Narrowband Systems – Principle of Diversity and MIMO Systems

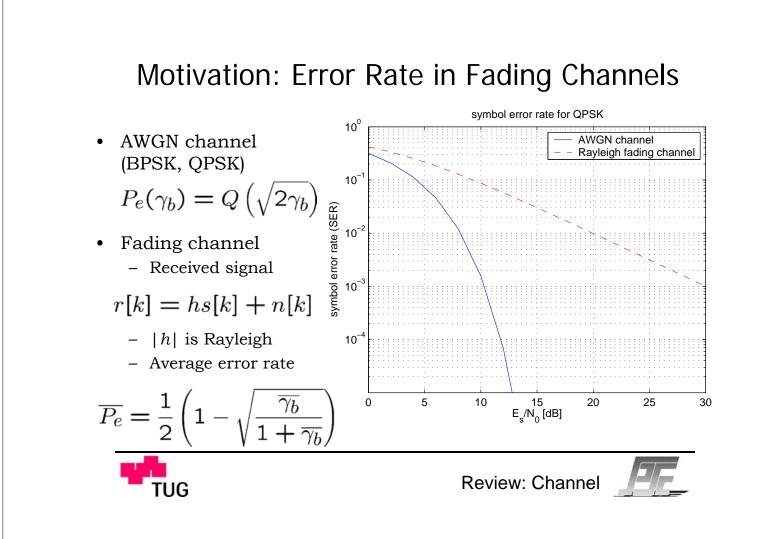
Klaus Witrisal

Signal Processing and Speech Communication Lab Technical University Graz, Austria

VL: Mobile Radio Systems, 29-Jan-14

Outline

- What is MIMO?
 - Error Rate in Fading Channels
 - Multiple Antennas in Wireless
- Channel and Signal Models
- Spatial Diversity
- Space-Time (ST) Coding
- Summary



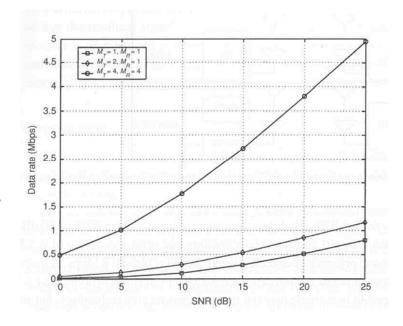
References

- A. Paulraj *et al.*, *Introduction to Space-Time Wireless Communications*. Cambridge University Press, 2003. (http://www.stanford.edu/group/introstwc/)
 – Figures copied from this reference
- A. F. Molisch: Wireless Communications, 2005, Wiley
- J. R. Barry, E. A. Lee, D. G. Messerschmitt: Digital Communication, 3rd ed., 2004, Kluwer
- J. G. Proakis: *Digital Communications*, 4th ed., 2000, McGraw Hill
- E. Larsson and P. Stoica, *Space-Time Block Coding for Wireless Communications*. Cambridge University Press, 2003.
- S. M. Alamouti, "A Simple Transmit Diversity Technique for Wireless Communications," *IEEE J. Sel. Ar. Commun.*, vol. 16, no. 8, Oct. 1998.

What is MIMO?

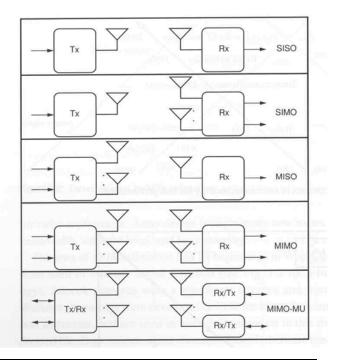
- Application of Multiple Antennas (at the Transmitter and/or Receiver) to improve the link performance:
- Coverage (range)
- Quality
- Interference Reduction
- Spectral Efficiency

Multiple Antennas in Wireless - History


- Non-adaptive:
 - Directive antenna arrays (Marconi 1900)
- Adaptive:
 - Interference suppression by beam steering (military: 70's, 80's)
 - Receiver ST-Techniques to support co-channel signals: 90's
 - TX-RX ST-Techniques: 2000

Multiple Antennas in Wireless – Potential

- Data rate at 95% reliability in a 200 kHz fading channel
- At SNR = 20 dB:
 - SISO: 0.5 MBit/s
 - 2 TX, 1 RX: 0.8 MBit/s
 - 4 TX, 4 RX: 3.75 MBit/s



EF

Antenna Configurations

- Number of TX-antennas: M_T
- Number of RX-antennas: M_R
- MIMO channels can be exploited in several ways

Exploiting Multiple Antennas – Array Gain

- Array Gain:
 - Average increase in SNR due to coherent combining (at TX / RX or both) → beamforming
 - Average increase in SNR at RX is prop. M_R
 - MISO/MIMO (if $M_T > 1$): Channel knowledge required at TX to obtain array gain

Exploiting Multiple Antennas – Diversity Gain (1)

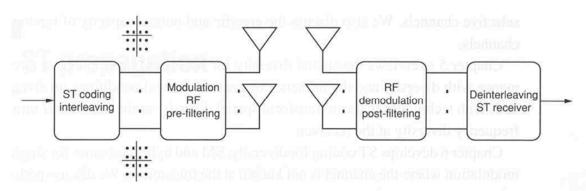
- Fading channel: variations of signal power
 - Diversity is used to combat fading (PDF of fading amplitude is changed)
- Receive antenna diversity (SIMO)
- Diversity order:
 - number of **independently** fading branches
 - In SIMO: number of RX antennas (if independent)

Exploiting Multiple Antennas – Diversity Gain (2)

- Transmit Diversity (MISO)
 Possible with and without channel knowledge
- Space-time (ST) diversity coding:
 - applies coding across space to extract diversity
 without channel knowledge
 - Diversity order M_T (if channels are independent)
- MIMO: combination of Tx- and Rx-Diversity
 - Diversity order: $M_T M_R$

Exploiting Multiple Antennas – Spatial Multiplexing (SM)

- Linear (in $\min(M_T, M_R)$) increase in rate or capacity
 - no additional bandwidth
 - no additional power
- Requires MIMO-channels
- Multiplexing
 - Divide bit stream in several sub-streams
 - Transmit those from each antenna
 - Receiver can extract both streams knowing channels
 - → increase of rate prop. number of antenna pairs (example on blackboard)
- For multi-users: MIMO-MU, SDMA


Exploiting Multiple Antennas – Interference Reduction

- Co-channel interference due to frequency-reuse
 - With multiple antennas, spatial signature of desired signal can be used to reduce interference
 - Requires channel knowledge
 - Can also be applied at TX (don't send to co-channel users)
- Exploiting multiple antennas:
 - It is generally **not possible** to achieve all goals simultaneously

ST Wireless Communications System

- Multiple antennas
- ST encoding and interleaving
- ST pre- and post-filtering
- ST decoding and de-interleaving

Outline

- What is MIMO?
- Channel and Signal Models
 - Narrowband
 - (Wideband)
- Spatial Diversity
- Space-Time (ST) Coding
- Summary

Fading (Small-Scale, Microscopic)

• Multipath:

- Superposition of large number of scattered waves
 - Various magnitudes and phases
- Re- and Im-components (of complex phasors) add up to complex Gaussian (by CLT)
- Amplitude distribution:
 - Rayleigh fading:
 - Mean values of Re/Im-components are zero
 - Ricean fading:
 - Dominant component
 - K-factor: power in dominant / power in scattered rays

Channel Variability

- Time Variability Doppler Spread
 Coherence time and Doppler spread: T_C = 1/v_{rms}
- Frequency Selectivity Delay Spread
 Coherence BW and RMS Delay spread: B_C = 1/τ_{rms}
- Space Selective Fading Angle Spread
 Coherence distance and Angle spread: D_C = 1/θ_{ms}
 - Doppler/Delay/Angle power spectra: average power as a function of ...

TUG	back	
Array	, Topologies	
	$3 - 30\lambda_c$ (a)	en Marine Hari Bacherist
$\bigvee_{\lambda_{c'}/2} \bigvee \bigvee$	(b) (b)	
	(c) +45 pol -45 pol	mensions. Indiana India Indiana India Indiana
TUG	(d)	EE

Signal Models

- Input output relation
- Classifications:
 - SISO, SIMO, MISO, MIMO
 - Continuous time discrete time (sampled)
 - Frequency flat channel ($T_s >> \tau_{rms}$ or $B << B_C$) frequency selective channel ($B\tau_{rms} > 0.1$)

(we focus on **narrowband** systems → **flat fading**)

- For sampled signal model (single carrier), normalizations are introduced:
 - Bandwidth = 1 Hz, symbol period = 1 s

Sampled Signal Models (1) – Math

• Frequency selective case (SISO)

$$y[k] = \sum_{l} \sqrt{E_s} s[l]h[k-l] + n[k]$$

• Frequency flat case (SISO) - channel is complex gain

$$y[k] = \sqrt{E_s} hs[k] + n[k]$$

• Frequency flat case (MIMO) - vector notation

$$\mathbf{y}[k] = \sqrt{\frac{E_s}{M_T}} \mathbf{H}\mathbf{s}[k] + \mathbf{n}[k]$$

Sampled Signal Model (2) – SISO

- $h[k] \dots T_s$ -spaced sampled channel
 - l = 0, 1, ..., L 1; L ... channel length in samples
 - complex equivalent baseband channel; incorporates:
 - physical channel, pulse-shaping at TX, matched filter on RX, sampling delay
- *s*[*k*] ... symbols to be transmitted
 - scalar linear modulation: PAM, QAM
- *n*[*k*] ... noise samples
 - assumed white ZMCSCG (zero-mean circular symmetric complex Gaussian) noise; var{n[k]} = $\sigma_n^2 = N_0$
- y[k] ... received signal

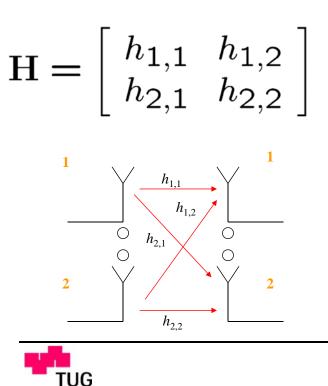
Sampled Signal Model (3) -Normalizations

- Channel
 - Channel in frequency flat channels: $E\{|h|^2\} = 1$
 - Rayleigh case: h is ZMCSCG (zero-mean circular symmetric complex Gaussian)
 - Multipath channels: total average energy of all taps = 1
- Signal
 - Signal energy: average transmit symbol energy (= power, since $T_s = 1$ s) E_s
 - MIMO, MISO: energy per symbol per antenna $E_{\rm s}/M_T$
 - data are IID with zero mean, unit average energy symbol constellations

• Noise

- noise power σ_n^2 = noise PSD N_0 due to B = 1 Hz

Sampled Signal Model (4) – MIMO (1)


Drop time-index k
$$\mathbf{y} = \sqrt{\frac{E_s}{M_T}} \mathbf{H} \mathbf{s} + \mathbf{n}$$

with

 $\mathbf{y} = [y_1, y_2, ..., y_{M_R}]^T \dots M_R \times 1 \text{ received signal vector}$ $\mathbf{s} = [s_1, s_2, ..., s_{M_T}]^T \dots M_T \times 1 \text{ transmitted signal vector}$ $\mathbf{n} = [n_1, n_2, ..., n_{M_R}]^T \dots M_R \times 1 \text{ noise vector}$ $\mathbf{H} \dots M_R \times M_T \text{ channel matrix (complex channel gains)}$ $\mathbf{noise:} \ n_i \sim (0, \sigma_n^2 = N_0), \text{ i.e. } E\{\mathbf{nn}^H\} = N_0 \mathbf{I}_{M_R}$

Sampled Signal Model (5) – MIMO (2)

- Frequency-flat channel
 - Channel impact expressed by complex factors: channel transfer matrix
- H = H_w is often assumed IID (spatially white channel)
 - in rich scattering

Statistical Properties of H - background

- Singular values of **H**
 - **H** has rank r
 - SVD: $\mathbf{H} = \mathbf{U} \Sigma \mathbf{V}^{H}$: $M_R \ge M_T$
 - **U**: $M_R \ge r$
 - **V**: $M_T \ge r$
 - Σ = diag{ $\sigma_1 \sigma_2 \dots \sigma_r$ } (singular values)
- Eigen-decomposition of $\mathbf{H}\mathbf{H}^{H} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{H}$

$$- \mathbf{\Lambda} = \operatorname{diag}\{\lambda_1 \, \lambda_2 \dots \, \lambda_r\}$$

$$\lambda_i = \begin{cases} \sigma_i^2 & i = 1, 2, \dots, r \\ 0 & i > r \end{cases}$$

Squared Frobenius Norm of H

• Definition

$$\left\|\mathbf{H}\right\|_{F}^{2} = \operatorname{Tr}(\mathbf{H}\mathbf{H}^{H}) = \sum_{i=1}^{M_{R}} \sum_{j=1}^{M_{T}} \left|h_{i,j}\right|^{2}$$

- Interpretation: total power gain of channel
- Using EV decomposition:

$$\left\|\mathbf{H}\right\|_{F}^{2} = \sum_{i=1}^{M_{R}} \lambda_{i}$$

- PDF of power gain, when $\mathbf{H} = \mathbf{H}_{w}$ (IID channel)
 - chi-square distribution with $2M_T M_R$ degrees of freedom $r^{M_T M_R-1}$

$$f(x) = \frac{x^{-x}}{(M_R M_T - 1)!} e^{-x} \sigma(x)$$

(Wideband channels)

- Single carrier systems:
 - MIMO channel consists of channel impulse responses $h_{i,j}(t)$
 - Received signal is convolution with channels
 - MIMO system requires equalization \rightarrow different fading at different delay taps can be exploited (RAKE receiver)

Outline

- What is MIMO?
- Channel and Signal Models
- Spatial Diversity
 - Diversity gain
- Space-Time (ST) Coding
- Summary

Diversity Gain (1)

- Wireless links are impaired by fading
- Diversity:
 - combine multiple **branches**; ideally uncorrelated
 - \rightarrow reduce probability for deep fades
 - Condition for independence: separation > B_C , T_C , D_C
- Signal/symbol *s* sent over *M* branches:

$$y_i = \sqrt{\frac{E_s}{M}}h_i s + n_i, \qquad i = 1,...M$$

 E_s/M ... symbol energy/branch h_i ... channel gain factor n_i ... ZMCSCG noise

Diversity Gain (2)

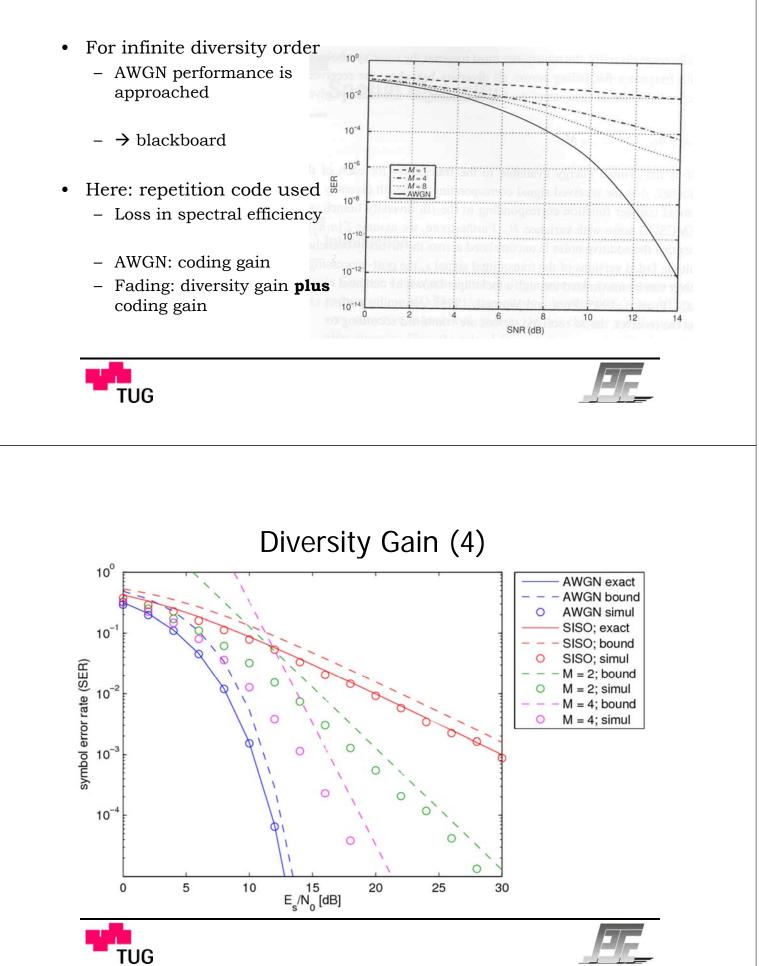
• Maximum ratio combining

$$z = \sum_{i=1}^{M} h_i^* y_i$$

... derivation on blackboard ...

• Upper bound on average symbol error rate for large SNR

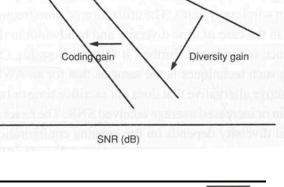
$$\overline{P_e} \le \overline{N_e} \left(\frac{\rho d_{\min}^2}{4M}\right)^{-M}$$


 N_e ... number of nearest neighbors d_{min} ... their separation distance $\rho = E_s / N_0$... SISO average SNR

• \rightarrow Diversity affects slope of SER curve

Diversity Gain (3)

Coding Gain vs. Diversity Gain


SER

• Approx. equation

 $\overline{P}_e \approx \frac{c}{\left(\gamma_c \rho\right)^M}$

- c ... constant; modulation and channel
- $\gamma_c \ge 1 \dots$ coding gain, array gain
- M... diversity order

Low SNR region

Spatial Diversity vs. Time or Frequency Diversity

- Spatial diversity
 - No additional bandwidth required
 - Increase of average SNR is possible
 - Additional array gain is possible
 - These benefits are NOT possible with time or frequency diversity
- Diversity techniques
 - Depend on antenna configuration (SIMO, MISO, MIMO)

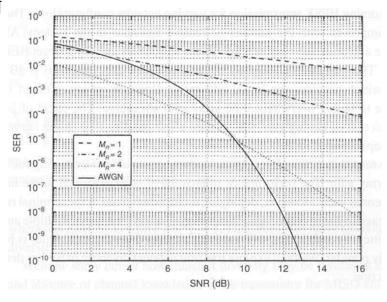
Receive Antenna Diversity

- Assume flat fading y = √E_shs + n, h = [h₁ h₂ ... h_{M_R}]^T channel vec.
 Maximum ratio combining
 - Assume perfect channel knowledge at receiver

 $\overline{P_e} \leq \overline{N_e} \left(\frac{\rho d_{min}^2}{4}\right)^-$

 $\overline{\eta} = M_{P}\rho$

- Assume independent fading
- SER at high SNR:


Diversity gain
$$M_P$$

– array gain M_R , 10 log M_R [dB]

Receive Antenna Diversity – Performance

- Can be better than AWGN due to array gain
- At low BER fading disadvantage dominates
- → full diversity and array gain (prop. M_R) is achieved with receive diversity!

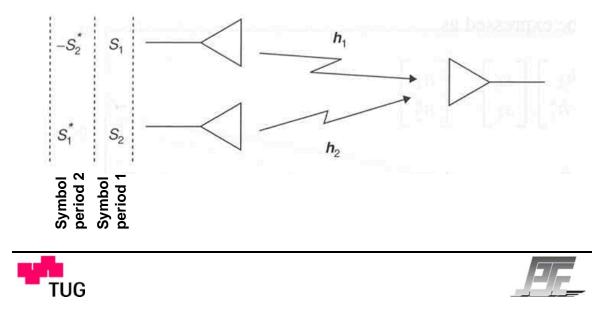
Transmit antenna diversity

- Why is pre-processing needed?
 - Signal s is transmitted at $\frac{1}{2}$ power from two antennas

$$y = \sqrt{\frac{E_s}{2}}(h_1 + h_2)s + n$$

- h_1 and h_2 are unit variance ZM complex Gaussian
- Equivalent signal model

$$y = \sqrt{E_s}hs + n$$


- -h is also unit variance ZM complex Gaussian!
- \rightarrow NO diversity

TUG

Alamouti Scheme, MISO

- Simple but ingenious method of pre-processing
- Channel is **unknown** to the transmitter

Alamouti Scheme – Derivation of Performance

- Channel
 - Frequency-flat
 - Constant over two symbol periods

sym. per. 1: $y_1 = \sqrt{\frac{E_s}{2}}h_1s_1 + \sqrt{\frac{E_s}{2}}h_2s_2 + n_1$ sym. per. 2: $y_2 = -\sqrt{\frac{E_s}{2}}h_1s_2^* + \sqrt{\frac{E_s}{2}}h_2s_1^* + n_2$ receiver:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2^* \end{bmatrix} = \sqrt{\frac{E_s}{2}} \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2^* \end{bmatrix} = \sqrt{\frac{E_s}{2}} \mathbf{H}_{eff} \mathbf{s} + \mathbf{n}$$
$$\mathbf{z} = \mathbf{H}_{eff}^H \mathbf{y} = \sqrt{\frac{E_s}{2}} ||\mathbf{h}||^2 \mathbf{Is} + \tilde{\mathbf{n}}$$
$$z_i = \sqrt{\frac{E_s}{2}} ||\mathbf{h}||^2 s_i + \tilde{n}_i, \text{ for } i = 1, 2$$

Alamouti Scheme - Performance

Full M_T = 2 diversity 100 Average SNR at receiver 10 not increased $\overline{\eta} = \rho$ H 10-2 \rightarrow no array gain! 10 10-4 8 10 0 4 6 12 SNR (dB)

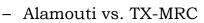
TX-Diversity – Channel Known

- Transmit weighted signals: $s_i = w_i s$
- Goal: symbols should arrive in phase
 - Vector channel: $\mathbf{h}^T = [h_1 \ h_2 \ \dots \ h_{M_T}]$
 - Signal at receiver: $y = \sqrt{}$

$$y = \sqrt{E_s} \mathbf{h}^T \mathbf{w}s + n$$

- Optimum weight vector:
- $\mathbf{w} = \frac{\mathbf{h}^*}{||\mathbf{h}||}$

Transmit MRC combining


- Derivation of array and diversity gain

TUG

Transmit MRC Combining - Performance

- Diversity order M_T
- Array gain: M_T
- \rightarrow equivalent to receive MRC
- Problem: Channel must be known at TX
- Figure:

Alamouti – Extension to MIMO

- MIMO scheme for $M_T = 2$; channel unknown
- Transmitted symbols: Like MISO Alamouti

- Channel Matrix:
$$\mathbf{H} = \begin{pmatrix} h_{1,1} & h_{1,2} \\ h_{2,1} & h_{2,2} \end{pmatrix}$$

Receiver stacks two consecutive received symbols

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \sqrt{\frac{E_s}{2}} \mathbf{H}_{eff} \mathbf{s} + \mathbf{n}$$

– **H**_{eff} is orthogonal!

$$\mathbf{H}_{\text{eff}}^{H}\mathbf{H}_{\text{eff}} = ||\mathbf{H}_{\text{eff}}||_{F}^{2}\mathbf{I}_{2} = \sum_{k=1}^{2} \sum_{l=1}^{2} |h_{k,l}|^{2}\mathbf{I}_{2}$$

MIMO with Unknown Channel – Performance Limits

- Assume **H** = **H**_w; high SNR range
 - average SER:

$$\overline{P_e} \leq \overline{N_e} \left(\frac{\rho d_{\min}^2}{4M_R}\right)^{-2M_R}$$

→ Diversity order: $M_T M_R = 2M_R$

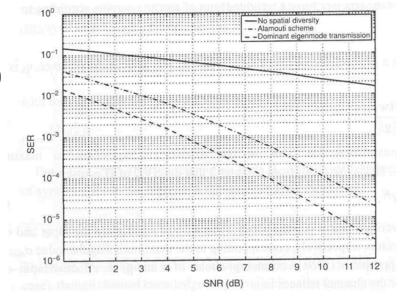
- average SNR:
$$\overline{\eta} = M_R \rho$$

 \rightarrow Only receive array gain!

MIMO: Channel Known to Transmitter

- "Dominant Eigenmode Transmission"
- transmitted signal: one s weighted by w
 like MISO
- received signal vector

$$\mathbf{y} = \sqrt{\frac{E_s}{M_T}} \mathbf{H} \mathbf{w} s + \mathbf{n}, \quad \left\| \mathbf{w} \right\|_F^2 = M_T$$


- form a weighed sum: $z = \mathbf{g}^{H}\mathbf{y}$
- to maximize SNR at the receiver \rightarrow blackboard

TUG

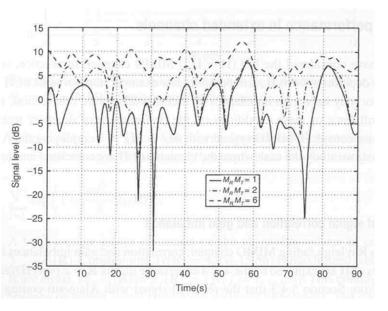
MIMO, Channel Know - Performance

- Diversity order: $M_T M_R$
- array gain: $E\{\lambda_{max}\}$, bounded by $max(M_T, M_R)$ and M_TM_R
- Figure:
 - Dominant EM vs. Alamouti; 2x2
 - Same slope
 - different array gain

Summary – Diversity Order

Configuration	Exp. array gain	Diversity order
SIMO (CU)	M_R	M_R
SIMO (CK)	M_R	M_R
MISO (CU)	1	M_T
MISO (CK)	M _T	
MIMO (CU)	M _R	$M_R M_T$
MIMO (CK)	$\begin{array}{l} \max(M_T, \ M_R) \leq \\ \mathrm{E}\{\lambda_{max}\} \leq M_T M_R \end{array}$	

TUG



Channel Variability

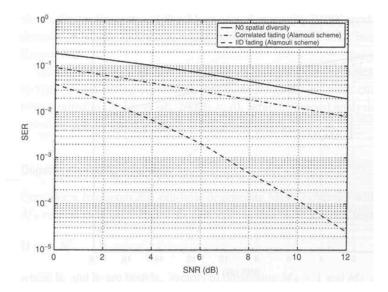
• May be quantified by coefficient of variability

$$\mu_{\rm var} = \frac{1}{\sqrt{M_T M_R}}$$

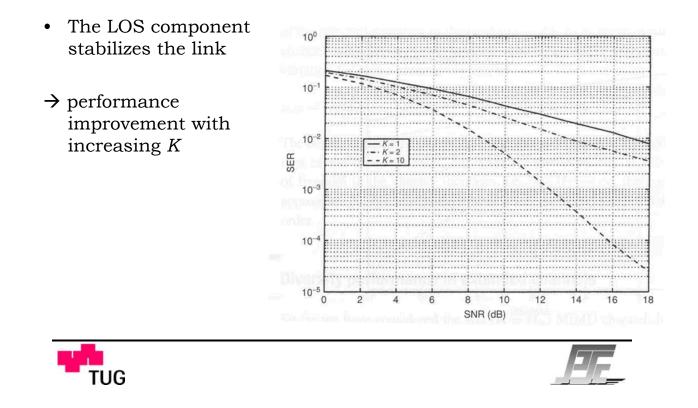
• AWGN case is approached if $M_R M_T \rightarrow \infty$, i.e., $\mu_{var} \rightarrow 0$

Diversity Order in Extended Channels

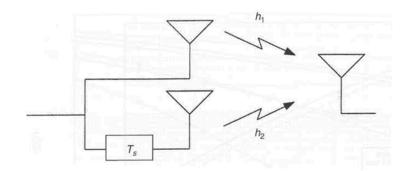
- The channel matrix \mathbf{H} is not \mathbf{H}_{w} :
 - Elements of ${\boldsymbol{\mathsf{H}}}$ are correlated
 - Elements of **H** have gain imbalances
 - Elements of **H** have Ricean amplitude characteristics
- Here: consider impact on Alamouti 2 x 2



Influence of Signal Correlation


- Diversity order decreases to r(R), where R is the (4 x 4) covariance Matrix:
 - $\mathbf{R} = \mathrm{E}\{\mathrm{vec}(\mathbf{H})\mathrm{vec}(\mathbf{H})^{\mathrm{H}}\}$
- Figure:
 - elements of **H** are fully correlated $\rightarrow r(\mathbf{R}) = 1$
 - only array gain is present
 - no diversity gain

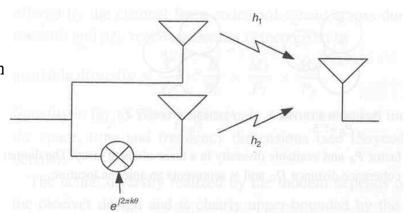
Influence of Ricean Fading



Indirect Transmit Diversity (1)

• Delay diversity

- delay is one symbol interval
- Flat MISO channel is translated into two-path SISO channel (symbol spaced)
- → ML-detector can capture second-order diversity



Indirect Transmit Diversity (2)

- Phase-roll diversity
- Effective channel at a certain time-separation is uncorrelated
- FEC and timeinterleaving has to be used to exploit this

Diversity of a Space-Time-Frequency Selective Channel

- four "dimensions" are available to exploit diversity:
 - nb. transmit antennas (M_T) (space 1)
 - nb. receive antennas (M_R) (space 2)
 - duration of the codeword (time)
 - signal bandwidth (frequency)
- available diversity gain depends on ratios of these parameters to the coherence-bandwidth, -time, -distance (packing factor)

Space-Time coding

- Use coding across space and time to optimize the link performance
 - diversity gain (upper bounded by $M_T M_R$ if \mathbf{H}_w)
 - array gain (upper bounded by M_R if CU or $M_R M_T$ if CK)
 - coding gain (depends on min. distance of the code)
- Also: how to realize $M_T > 2$
- In frequency selective channels:
 - frequency diversity can be exploited

Summary

- Multiple Antennas to improve link performance:
 - Coverage (range)
 - Quality
 - Interference Reduction
 - Spectral Efficiency
- Exploiting Multiple Antennas
 - Array Gain
 - Diversity Gain
 - Spatial Multiplexing
 - Interference Reduction

