

Klassifikation

Franz Pernkopf

Institute of Communications and Wave Propagation
University of Technology Graz
Inffeldgasse 16c, 8010 Graz, Austria

Tel: +43 316 873 4436

E-Mail: pernkopf@inw.tugraz.at

2004

Allgemeine Grundlagen zur Klassifikation

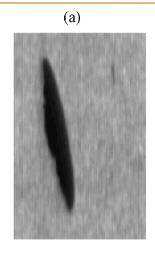
- Ziel:
 - AUTOMATISCHE Mustererkennung
 - Entwicklung von Maschinen, die neue Objekte anhand ihrer Merkmale zu bekannten Klassen zuordnen können
- Attribute können qualitiativ oder quantitativ, kontinuierlich, diskret oder Bool´sche Variable sein
- Merkmalsvektor:

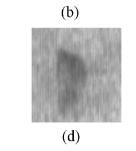
$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right]$$

- Statistisch Mustererkennung: Merkmale bestimmen, auftragen im Merkmalsraum, statistische Methoden zur Bestimmung von Trennflächen
 - Beispiel: Klassifikation von Fehlern auf Lagerbolzen (5 Klassen)

Beispiel

- Beispiel: 5 Klassen von Fehlern
 - Class 1: Material flaw (a)
 - Class 2: Grinding flaw (b)
 - Class 3: Scratch (c)
 - Class 4: Chafe mark (d)
 - Class 5: Spot (e)





- The Little Bridge Co.

- Gesamtsystem:
 - Sensoren: Camera
 - Vorverarbeitung (Filter)
 - Segmentierung
 - Merkmalsextraktor
 - Entscheidungsmodul (Klassifikator)
 - Ausgabemodul

Beispiel

Extrahierte Merkmale

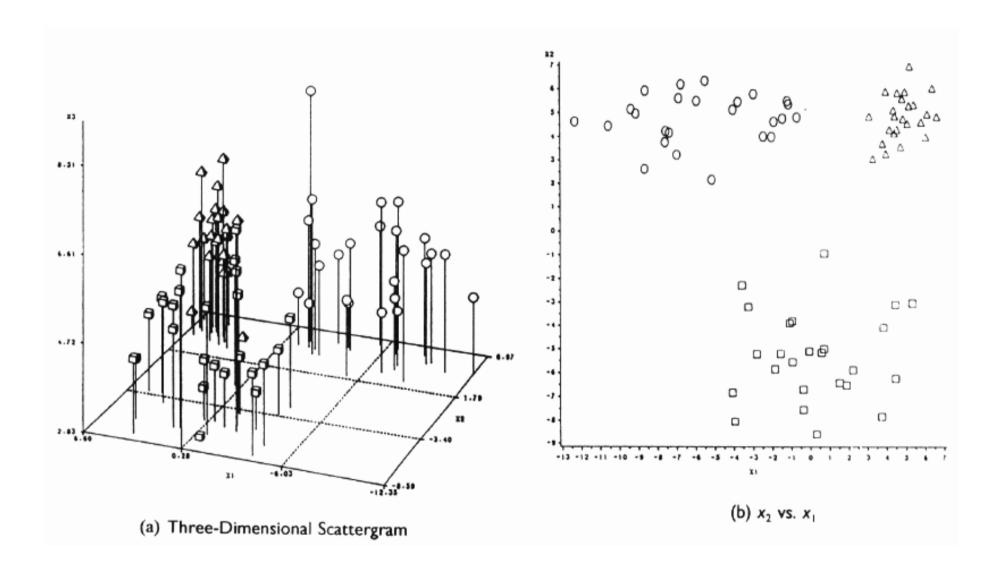
7	No. Feature name	
K2 1	2 Boundary length of all segments	
60		
A. 10		
	6 Polar measure minimum	
	SOUTH STATE	
~		
	escence	
	10 Height of all segments	
	12 Roundness of all segments	
	San Car	
	Number of discontinuation	
	500000	
	16 Number of free rows within the object 17 Mean gray value of all segments	
	18 Standard deviation of the grav values within the segments	
	en i i i	
2	KON SKOP	
2		Д
N	22 Katio of the standard deviation between the segments and the background	
2	23 Maximum gray value of the image	
2	Minimum gray	
3 N	25 Moment of 4° order of the image	
2 1		
2	STATES	
2	19976.00	
. w	777 KBB	
లు ల	32 Direction of the largest segment	
ಬ	00/52570	
. w	000000	
. u	00/1517	
ن در د در	37 Axis ratio of the bounding rectangle	
ယေ	DWS ITS	
3	:00	
-4	4.	
4 4	41 o. narmonic of the gradient in x direction	
4	inchive	
4	44 a ₀ of the first order fit of the projection of the	
4	45 a ₁ of the first order fit of the projection of the	
4 .	0 100000	
	en en	
4	47 Absolute error of the regression line to the projection	
4	largest segment	
4	b_1 of the second order fit of the projection of the	
<u>ي</u>	largest segment largest segment of the projection of the	
8	ance.	
וט וו	-11-6-01	
ن	52 Katio of the Areas	

2004

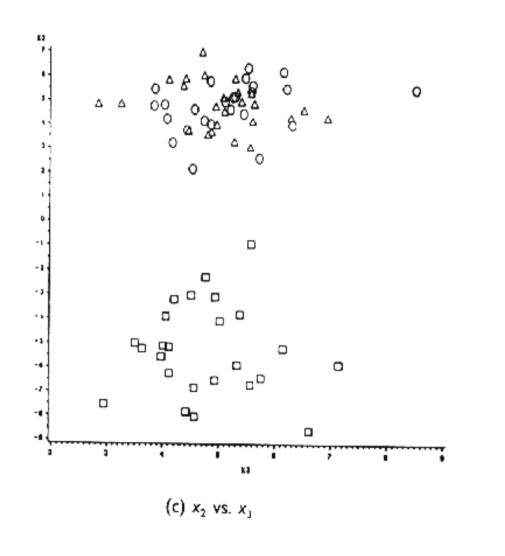
Merkmalsraum

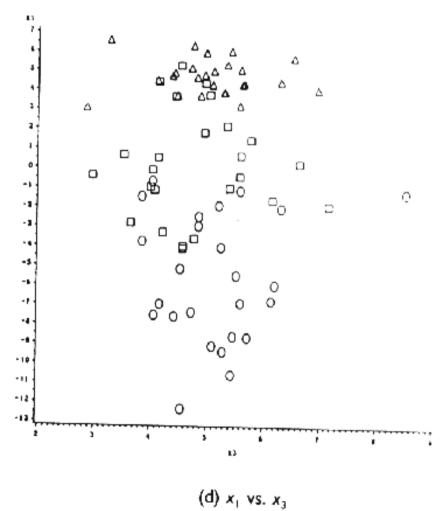
- Objekte gleicher Klasse sollen im Merkmalsraum Cluster bilden.
- Probleme in der Übergangszone: RÜCKWEISUNGSKLASSE
- Oder: weitere Messungen einführen (z. B. Farbe)
- Jedes Objekt entspricht einem Punkt im Merkmalsraum
- > 3 Meßgrößen: Visualisierung nicht mehr möglich
- Dimension im Merkmalsraum:
 - Raum, der von den einzelnen Meßwerten aufgespannt wird hochdimensional
 (z. B. Lagerbolzen - 52 Dimensionen im Musterraum)
 - Durch Kombination und Auswahl der Meßwerte: Reduktion der Dimension MERKMALSSELEKTION
- Meßwerte und Features werden so gewählt, dass zwischen den Klassen unterschieden werden kann.
- Distanz zu jedem Objekt derselben Klasse < Distanz zum n\u00e4chsten Nachbarn jeder anderen Klasse
- Cluster sind leider selten kompakt

Merkmalsraum



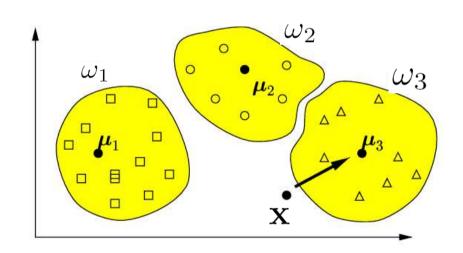
Merkmalsraum





Überwachte Klassifikation

- Klassen sind bekannt
- Klassifikator wird durch LERNEN auf diese Klassen eingestellt
- Trainingsdaten sind Datenvektoren mit bekannter Klasseninformation
- sollen Struktur und Eigenschaften der gesamten Daten möglichst gut beschreiben
- Vorgangsweise:
 - Trainingsdatensatz erstellen
 - Trainingsdatensatz analysieren
 - Klassifikator auswählen
 - Klassifikator trainieren
 - Genauigkeitsabschätzung
 - Klassifikator ist einsatzbereit



Überwachte Statistische Klassifikation

Notation:

• Klassifikationsprozeß
$$\Theta: X \to \Omega$$

maximale Aktivierung

$$S_{\text{max}}(\Phi, \vec{x}) = \omega_i$$
 falls $\varphi_i(\vec{x}) = \max_{i=1,2,...,c} \varphi_j(\vec{x})$

minimale Aktivierung

$$S_{\min}(\Phi, \vec{x}) = \omega_i$$
 falls $\varphi_i(\vec{x}) = \min_{j=1,2,\dots,c} \varphi_j(\vec{x})$

$$X = \{\vec{x}_k \in \Re^o \mid k = 1, 2, ... n\}$$

$$\Omega = \{ \omega_i \mid i = 1, 2, \dots c \}$$

$$c \in \{j \in \aleph \mid 2 \le j\}$$

$$\Theta: X \to \Omega$$

• Entscheidungsfunktionen
$$\Phi = \{ \varphi_i \mid i = 1, 2, ... c \}$$

• wobei
$$\varphi_i: X \to \Re$$
 bezüglich ω_i entscheidet

Bayes Klassifikator

- Minimierung der Fehlklassifikationen
- Entscheidungsfunktion $\varphi_{Bayes_i}(\vec{x}) = P(\omega_i \mid \vec{x})$
- Klassifikator $\Theta_{Bayes}(\vec{x}) = S_{\max}(\Phi_{Bayes}, \vec{x})$
- liefert immer optimale Entscheidung
- ABER: $P(\omega_i | \vec{x})$ nicht bekannt
- Satz von Bayes:

$$P(\alpha_i \mid \vec{x}) = \frac{p(\vec{x} \mid \alpha_i)P(\alpha_i)}{\sum_{k=1}^{c} p(\vec{x} \mid \alpha_k)P(\alpha_k)}$$

damit ergibt sich die Entscheidungsfunktion

$$\varphi_{Bayes_i}(\vec{x}) = p(\vec{x} \mid \omega_i) P(\omega_i)$$

$$\ln \varphi_{Bayes_i}(\vec{x}) = \ln p(\vec{x} \mid \omega_i) + \ln P(\omega_i)$$

• Bayes Klassifikator wird anwendbar, wenn $p(\vec{x} \mid \omega_i)$ durch Modell geschätzt wird

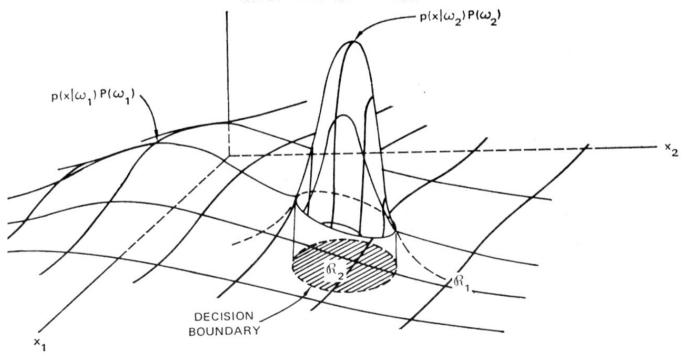
Bayes Klassifikator

Patterns **x** are assigned to a class ω_i as

$$\mathbf{x} \to \omega_j$$
 if $P(\omega_j | \mathbf{x}) = \max_{i=1,\dots,m} P(\omega_i | \mathbf{x})$,

where m is the number of classes. $P(\omega_i|\mathbf{x})$ is the a posteriori probability of the i^{th} class computed by the probability density function $p(\mathbf{x}|\omega_i)$ as

$$P(\omega_i|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_i) P(\omega_i)}{\sum_{j=1}^{m} p(\mathbf{x}|\omega_j) P(\omega_j)}.$$



Maximum Likelihood

Annahme: Wahrscheinlichkeitsdichte jeder Klasse ist eine multivariate Normalverteilung

$$p\left(\mathbf{x}|\omega_{i}\right) = \frac{1}{\left(2\pi\right)^{d/2}\sqrt{|\Sigma_{i}|}} \exp\left[-\frac{1}{2}\left(\mathbf{x} - \mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x} - \mu_{i}\right)\right]$$

- Abschätzung der bedingten Wahrscheinlichkeit für jede Klasse $p(\mathbf{x}|\omega_i)$
- Abschätztung der a-priori Klassenwahrscheinlichkeit $P(\omega_i)$.

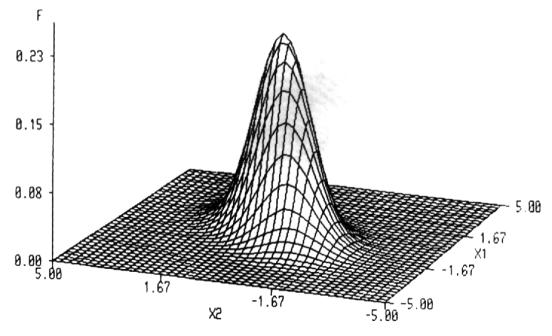


FIG. 7.3. The bivariate normal distribution.

Maximum Likelihood

Entscheidungsfunktion (log-likelihood):

$$\ln \varphi_{Bayes_i}(\vec{x}) = \ln p(\vec{x} \mid \omega_i) + \ln P(\omega_i)$$

$$\varphi_{ML_{i}} = -\frac{1}{2} \ln |\Sigma_{i}| - \frac{1}{2} (\vec{x} - \vec{\mu}_{i})^{T} \Sigma_{i}^{-1} (\vec{x} - \vec{\mu}_{i}) + \ln P(\omega_{i})$$

$$\Theta_{ML}(\vec{x}) = S_{\max}(\Phi_{ML}, \vec{x})$$

Schätzung der Verteilungsparameter (MLE)

Gegeben:

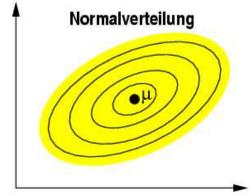
- Die parametrische Struktur der Verteilungsdichten $p\left(\mathbf{x}|\omega_{i}\right)$
- eine etikettierte Lernstichprobe $\{\langle \mathbf{x}_1, \omega_1 \rangle, \langle \mathbf{x}_2, \omega_2 \rangle, \dots, \langle \mathbf{x}_m, \omega_m \rangle\}$

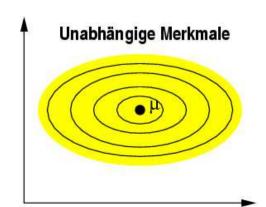
Gesucht:

• Parameter $\vec{\mu}_i$ und Σ_i der Verteilungsdichten $p(\mathbf{x}|\omega_i)$ aus den Lerndaten:

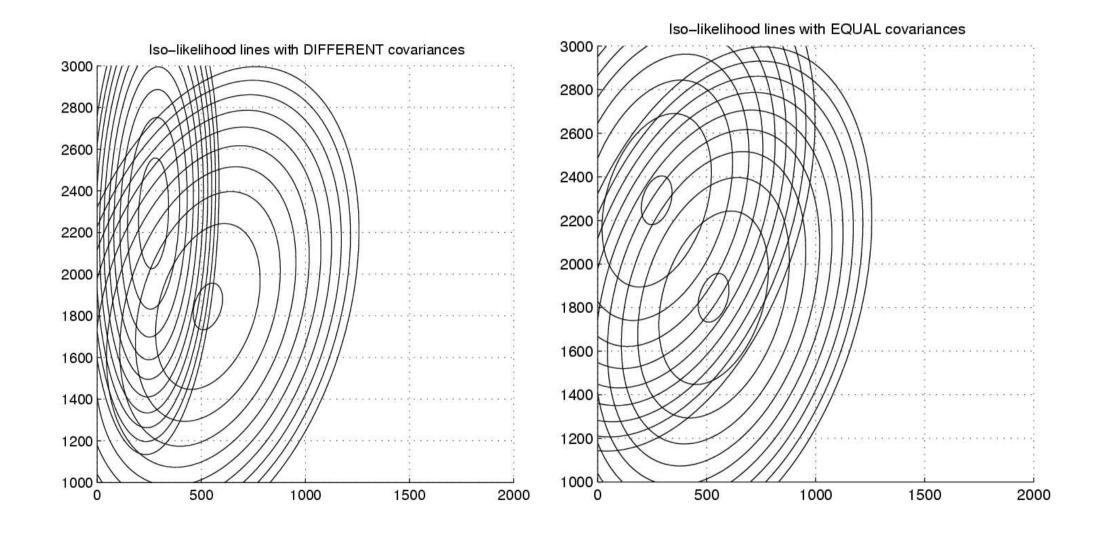
$$\vec{\mu}_{i}^{*} = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \vec{x}_{j} \qquad \qquad \sum_{i=1}^{*} = \frac{1}{n_{i} - 1} \sum_{j=1}^{n_{i}} \left(\vec{x}_{j} - \vec{\mu}_{i}^{*} \right) \left(\vec{x}_{j} - \vec{\mu}_{i}^{*} \right)^{T}$$

Form der Kovarianz-Matrix:





Iso-likelihood lines for the Gaussian pdf



Parametric Classifier

Discriminant function:

$$\mathcal{P}_{ML_i} = -\frac{1}{2} \left(\mathbf{x} - \mu_i \right)^T \Sigma_i^{-1} \left(\mathbf{x} - \mu_i \right) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P \left(\omega_i \right)$$

• Case 1 (Minimum distance classifier)

Assumption: $\Sigma_i = \sigma^2 \mathbf{I}$ Kovarianzmatrix aller Klassen

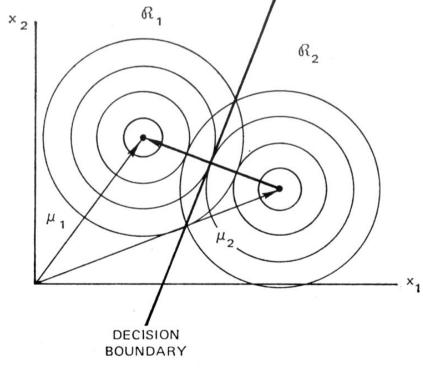
sind gleich. Die Komponenten

sind voneinander unabhängig und

haben gleiche Varianz

Discriminant function:

$$arphi_{ML_i} = -rac{\parallel \mathbf{x} - \mu_i \parallel^2}{2\sigma^2} + \ln P\left(\omega_i
ight)$$



weitere Vereinfachung: Verzicht auf a priori Wahrscheinlichkeit

Parametric Classifier

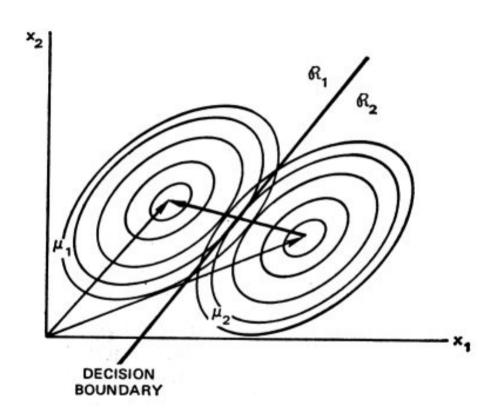
Case 2 (Mahalanobis distance classifier)

Assumption:
$$\Sigma_i = \Sigma$$

Kovarianzmatrix aller Klassen ist gleich

Discriminant function:

$$oldsymbol{arphi}_{ML_i} = -rac{1}{2} \left(\mathbf{x} - \mu_i
ight)^T \Sigma^{-1} \left(\mathbf{x} - \mu_i
ight) + \ln P\left(\omega_i
ight)$$



• Case 3 (Covariance matrices are arbitrary)

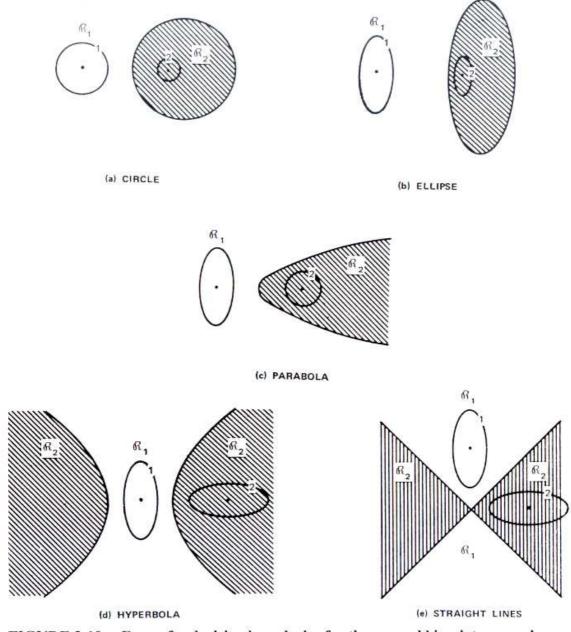
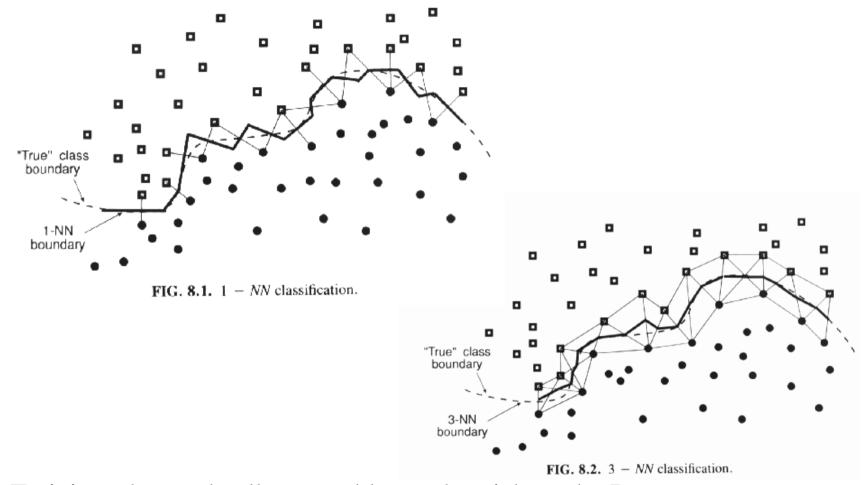


FIGURE 2.10. Forms for decision boundaries for the general bivariate normal case.

Nichtparametrische Klassifikation

- Probleme beim Bayes Ansatz:
 - Entscheidungsregeln nicht immer einfach
 - Komplizierte Berechnung für nicht normalverteilte Parametrisierung
 - Aufgrund der Minimierung der Fehlklassifikationen: Klassen mit geringer a priori Wahrscheinlichkeit haben wenig Einfluß aufs Design
 - A priori Wahrscheinlichkeit ist schwer abzuschätzen
- Nearest Neighbor Klassifikator
 - Ein Prototyp pro Klasse speichern, Distanz zu allen Prototypen bestimmen:
 - Minimum Distanz Klassifikator
 - Viele Prototypen pro Klasse speichern Chancen für richtige Klasse steigen 1-NN
 - ◆ Verbesserung entlang der Klassengrenzen: k n\u00e4chste Nachbarn bestimmen und Mehrheit ausw\u00e4hlen k-NN Klassifikator

k-NN Klassifikator



Trainingsphase schnell - auswählen und speichern der Prototypen Klassifikation sehr rechenaufwendig - Vergleich mit allen Prototypen

k-NN Klassifikator mit Rückweisungsklasse

- 2-stufiger Schwellwert: (k,l) Methode: Mindestens 1 von k Nachbarn müssen dieselbe Entscheidung liefern, ansonsten wird das Objekt zurückgewiesen.
- ideal: Unendliche # von Prototypen
- aber: benötigt zuviel Speicherplatz und Rechenzeit
- Abhilfe: innere Prototypen sind redundant
- nur Prototypen entlang der Grenzen speichern

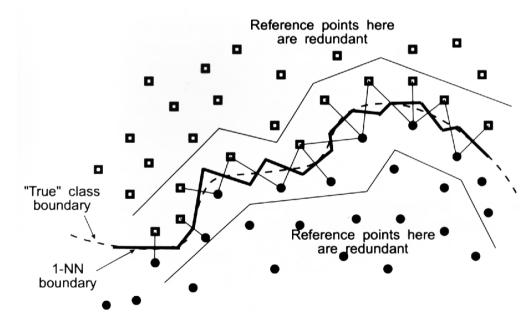
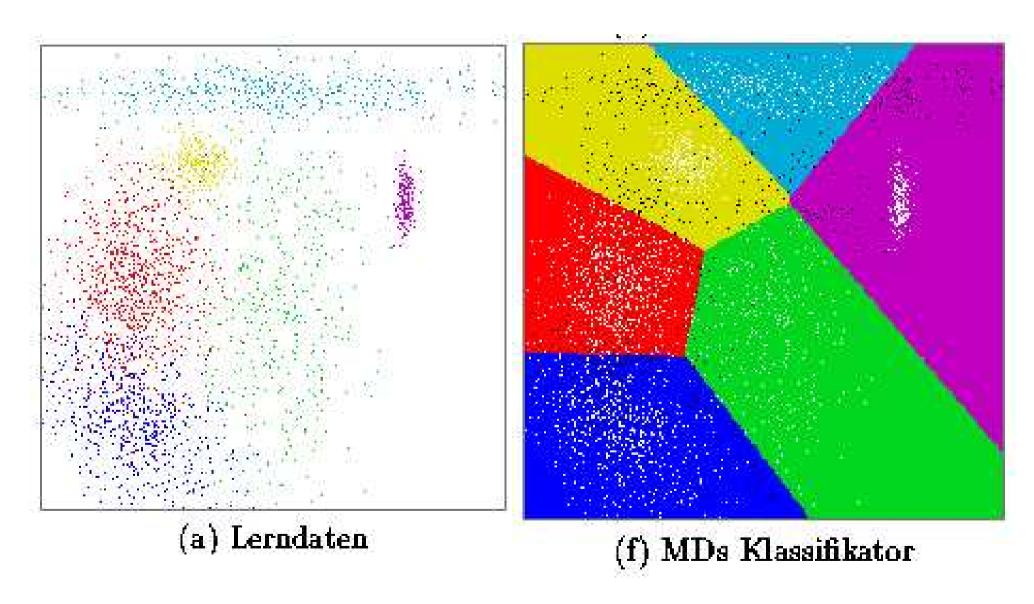
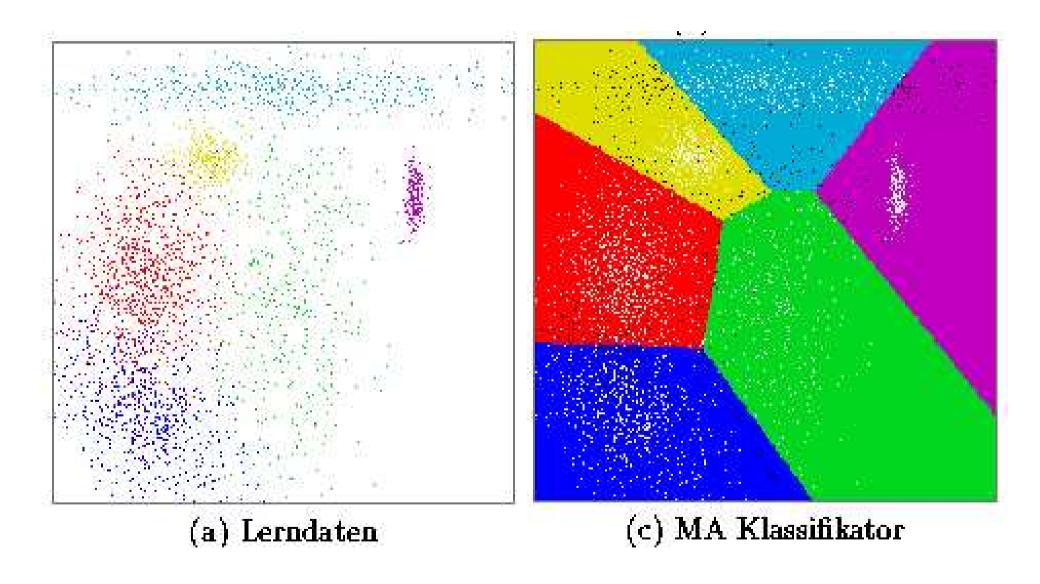
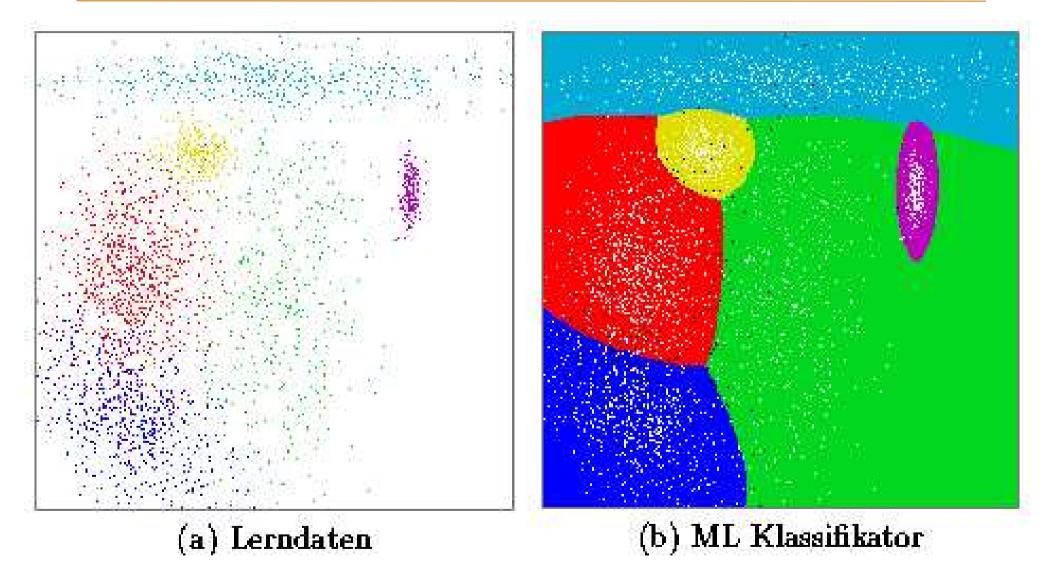
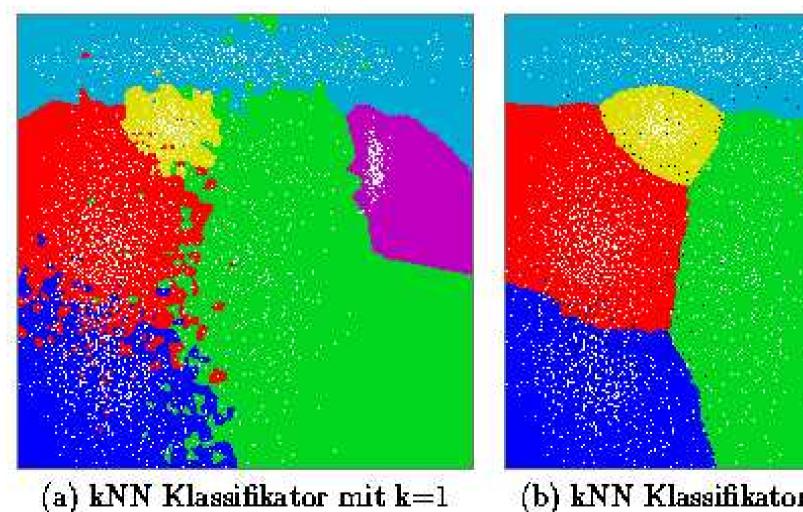


FIG. 8.4. Redundant points in nearest-neighbor method.









(b) kNN Klassifikator mit k=70

Genauigkeitsabschätzung

• Warum?

- Qualitätsbeurteilung
- Klassifikatorauswahl
- Methoden:
 - aus den Lerndaten
 - Holdout/Cross-Validation
 - Leave one Out
 - *n*-fold Cross-Validation

Genauigkeitsabschätzung aus den Lerndaten

Fehlklassifikationstabelle: (optimistische Schätzung)

Correct		No. of				
class	1	2	3	4	5	Objects
1	94	1	2	0	11	108
	17.41%	0.19%	0.37%	0.00%	2.04%	20.00%
2	0	95	3	10	0	108
	0.00%	17.59%	0.56%	1.85%	0.00%	20.00%
3	3	1	94	3	10	108
	0.56%	0.19%	17.41%	0.56%	1.30%	20.00%
4	0	10	5	88	5	108
	0.00%	1.85%	0.93%	16.30%	0.93%	20.00%
5	8	1	7	2	90	108
	1.48%	0.19%	1.30%	0.37%	16.67%	20.00%

Genauigkeitsabschätzung

Holdout/Cross-Validation

- ◆ Aufteilung der Referenzdaten in Lerndatenset und Validationsdatenset (zufällige Auswahl!)
- Fehlerschätzung am Validationsdatenset
- Nachteil: nicht alle Referenzdaten werden zum Training verwendet
- liefert pessimistische Schätzung

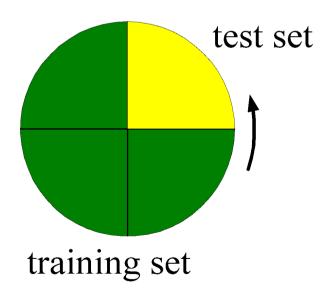
Leave-one-out

- ◆ p Referenzdaten aufspalten in p-1 Lerndaten und 1 Validationsdatum
- ❖ Klassifikatordesign für alle p Partitionen (p mal Lernen!)
- Fehlerschätzung durch Mittelwert über alle Validationsdaten
- wird vor allem bei kleinen Referenzdatensätzen verwendet.

Genauigkeitsabschätzung

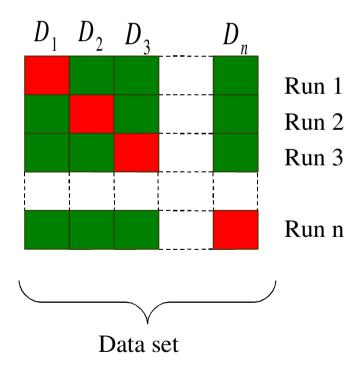
n-fold Cross-Validation

- ◆ Aufteilung der Referenzdaten in *n* Teile, *n*−1 Teile als Lerndaten und 1 Teil als Validationsdaten
- ❖ Klassifikatordesign für alle n Partitionen (n-mal Lernen!)
- Qualitätsbeurteilung durch Mittelung über alle Validationsergebnisse
- Tatsächliches Design meist unter Verwendung aller Referenzdaten



Genauigkeitsabschätzung: n-fold Cross-Validation

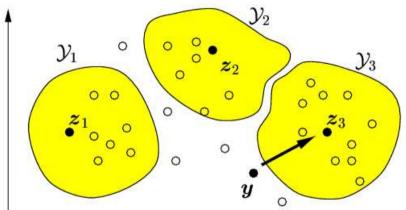
- Evaluating the performance of a classifier: *n*-fold cross validation
- Partition the data set in *n* segments
- Do *n* times
 - Train the classifier with the green segments
 - Test accuracy on the red segments
- Compute statistics on the *n* runs
 - Mean squared error
 - Variance



Unüberwachtes Lernen (Klassifikation)

 Unüberwachtes Lernen ist der Versuch, Strukturen in einer Menge von Beobachtungen ohne gegeben Klassenzuordnung (Unlabeled Samples) zu finden.

- Merkmalvektoren $\boldsymbol{x} \in \mathbb{R}^D$
- \bullet Repräsentantenvektoren $\boldsymbol{z}_1, \dots, \boldsymbol{z}_K$
- Nichtetikettierte Lernstichprobe

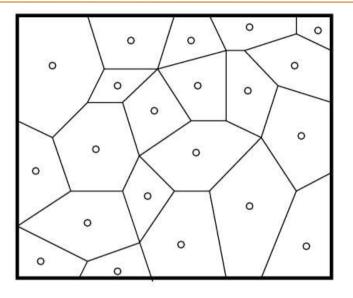


- Anwendungsgebiete:
 - Datenreduktion durch Vektorquantisierung
 - Klassenmodellierung mit Mischverteilungen (Mixtures of Gaussians)
 - Wieviele Klassen kommen in den Daten vor?
 - Wo liegen die Cluster?

Unüberwachtes Lernen: Vektorquantisierung

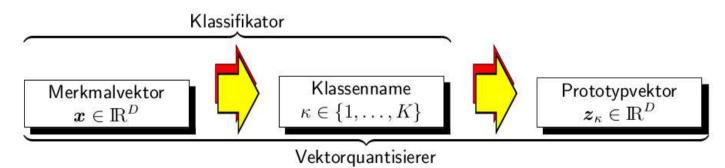
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	o	0	0	0	0

Uniforme Quantisierung der Ebene



Nicht-uniforme Quantisierung

Klassifikation und Vektorquantisierung



2004

Unüberwachtes Lernen: Vektorquantisierung

Ein Vektorquantisierer ist ein Operator

$$q: egin{array}{cccc} \mathbb{R}^D &
ightarrow & \mathcal{Z} = \{oldsymbol{z}_1, \ldots, oldsymbol{z}_K \} \ oldsymbol{x} & \mapsto & q(oldsymbol{x}) \end{array}$$

- z_{κ} ist der κ -te **Prototypvektor**
- \circ \mathcal{Z} ist das (endliche) Kodebuch des Quantisierers
- K ist die Kodebuchgröße

Disjunkte Zerlegung von \mathbb{R}^D ("Partition")

$$\mathbb{R}^D = \mathcal{Y}_1 \cup \cdots \cup \mathcal{Y}_K$$

in **Zellen** der Form

$$\mathcal{Y}_{\kappa} \stackrel{ ext{def}}{=} \left\{ oldsymbol{x} \mid q(oldsymbol{x}) = oldsymbol{z}_{\kappa}
ight\}$$

Der optimale Vektorquantisierer minimiert die Verzerrung

$$\varepsilon = \mathcal{E}[d(\boldsymbol{X}, q(\boldsymbol{X})] = \sum_{\kappa=1}^{K} \int_{x \in \mathcal{Y}_{\kappa}} d(\boldsymbol{x}, \boldsymbol{z}_{\kappa}) d\boldsymbol{x}$$

Unüberwachtes Lernen: Vektorquantisierung

- Bedingungen für das Kodebuch und die Zellenstruktur des minimal verzerrenden Quantisierers:
 - ⇒ Der optimale VQ wählt stets den *nächstliegenden* Prototypen zur Klassifikation aus.

$$q(\cdot) \quad \rightsquigarrow \quad \hat{\mathcal{Y}}_{\kappa}(\mathcal{Z}) \ = \ \{oldsymbol{x} \in \mathbb{R}^D \mid d(oldsymbol{x}, oldsymbol{z}_{\kappa}) = \min_{\lambda} d(oldsymbol{x}, oldsymbol{z}_{\lambda})\}$$

Für ein gegebenes Kodebuch \mathcal{Z} ruft die Klassenzerlegung $\hat{\mathcal{Y}}_1(\mathcal{Z}), \dots, \hat{\mathcal{Y}}_K(\mathcal{Z})$ den kleinsten Quantisierungsfehler hervor.

 \Rightarrow Prototypvektor \boldsymbol{z}_{κ} ist immer das $Klassenzentroid \boldsymbol{z}(\mathcal{Y}_{\kappa})$

Unüberwachtes Lernen: Clustering

Vorgangsweise:

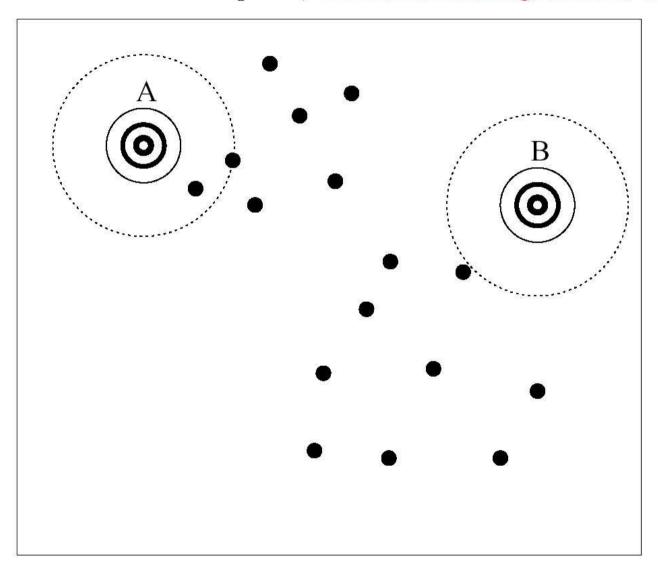
- 1) Startwerte für Klassenzentren wählen (Anzahl der Cluster definieren),
- 2) Zuweisen eines Objektes zum nächsten Klassenzentrum (z.B.: Euklidischer Abstand),
- 3) Aufgrund der zugewiesenen Punkt Klassenzentren neu berechnen,
- 4) Zurück zu 2) solange bis Klassenzentren konstant bleiben.

• Algorithmen:

- k-means Clustering (Kriterium: Least Squared Distance)
- Expectation-Maximization (EM) Algorithmus (Kriterium: Maximum Likelihood)

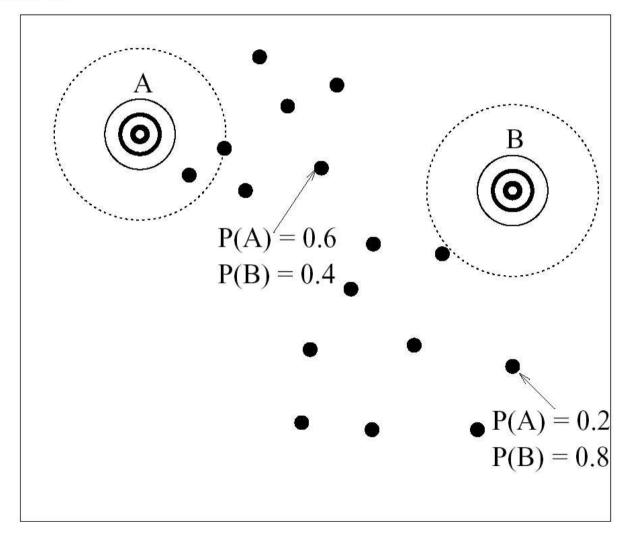
Unüberwachtes Lernen: Clustering

Hidden variable: for each point, which Gaussian generated it?



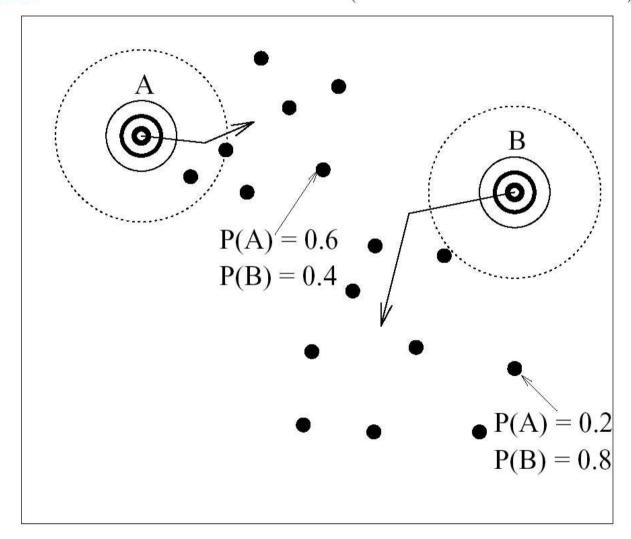
Unüberwachtes Lernen: Clustering/EM

E-Step: for each point, estimate the probability the each Gaussian generated it



Unüberwachtes Lernen: Clustering/EM

M-Step: modify the parameters according to the hidden variable to maximize the likelihood of the data (and the hidden variable)



Unüberwachtes Lernen: Clustering/EM

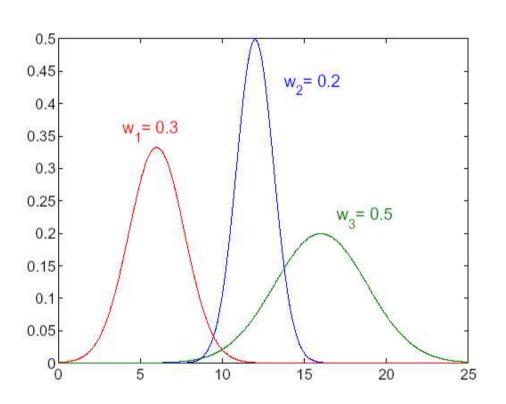
• Objective: maximize the likelihood $p(X; \theta)$ of the data X drawn from an unknown distribution, given the model parameterized by θ :

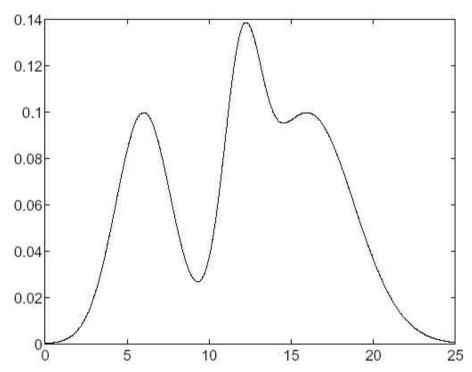
$$\theta^* = \arg \max_{\theta} p(X|\theta) = \arg \max_{\theta} \prod_{p=1}^{n} p(x_p|\theta)$$

- Basic ideas of EM:
 - Introduce a hidden variable such that its knowledge would simplify the maximization of $p(X; \theta)$
 - At each iteration of the algorithm:
 - E-Step: estimate the distribution of the hidden variable given the data and the current value of the parameters
 - M-Step: modify the parameters in order to maximize the joint distribution of the data and the hidden variable

Gaussian Mixture Models

- Zur Modellierung von nicht uni-modalen Verteilungen
- Gaussian Mixture = Summe mehrerer Gauss-Verteilungen





Gaussian Mixture Models

- A Gaussian Mixture Model (GMM) is a distribution
- The likelihood given a Gaussian distribution is

$$\mathcal{N}(x;\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{|x|}{2}}\sqrt{|\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

where μ is the mean and Σ is the covariance matrix of the Gaussian. Σ is often diagonal.

• The likelihood given a GMM is

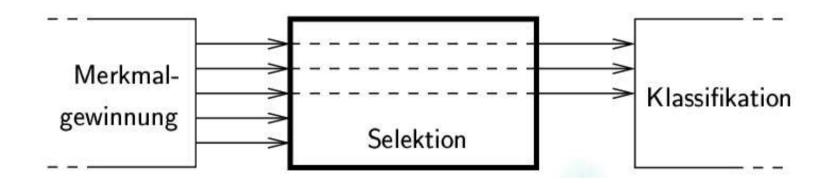
$$p(x) = \sum_{i=1}^{N} w_i \cdot \mathcal{N}(x; \mu_i \Sigma_i)$$

where N is the number of Gaussians and w_i is the weight of Gaussian i, with

$$\sum_{i} w_i = 1 \text{ and } \forall i : w_i \ge 0$$

Feature Selection

• Reduction of the number of features to a set of a few significant ones which optimize the classification performance.



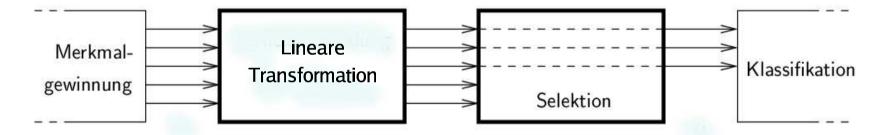
- Basic steps of a *genetic algorithm* for automatic selection of the "best" features:
 - 1. A generation procedure to generate the next subset of features *X*.
 - 2. An evaluation criterion *J* to evaluate the quality of *X*.
 - 3. A stopping criterion for concluding the search. In can either be based on the generation procedure or on the evaluation function.
 - 4. A validation procedure for verifying the validity of the selected subset.

Feature Selection: Merkmalraumtransformation

- Reduktion der Vektordimension
 - Geringerer Klassifikationsaufwand
 - ◆ Robustere Schätzung statistischer Parameter

Lineare Transformationsvorschrift

$$oldsymbol{arphi}: egin{array}{cccc} \mathbb{R}^D & o & \mathbb{R}^d \ oldsymbol{x} & \mapsto & oldsymbol{y} = oldsymbol{arphi}(oldsymbol{x}) = oldsymbol{\Phi}^ op oldsymbol{x} \end{array} & ext{mit } d \leq D$$



- Gütekriterien für die Transformation: $\varphi(\cdot)$
 - ◆ Varianzmaximierung ⇒ Hauptkomponentenanalyse (PCA, Karhunen-Loève Transform)
 - ◆ Klassenseparation ⇒ Lineare Diskriminanzanalyse (LDA)

Feature Selection: Normierung der Merkmale

- Kompensieren unterschiedlicher Bereiche von Merkmalen. Um im Merkmalsraum Distanzmaße zum Klassifizieren verwenden zu können
- Musterraum

Mittelwert f
ür jede Spalte

$$m\left(j\right) = \frac{1}{N} \sum_{i=1}^{N} x_{ij}$$

Standardabweichung f
ür jede Spalte

$$s(j) = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_{ij} - m(j))^{2}}$$

Feature Selection: Normierung der Merkmale

Mean absolute deviation (Einfluss von Outliern wird unterdrückt)

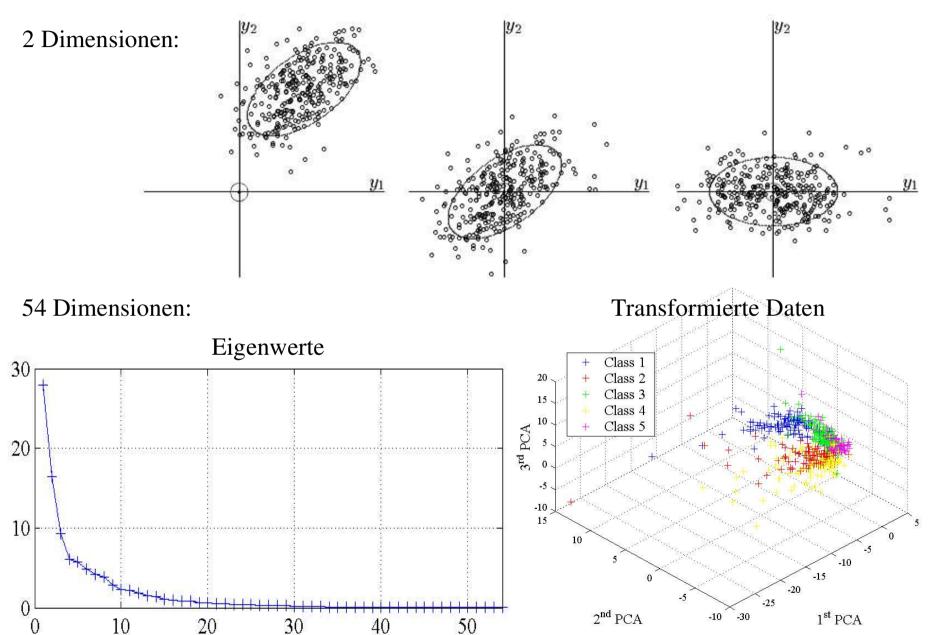
$$ar{s}\left(j
ight) = rac{1}{N} \sum_{i=1}^{N} \left|x_{ij} - m\left(j
ight)
ight|$$

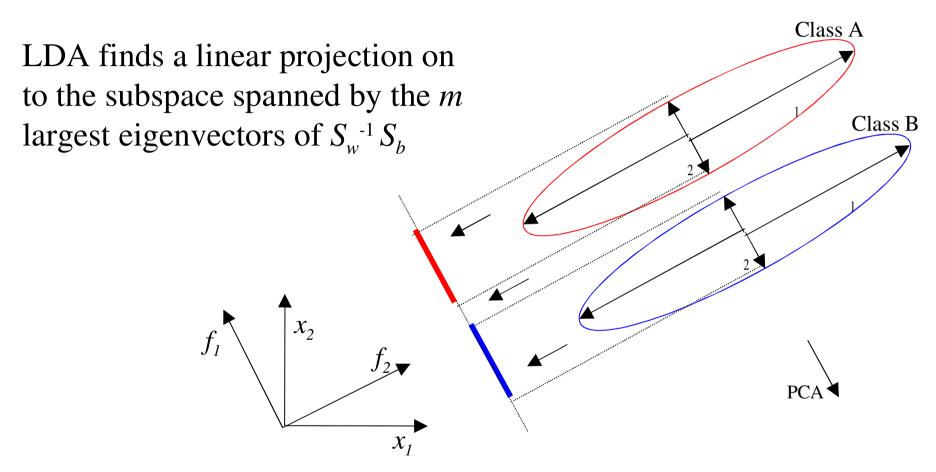
• Normierung: The following normalization of the feature values x_{ij}

$$z_{ij} = rac{x_{ij} - m(j)}{\overline{s}(j)}$$

yields feature values z_{ij} with m(j) = 0 and $\bar{s}(j) = 1$.

Feature Selection: Hauptkomponentenanalyse



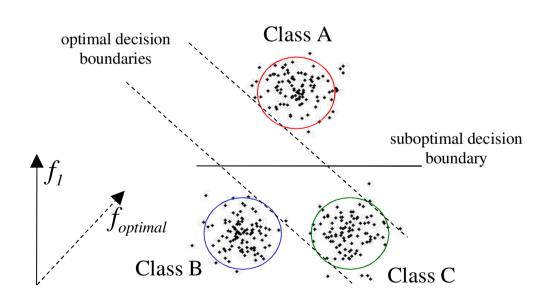


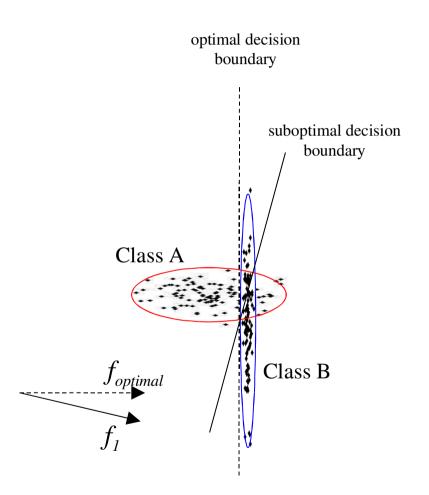
Optimal for m+1 linear separable classes c

2004

Feature Selection: Limitations of LDA

- ◆ Suboptimal for more than *m*+1 classes (*m* is the number of extracted features)
- Classes should be linear separable





Referenzen

- R.O. Duda and P.E. Hart, *Pattern Classification and Scene Analysis*. Wiley&Sons, Inc., 1973.
- R. Bolter, *Bildverarbeitung und Mustererkennung*, Vorlesung ICG Graz, 2000.
- S. Bengio, *An Introduction to Statistical Machine Learning EM for GMMs*, Dalle Molle Institute for Perceptual Artificial Intelligence.
- E.G. Schukat-Talamazzini, *Automatische Spracherkennung*, Vieweg-Verlag, 1995.
- F. Pernkopf, Automatic Visual Inspection of Metallic Surfaces, PhD Thesis, Leoben 2002.
- C.R. Houck, J.A. Joines, G.M. Kay, A Genetic Algorithm for Function Optimization: A Matlab Implementation, North Carolina State University.
- M. Obikito, *Introduction to Genetic Algorithms*, Hochschule für Technik und Wirtschaft Dresden, 1998.