utterance is
shown in figure 6.4. For the precision 50% of the values lie in the range from
approximately 0.5 to 0.85, hence the number of found and relevant triphones varies
between 50% and 85% for half of the data. For the recall 50% of the values lie in
the range from about 0.8 to 0.95 thus for most utterances the candidate selection
is quite successful (0.80% to 0.95% of the candidate triphones are found for these
utterances). However there are many outliers (the values from about 0.6 to 0),
these are utterances where the candidate selection fails, probably because rules
for the creation of the intermediate transcription do not yield a meaningful result.
This can happen in the case of foreign words, as the rules for the creation of the
intermediate transcription obviously are not able to predict a proper transcription
for a word that does not satisfy the pronunciation rules of German.



Chapter 7
Outlook

7.1 Outlook

A new application for automatic phonetic transcription, the transcriptor, was de-
veloped. For future versions several improvements or extensions are thinkable, they
will be discussed in this section.

7.1.1 Modification of the candidate selection

The current candidate selection applies a set of rules for the generation of an in-
termediate transcription. This works well as the test results for the intermediate
transcriptions show (approximately 80% phone accuracy). However in case of an
extension for more speakers the rules probably have to be modified as they are
currently optimized for a single speaker.

The main reason for implementing a candidate selection is the reduction of the
search space, i.e. the number of triphones among which matching segments are
searched. Currently it is possible to transcribe about 100 words per hour!, however
it would be nice to speed up the process. The number of triphones that are passed to
the pattern comparison unit ranges from 0 to 465 per segment of the intermediate
transcription. A reduction seems reasonable if the number of triphones is high,
as probably many triphones contain very similar information and thus it is not
necessary to perform a comparison with each triphone. Probably a kind of clustering
method could be applied to the internal database to eliminate entries that are very
similar. In doing so the number of triphones is reduced and the search space is
limited. This may especially be meaningful if the database and thus the search
space is increased to allow speaker-independent transcription.

7.1.2 Modifications of the pattern comparison

In the current implementation of the pattern comparison the whole audio file is
compared to a triphone. For the standard DTW this means that the word is not

Implementation with segmental DTW, run on a standard PC.

62
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segmented. This is not optimal, but it works. The segmental DTW performs a kind
of segmentation by cutting the distance matrix into bands, however all the bands
are compared with the triphones from the database.

One possibility to realize a segmentation is to segment the audio file exactly
along the phone boundaries. But as they are not known this is complex.

The choice of candidate triphones is based on the segments from the intermediate
transcription, so the part of the distance matrix to which the triphone should be
compared is known approximately. This information could be used to segment the
distance matrix roughly and to compare only the relevant parts with the triphone.
As different phones have different durations, the length of the segments cannot be
estimated exactly. For this reason the segments could for example be overlapping.
Figure 7.1 shows the word “Aquarell” compared to one example of the triphone “a k
v”, a possible estimation for the relevant part of the distance matrix is marked. This
estimation is derived from the average duration of the triphones plus an overlapping
of 20% at the beginning and the end.

rough segmentation _ pistance
18 —

16 155

150
14

145

12

10

Segment’ak Vv’

2 1T 10

X 20 A 40 60 80 100
phone boundaries  Word 'Aquarell’

Figure 7.1: Distance matrix between the word “Aquarell” and
the triphone “a k v”; the real phone boundaries of the segment “a
k v” in the word are marked, an example for a rough segmentation
of the relevant part of the distance matrix is given.

The expected benefits of this improvement are a higher correctness (the a priori
knowledge which segment of the new word should be compared to which triphone
from the database is used) and a reduced duration of the transcription process (less
computations with smaller distance matrices).
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Different similarity functions and settings for the DTW

In all simulations with the transcriptor the Euclidean distance was used for the DTW
algorithm. Other distances could be used for example the Mahalanobis distance
(see [22]). Another possible modification of the DTW algorithm is to implement
other local path constraints as presented in section 5.3.2. Further refinements of
the DTW algorithm include the application of flexible endpoint constraints and the
application of global path constraints.

7.1.3 Extension of the database for more speakers

The implementation of the transcriptor presented here is optimized for a single
speaker, the Austrian male speaker of ADABA. For further use an implementation
that is applicable on the speech data of more speakers is desirable. Basically the
extension for more speakers can be realized easily, however some points have to be
kept in mind.

The extension can be performed by simply adding other speech files to the inter-
nal database. The only condition is that the new files must not have the same name
as the existing files. Furthermore it might be necessary to modify the candidate
selection, as in the current state of realization it strongly depends on the phonetics
of the Austrian male speaker. For different speakers the results for the candidate
selection might not be as good as with the current speaker. A possible solution is
to generalize the rules to cover a wider field of pronunciation possibilities.

An informal test was performed with the data of the German male speaker of
ADABA. The achieved Levenshtein distance is approximatly 2. The test was con-
ducted before the optimization, with the candidate selection for the Austrian male
speaker and without data from the German speaker in the database. The results
are not as good as the results for the Austrian speaker, however they demonstrate
that the procedure basically works even if no data of the new speaker is added to
the database.



Chapter 8

Conclusion

The goal of this diploma thesis was to develop a tool for detailed automatic phonetic
transcription.

Many existing systems for automatic phonetic transcription are based on tech-
niques used in the field of automatic speech recognition. One common approach is
to perform a forced alignment. For this method Hidden Markov Models (HMMs)
are trained to model the phones. The systems that use this technique are thus
model-based. In the forced alignment step Viterbi decoding is applied that chooses
the best fitting transcriptions from the lexicon with transcription variants. A differ-
ent approach for speech recognition is template-based speech recognition. Here no
models are trained but speech utterances are compared directly, i.e., the audio data
is not matched against models but it is compared to reference utterances from a
database. The recognized utterances are determined by the most similar references.

The new approach for automatic transcription that was implemented within
this work uses the technique applied in template-based speech recognition. For the
transcription of a new word the unknown audio sample is compared to segments in
a database. The transcriptions of the most similar segments are concatenated to
the new transcription.

The transcription tool, named transcriptor, was implemented in Matlab. The au-
dio files and the transcriptions for the database were taken from ADABA (Austrian
Pronunciation Database). The first implementation is speaker-dependent.

To build the database for pattern comparison, the reference utterances from
ADABA were cut into segments. It was decided to use segments with a fixed number
of phones for simplicity. Triphones were selected as segmental units for their good
compromise between shortness and the contextual information that they provide. To
split the utterances, the boundaries between the phones had to be determined. This
was done with the Hidden Markov Toolkit (HTK). With HTK HMMs were trained,
and a forced alignment was performed. A feature of the forced alignment in HTK is
the output of the phone boundaries. These phone boundaries are taken to cut the
utterances into triphones. For pattern comparison usually features are extracted
from the audio files. The chosen features were Mel Frequency Cepstral Coeflicients
(MFCCs) that are widely used in speech recognition. The feature extraction and
the splitting into triphones were performed in one step using HTK.
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To speed up the transcription process a candidate selection was implemented.
The candidate selection passes only a choice of possibly well matching triphones
to the pattern comparison unit, reduces the number of comparisons and thus the
duration of the transcription process. Without a candidate selection a new word
would have to be compared to each segment in the database which would lead to
a long duration of the process. The triphone candidates are chosen with the aid
of an intermediate transcription that is generated by the application of rules on
the orthographic presentation of the new word. This intermediate transcription
is also segmented, then for each segment the candidate triphones for the pattern
comparison are searched in a look-up table.

The pattern comparison between the unknown audio sample and the segments
in the database is realized with a dynamic time warping algorithm (DTW). This
algorithm computes the similarity, also called distance, between two utterances. The
pattern comparison unit finds the three best matching triphones for each segment
of the new word.

After the pattern comparison the best triphones are synthesized to the new
transcription. This is done by evaluating the number of occurrences of each phone.
If this yields no clear result (e.g. the number of occurrence of two phones is equal),
additionally the distances computed by the DTW algorithm are used as criterion.

The system was optimized with two versions of the DTW algorithm - standard
DTW and segmental DTW - several settings for the candidate selection, and with
files of 16 kHz, 32 kHz and 44.1 kHz sampling frequency. With the best settings
from the optimization a final simulation with an independent test set was performed.

The resulting transcriptions were evaluated with the aid of the reference tran-
scriptions from ADABA. To enable a comparison with other systems the phone ac-
curacy and the percentage disagreement were computed. The rate of correct phones
for the standard DTW is 90.54%, the phone accuracy 88.46% and the percentage
disagreement 11.54%. For the segmental DTW the rates are 91.94%, 88.88% and
10.12%. Segmental DTW thus performs slightly better than standard DTW.

For other existing systems reported values are 72%-80% agreement between au-
tomatic and reference transcriptions, 12%-28% percentage disagreement and 80%-
89% of identical phones. The results achieved by the transcriptor are comparable
to those from other systems, the results from the segmental DTW even outperform
most current systems.

For the interpretation of the results, it has to be taken into consideration that
the used audio files are of high quality (studio recordings), this allows achieving good
results more easily. On the other hand, the transcriptions are more detailed than
the transcriptions usually treated in comparable systems. Normally for German a
phoneme set of about 45 phonemes is considered, the phoneme set of the transcriptor
contains 89 phonemes. From this point of view the performance of the transcriptor
is remarkable, as it was not clear if such a detailed distinction is even possible. The
results demonstrate that the DT'W algorithm can be applied for transcription tasks.
All in all it has been shown that it is possible to create detailed transcriptions by an
automatic procedure that are to a high degree concordant with the transcriptions
established by humans.



Appendix A

Results

A.1 Initial tests

Settings:

Used data set: Development set

Slope weighting factors: 121]

Minimum number of candidates: 3

Default synthesis variant: Majority vote procedure with sum criterion

Al.1 DTW
MVP MDP
G I P R PR VI R I P P
16kHz || 0.825 | 1.256 | 1.028 1.181 | 2.445 1.675
32kHz || 0.868 | 1.263 | 1.028 1.239 | 2.362 1.701
44kHz || 0.887 | 1.274 | 1.020 | 1.201 | 2.421 1.723

Table A.1: DTW: Average Levenshtein distances

MVP MDP
T AL 1L, (LT
16kHz || 49.21 | 33.18 | 40.72 | 35.53 | 15.88 | 25.94
32kHz || 47.33 | 31.92 | 40.72 | 33.02 | 17.30 | 26.10
44kHz || 45.28 | 32.08 | 41.04 | 34.43 | 16.35 | 25.16
Table A.2: DTW: Rate of correct utterances in %
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; MVP MDP
' [T, [+, T, [ T, [T.+T,
16kHz | 91.26 | 85.46 | 88.52 | 86.60 | 69.36 | 79.84
32kHz | 90.72 | 85.44 | 8854 | 85.83 | 70.48 | 79.49
44kHz | 90.43 [ 85.27 | 88.64 | 86.33 | 69.67 | 79.16

Table A.3: DTW: Rate of correct phones in %

f MVP MDP
S P O R PR PR O I O VR
16kHz || 89.08 | 83.38 | 86.39 | 84.38 | 67.65 | 77.84
32kHz || 88.52 | 83.30 | 86.39 | 83.61 | 68.75 | 77.49
44kHz || 88.27 | 83.15 | 86.50 | 84.11 | 67.96 | 77.20

Table A.4: DTW: Phone accuracy in %

A.1.2 Segmental DTW

; MVP MDP
* ' [T, [L+T,| T, [ T, [T.+1,
16kHz [ 0.932 [ 0.748 | 0.873 | 1.436 [ 0.923 [ 1.325
32kHz | 0.906 | 0.778 | 0.854 | 1.442 [ 0.983 | 1.379
44kHz | 0.909 | 0.778 | 0.858 | 1.492 | 1.003 | 1.412

Table A.5: Segmental DTW: Average Levenshtein distances

f MVP MDP
S P O PR PR P O I O VR
16kHz || 41.98 | 49.37 | 45.28 | 28.30 | 40.57 | 30.19
32kHz || 44.81 | 49.21 | 46.86 | 28.14 | 38.99 | 30.66
44kHz || 43.08 | 48.90 | 45.44 | 25.31 | 38.52 | 28.46

Table A.6: Segmental DTW: Rate of correct utterances in %
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MVP MDP
T AL T T h (LT
16kHz || 90.29 | 92.26 | 90.89 | 83.77 | 89.91 | 85.04
32kHz || 90.51 | 91.87 | 90.99 | 83.54 | 89.10 | 84.15
44kHz || 90.39 | 91.89 | 90.97 | 82.78 | 88.87 | 83.71

Table A.7: Segmental DTW: Rate of correct phones in %

MVP MDP
G P PR VR VI R I P P
16kHz || 87.66 | 90.10 | 88.45 | 81.01 | 87.79 | 82.46
32kHz || 88.02 | 89.70 | 88.70 | 80.92 | 87.00 | 81.76
44kHz || 87.98 | 89.70 | 88.64 | 80.26 | 86.73 | 81.32
Table A.8: Segmental DTW: Phone accuracy in %

A.2 Optimization

Settings:

Used data set:

Normalization factor for DTW:
Normalization factor for seg. DTW:
Synthesis variant:

Default min. number of candidates:
Default slope weighting factors:
Default bandwith for seg. DTW:

A.2.1 Synthesis variant

Development set

Files with 16 kHz sampling frequency

T;
Ty

69

Majority vote procedure with sum criterion

3

[121]

10

Algorithm DTW Seg. DTW
MVP with sum | min. || sum | min.
Average levenshtein distance 0.825 | 0.829 || 0.748 | 0.744
Rate of correct transcriptions (in %) || 49.21 | 48.74 || 49.37 | 49.84
Rate of correct phones (in %) 91.26 | 91.18 || 92.26 | 92.32
Phone accuracy (in %) 89.08 | 89.04 || 90.10 | 90.16

Table A.9: Results from the MVP with sum-of-distances and minimum-

of-distances criterion



APPENDIX A. RESULTS 70

A.2.2 Minimum number of candidates

Algorithm DTW Seg. DTW
Minimum number of candidates 3 | 10 3 | 10

Average levenshtein distance 0.825 | 0.925 || 0.748 | 0.774
Rate of correct transcriptions (in %) || 49.21 | 46.23 || 49.37 | 48.11
Rate of correct phones (in %) 91.26 | 89.95 || 92.26 | 91.95
Phone accuracy (in %) 89.08 | 87.77 || 90.10 | 89.76

Table A.10: Results with different minimum numbers of required candidates

A.2.3 Slope weighting

Algorithm DTW Segmental DTW
Slope weighting type d | ) [ (¢ d | ®) | (¢
Average levenshtein distance 0.825 | 0.973 | 0.976 || 0.748 | 0.769 | 0.756
Rate of correct transcriptions (in %) | 49.21 | 42.14 | 39.94 || 49.37 | 47.48 | 49.69
Rate of correct phones (in %) 91.26 | 89.27 | 89.79 | 92.26 | 91.99 | 92.20
Phone accuracy (in %) 89.08 | 87.12 | 87.08 [ 90.10 | 89.83 | 89.99

Table A.11: Results with different slope weighting factors

A.2.4 Bandwidth for segmental DTW

Algorithm Seg. DTW

Band width W 10 | 20 |
Average levenshtein distance 0.748 | 0.789
Rate of correct transcriptions (in %) || 49.37 | 48.90
Rate of correct phones (in %) 92.26 | 91.78
Phone accuracy (in %) 90.10 | 89.56

Table A.12: Results with different bandwidths for segmental DTW
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A.3 Final tests
Settings:

Used data set:

Normalization factor for DTW:

Normalization factor for seg. DTW:

Synthesis variant:

Test set

Files with 16 kHz sampling frequency

T

T,

Yy
Majority vote procedure with sum criterion

Minimum number of candidates: 3
Slope weighting factors: 121]
Bandwith for segmental DTW: 10
A4 DTW
DTW
Utterances H Phones
Correct 608 || Correct 8559
Total number 1273 || Total number 9453
Percentage correct | 47.76% || Percentage correct | 90.54%
Average LD 0.857 || Phone accuracy 88.46%
Table A.13: DTW: Results with the test set
A.5 Segmental DTW
Segmental DTW
Utterances H Phones
Correct 654 || Correct 8691
Total number 1273 || Total number 9453
Percentage correct | 51.37% || Percentage correct | 91.94%
Average LD 0.752 || Phone accuracy 89.88%

Table A.14: Segmental DTW: Results with the test set
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Phoneme sets

2 b_0 g 1= o( | t>
20 |C h m O |th
3 d I m= 0 tov
6 | dZ i N b | U
6-R\ | d0 ij |n p-h | u

9 E i( | n( R |uo
7 e iR = r u_(
Q e O j n= R\ | uwR
@\ |eo k O r\ |v

a eoR\ [ k> |o S |w
a( | e( kh | O S X
aR\ | E kv | oo sj |y
A e 1 oo ( |s+|Z

a F le |o00R\ |sv |z

b | F=  |le=|O( |t

Table B.1: Phoneme set of the transcriptor (89
phonetic symbols) in SAMPA Austria .

2 la(|gl|l= |n=|s
3 |b |[him |o |t
4 |C |i|m=|o(]|u
@ (d |j|IN |p |V
@\le |k|in |R |x
a | f 1 | N=|S |y

Table B.2: Reduced phoneme set for the inter-
mediate transcription (36 phonetic symbols).
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