Orthogonal Frequency Division Multiplexing (OFDM): Concept and System-Modeling

Klaus Witrisal

Signal Processing and Speech Communication Lab Technical University Graz, Austria

VL: Mobile Radio Systems, Ch. 5: "Wideband Systems" 15-Dec-10

Outline

- Introduction
 - What is OFDM?
 - Multipath fading radio-channel
- Principle of OFDM
- OFDM Implementation and System Model
- Advantages and Disadvantages
- OFDM in Practice
- Summary

What is OFDM?

- Modulation technique
 - Requires channel coding
 - Solves multipath problems

Multipath Propagation

• Reflections from walls, etc.

Time dispersive channel
Impulse response:

- Problem with high rate data transmission:
 - inter-symbol-interference

Inter-Symbol-Interference

Outline

- Introduction
 - What is OFDM?
 - Multipath fading radio-channel
- Principle of OFDM
- OFDM Implementation and System Model
- Advantages and Disadvantages
- OFDM in Practice
- Summary

The Frequency-Selective Radio Channel

- Interference of reflected (and LOS) radio waves
 - Frequency-dependent fading

Outline

- Introduction
 - What is OFDM?
 - Multipath fading radio-channel
- Principle of OFDM
- OFDM Implementation and System Model
- Advantages and Disadvantages
- OFDM in Practice
- Summary

ГUG

Generating the OFDM signal (1)

- Symbol (QPSK) of sub-carrier i at time k
 - Other symbol-alphabets can be used as well (BPSK, m-QAM)
- Baseband signal is generated by DSP

Spectrum of the modulated data symbols

Generating the OFDM signal (2)

Idea of Guard Interval (GI)

OFDM System Model

• Multiplication of data symbols with (complex-valued) channel transfer-function:

OFDM Block Diagram

Outline

- Introduction
- Principle of OFDM
- OFDM Implementation and System Model
- Advantages and Disadvantages
- OFDM System Design
 - Parameter selection
 - Implementation Issues
- Summary and Applications

 T_{FFT}

OFDM System Design

OFDM Symbol Configuration (2)

- Not all FFT-points can be used for data carriers
 - Lowpass filters for AD- and DA-conversion
 - oversampling required
 - DC offsets; carrier feedtrough; etc.

Outline

- Introduction
 - What is OFDM?
 - Multipath fading radio-channel
- Principle of OFDM
- OFDM Implementation and System Model

Advantages and Disadvantages

- OFDM in Practice
- Summary

Advantages of OFDM

- Solves the multipath-propagation problem
 - Simple equalization at receiver
- Computationally efficient
 - For broadband systems more efficient than SC
- Supports several multiple access schemes
 - TDMA, FDMA, MC-CDMA, etc.
- Supports various modulation schemes
 - Adaptability to SNR of sub-carriers is possible
- Elegant framework for MIMO-systems
 - Any interference among symbols is removed

Problems of OFDM (Research Topics)

Received signal with f-offset: r_i = s_i exp(j2π δf i/N)
 – Constant phase offset between samples spaced by L

Outline

- Introduction
 - What is OFDM?
 - Multipath fading radio-channel
- Principle of OFDM
- OFDM Implementation and System Model
- Advantages and Disadvantages
- OFDM in Practice
- Summary

Applications of OFDM

- Wireless LAN
 - IEEE802.11a/g
 - HYPERLAN
- DAB, DVB, etc.
 - Digital Audio/Video Broadcasting

• xDSL (Digital Subscriber Line)

- uses Discrete Multitone (DMT)

Summary – Essential "Ingredients"

- IFFT & FFT
 - For efficient implementation
- Guard interval insertion
 - Obtaining simple equalization
 - Removing all IS- & IC-interferences
- Error correction coding
 - To restore bits that are lost on weak sub-carriers

