Mobile Radio Systems – Small-Scale Channel Modeling

Klaus Witrisal

witrisal@tugraz.at

Signal Processing and Speech Communication Laboratory

www.spsc.tugraz.at Graz University of Technology

October 28, 2015

al Processing and Speech Communications Lab

GRAZ UNIVERSITY OF TECHNOLOGY

Mobile Radio Systems -Small-Scale Channel Modeling - p. 1/43

Outline

- 3-1 Introduction Mathematical models for communications channels [Molisch 6.2.2; Proakis 1-3]
- 3-2 Stochastic Modeling of Fading Multipath Channels
 - Multipath channel [Proakis 14-1]
 - Fading amplitude distribution (Rayleigh, Rice) [Molisch 5.4, 5.5]
 - Time-selective fading [Molisch 5.6]
 - Frequency-selective fading
 - WSSUS stochastic channel description [Molisch 6.3-6.5, Proakis 14]
- 3-3 Classification of Small-Scale Fading [Molisch 6.5]

References

- A. F. Molisch: *Wireless Communications*, 2005, Wiley
- J. G. Proakis: Digital Communications, 3rd ed., 1995, McGraw Hill
- J. R. Barry, E. A. Lee, D. G. Messerschmitt: *Digital Communication*, 3rd ed., 2004, Kluwer
- A. Paulraj, R. Nabar, and D. Gore: Introduction to Space-Time Wireless Communications, 2003, Cambridge
- T. S. Rappaport: Wireless Communications Principles and Practice, 2nd ed., 2002, Prentice Hall
- M. Pätzold: *Mobile Fading Channels*, 2002, Wiley

Additive Noise Channel Channel's frequency response is **flat** over signal bandwidth Simplest model – transmitted (TX) signal corrupted by additive noise $r(t) = \alpha s(t) + n'(t)$ \blacksquare s(t) ... TX signal • is a **bandpass signal** $s(t) = \sqrt{2} \Re\{s_l(t)e^{j2\pi f_c t}\}$ \blacksquare r(t) ... received (RX) signal for (lowpass equivalent) baseband signals (i.e. complex envelopes of s(t), r(t), n'(t)) $r_l(t) = hs_l(t) + n'_l(t), \text{ with } h \in \mathbb{C}$ al Processing and Speech Communications Lab **GRAZ UNIVERSITY OF TECHNOLOGY** Additive Noise Channel (cont'd)

Noise is usually modeled as white, Gaussian (additive white Gaussian noise – AWGN)

$$\phi_{n'}(\tau) = \mathbb{E}\{n'(t)n'(t+\tau)\} = \frac{N_0}{2}\delta(\tau) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad S_{n'}(f) = \frac{N_0}{2}$$

$$r(t) = s(t) * c(t) + n(t)$$
$$= \int_{-\infty}^{\infty} c(\tau)s(t-\tau)d\tau + n(t)$$

 \blacksquare c(t) ... impulse response of linear filter

Sampled case (lowpass equivalent model)

$$r[k] = \sum_{l=0}^{L-1} h[l]s[k-l] + n[k]$$

 \blacklozenge h[k] incorporates

TX pulse shape

RX (matched) filter; ADC filter

(thus bandwidth corresponds to signal bandwidth)

physical channel

• $n[k] \dots$ AWGN (ZMCSCG)

This is actually an equivalent, whitened matched filter (WMF) channel model [Barry/Lee/Messerschmitt]

I Processing and Speech Communications Lab

Mobile Radio Systems –Small-Scale Channel Modeling – p. 9/

GRAZ UNIVERSITY OF TECHNOLOGY

Linear time-variant filter channel

Characterized by time-variant channel impulse response (CIR) c(\(\tau\); t)

 \blacklozenge response of channel at time t

igarrow to an impulse transmitted at time t- au

au ... "elapsed time", "age" variable

$$r(t) = s(t) * c(\tau; t) + n(t)$$
$$= \int_{-\infty}^{\infty} c(\tau; t) s(t - \tau) d\tau + n(t)$$

model for multipath propagation

$$c(\tau;t) = \sum_{i=0}^{\infty} \alpha_i(t)\delta(\tau - \tau_i(t))$$
(1)

- by central limit theorem (CLT):
 - by certial inflictine (OLI) (
 - $c_l(t)$ is complex Gaussian
 - (CIR $c_l(\tau; t)$ is complex Gaussian)
- $c_l(t)$ has random phase and amplitude
- in absence of dominant component: c_l(t) is zero-mean complex Gaussian
- \rightarrow its envelope $|c_l(t)|$ is Rayleigh distributed
 - Rayleigh fading channel

Ricean (and Rayleigh) PDFs

Ricean (and Rayleigh) CDFs

Time-selective fading

The WSSUS channel (cont'd) An equivalent representation of the t-var. CIR $c_l(\tau; t)$: Time-variant channel transfer function (TF) $C_l(f;t)$ $c_l(\tau;t) \quad \stackrel{\mathcal{F}_{\tau}}{\longleftrightarrow} \quad C_l(f;t) = \int_{-\infty}^{\infty} c_l(\tau;t) e^{-j2\pi f\tau} d\tau$ from US property follows WSS in f-domain equivalent characterization (ACF) $\phi_C(\Delta f; \Delta t) = \mathbb{E}\{C_l^*(f; t)C_l(f + \Delta f; t + \Delta t)\}$ spaced-frequency spaced-time correlation function (WSSWSS!) Processing and Speech Communications Lab **GRAZ UNIVERSITY OF TECHNOLOGY** The WSSUS channel (cont'd) time- and frequency-selective transfer function 30 20 received power [dB] 10 0 -10 0 0.2 -20 0.4 0 0.6 2 8.0 3 1 4 frequency

time

al Processing and Speech Communications Lab

3-3 Classification of Small-Scale Fading

Compares system and channel parameters

Classification	w.r.t. symbol period	w.r.t. bandwidth
	T_s	$B_s \propto 1/T_s$
dispersiveness		
flat fading	$T_s \gg au_{rms}$	$B_s \ll B_c$
frequency selective	$T_s < \tau_{rms}$	$B_s > B_c$
time variations		
slow fading	$T_s \ll T_c$	$B_s \gg \nu_{rms}$
fast fading	$T_s > T_c$	$B_s < \nu_{rms}$

al Processing and Speech Communications Lab

Mobile Radio Systems -Small-Scale Channel Modeling - p. 41/4

GRAZ UNIVERSITY OF TECHNOLOGY

Classification example – GSM

Key air-interface parameters:

- Carrier frequency ... 900 MHz, 1.8 GHz
- Bandwidth ... 200 kHz
- Frame; slot length ... \sim 4.6 ms; \sim 0.6 ms

Time dispersiveness

- \bullet τ_{rms} (typical urban and suburban) ... 100–800 ns
- corresponds to $B_c \approx 1.2-10$ MHz
- flat fading

Time variability

- assume v = 50 m/s at $f_c = 1$ GHz $\rightarrow \nu_{\text{max}} = 167$ Hz
- \blacklozenge corresponds to $T_c \approx$ 6 ms
- Time-invariant during slot

Key air-interface parameters:

- Carrier frequency ... 2.4; 5 GHz
- Bandwidth ... 17 MHz (sampling f: $f_s = 20$ MHz)
- OFDM symbol length ... 4 μ s

Time dispersiveness

- ♦ τ_{rms} (indoor) ... 10–300 ns
- corresponds to $B_c \approx$ 3–100 MHz

frequency selective

Time variability

- assume v = 2 m/s at $f_c = 5$ GHz $\rightarrow \nu_{\text{max}} = 33$ Hz
- \blacklozenge corresponds to $T_c \approx$ 30 ms; several 1000 symbols
- Time-invariant during packet

al Processing and Speech Communications Lab

lobile Radio Systems –Small-Scale Channel Modeling – p. 43/43