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Outline

� 3-1 Introduction – Mathematical models for
communications channels [Molisch 6.2.2; Proakis 1-3]

� 3-2 Stochastic Modeling of Fading Multipath Channels

� Multipath channel [Proakis 14-1]

� Fading amplitude distribution (Rayleigh, Rice)
[Molisch 5.4, 5.5]

� Time-selective fading [Molisch 5.6]

� Frequency-selective fading

� WSSUS stochastic channel description [Molisch
6.3-6.5, Proakis 14]

� 3-3 Classification of Small-Scale Fading [Molisch 6.5]
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Signal Models

� “Signal processing” channel models can be described
for different interfaces

� Application/design objective determines choice of
appropriate model
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Additive Noise Channel

Channel’s frequency response is flat over signal bandwidth

� Simplest model – transmitted (TX) signal corrupted by
additive noise

r(t) = αs(t) + n′(t)

� s(t) ... TX signal

� is a bandpass signal s(t) =
√
2�{sl(t)ej2πfct}

� r(t) ... received (RX) signal

� for (lowpass equivalent) baseband signals
(i.e. complex envelopes of s(t), r(t), n′(t))

rl(t) = hsl(t) + n′l(t), with h ∈ C
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Additive Noise Channel (cont’d)

� Noise is usually modeled as white, Gaussian (additive
white Gaussian noise – AWGN)

φn′(τ) = E{n′(t)n′(t+ τ)} =
N0

2
δ(τ)

F←→ Sn′(f) =
N0

2
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Additive Noise Channel (cont’d)

� Sampled AWGN model (lowpass equivalent model)

r[k] = hs[k] + n[k] (all are ∈ C)

� Noise characterization

E{n[k]n∗[l]} = σ2nδ[k − l]

� n[k] is zero-mean circularly symmetric complex
Gaussian (ZMCSCG)
� Real and imaginary components are i.i.d.

(independent, identically distributed)

� σ2n depends on (matched) filter at receiver
front-end

� Real and imaginary components have σ2n/2
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Linear filter channel

Channel’s frequency response is frequency-selective (i.e.
non-flat), leading to (linear) signal distortions

� For time-invariant channels

r(t) = s(t) ∗ c(t) + n(t)

=

∫ ∞

−∞

c(τ)s(t− τ)dτ + n(t)

� c(t) ... impulse response of linear filter
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Linear filter channel (cont’d)

� Sampled case (lowpass equivalent model)

r[k] =

L−1∑
l=0

h[l]s[k − l] + n[k]

� h[k] incorporates
� TX pulse shape
� RX (matched) filter; ADC filter
� (thus bandwidth corresponds to signal bandwidth)
� physical channel

� n[k] ... AWGN (ZMCSCG)

� This is actually an equivalent, whitened matched filter
(WMF) channel model [Barry/Lee/Messerschmitt]
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Linear time-variant filter
channel

� Characterized by time-variant channel impulse
response (CIR) c(τ ; t)

� response of channel at time t

� to an impulse transmitted at time t− τ

� τ ... “elapsed time”, “age” variable

r(t) = s(t) ∗ c(τ ; t) + n(t)

=

∫ ∞

−∞

c(τ ; t)s(t− τ)dτ + n(t)

� model for multipath propagation

c(τ ; t) =

∞∑
i=0

αi(t)δ(τ − τi(t)) (1)
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Linear time-variant filter ch.

[fig 5-4 Rap]
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Stochastic modeling of fading
multipath channels

� Motivated by their randomly time-variant nature and
large number of multipath components

� Derivation of lowpass equivalent CIR from (1)

cl(τ ; t) =

∞∑
i=0

αi(t)e
−j2πfcτi(t)δ(τ − τi(t))

=

∞∑
i=0

αi(t)e
jϕi(t)δ(τ − τi(t)) (2)

considering discrete multipath components

� phase term ϕi(t) = −2πfcτi(t) varies dramatically
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Fading of an unmodulated
carrier

� TX signal is unmodulated carrier (CW) sl(t) = 1

� RX signal w/o noise: yl(t) = cl(τ ; t) ∗ 1 = cl(t) · 1

cl(t) =

∞∑
i=0

αi(t)e
jϕi(t) =

∞∑
i=0

αi(t)e
−j2πfcτi(t)

sum of vectors (phasors)

� amplitudes αi(t) change slowly

� phases ϕi(t) change by 2π if:
� τi(t) changes by 1/fc
� i.e.: path length changes by wavelength λ

� large number of multipath components

→ model cl(t) as a random process!
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Fading of an unmodulated
carrier (cont’d)

Modeling cl(t) as a random process:

� large number of multipath components are added

� by central limit theorem (CLT):

� cl(t) is complex Gaussian

� (CIR cl(τ ; t) is complex Gaussian)

� cl(t) has random phase and amplitude

� in absence of dominant component:
cl(t) is zero-mean complex Gaussian

→ its envelope |cl(t)| is Rayleigh distributed

� Rayleigh fading channel
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Fading of an unmodulated
carrier (cont’d)
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Fading of an unmodulated
carrier (cont’d)

� Rayleigh distribution:

fR(r) =
r

σ2
e−r2/(2σ2) for r ≥ 0

� characterized by σ2: variance of underlying

Gaussian processes X1, X2 ∼ N (0, σ2), where
X1 = �{cl(t)} and X2 = 
{cl(t)}

derivation of Rayleigh distribution ...

� Y = X2
1 +X2

2 ... has χ2-PDF of 2 degrees of freedom

� R =
√

X2
1 +X2

2 ... amplitude |cl(t)| has Rayleigh PDF
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Fading of an unmodulated
carrier (cont’d)

central chi-square PDF Rayleigh PDF

of n degrees of freedom characterized by σ

Mobile Radio Systems –Small-Scale Channel Modeling – p. 17/43

GRAZ UNIVERSITY OF TECHNOLOGY

al Processing and Speech Communications Lab

Fading of an unmodulated
carrier (cont’d)

� in presence of a dominant component:
cl(t) is non-zero-mean complex Gaussian

→ its envelope |cl(t)| is Ricean distributed

� Ricean fading channel

� Ricean distribution:

fR(r) =
r

σ2
e−

r
2
+s

2

2σ2 I0

( rs

σ2

)
for r ≥ 0

I0(x) ... zero-order modified Bessel function of first kind

� characterized by

σ2 ... variance of underlying Gaussian processes and

s2 = m2
1 +m2

2 ... power of mean (i.e. s2 = |E{cl(t)}|2)
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Fading of an unmodulated
carrier (cont’d)

� Shape of Ricean distribution defined by

K =
s2

2σ2

K [dB] = 10 log
s2

2σ2

Ricean K-factor

� Ratio of deterministic signal power (mean) and variance
of multipath (scattered components)

� For K = 0 = −∞ dB:
Ricean distribution equivalent to Rayleigh
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Fading of an unmodulated
carrier (cont’d)
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Time-selective fading

� Characterization of the time variability

sl(t) = 1 → yl(t) = cl(τ ; t) ∗ 1 = cl(t) =

∞∑
i=0

αi(t)e
jϕi(t)

� Characterize autocorrelation function of cl(t)

� assume cl(t) is complex Gaussian

� assume cl(t) is wide-sense stationary (WSS)

� Define: spaced-time correlation function

φc(Δt) = E{c∗l (t)cl(t+Δt)} F←→ Sc(ν)

� Doppler power spectrum Sc(ν) =
∫∞

−∞
φc(Δt)e−j2πνΔtdΔt
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Time-selective fading (cont’d)

Doppler power spectrum: average power output of
channel as a function of Doppler frequency
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Time-selective fading (cont’d)

[Rappaport fig. 5-1]
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Time-selective fading (cont’d)

Jakes model for Doppler
power spectrum

� assumes mobile moving
at const. velocity v

� uniformly distributed
scattering around mobile

� Jakes Doppler spectrum:

Sc(ν) =
1

π

1√
ν2max − ν2

(for normalized power)
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Time-selective fading (cont’d)

Characterization of time-selective fading by parameters

� RMS Doppler spread

νrms =

√
ν2 − ν2

second centralized moment of normalized Doppler PSD

� mean and mean squared Doppler spread

ν =

∫
νSc(ν)dν∫
Sc(ν)dν

ν2 =

∫
ν2Sc(ν)dν∫
Sc(ν)dν

� Coherence time
Tc ≈ 1

νrms
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Frequency-selective fading

f a (time-invariant) multipath channel

� Characterization of the time dispersion: CIR cl(τ)

sl(t) = δ(t) → yl(t) = cl(τ ; t) ∗ δ(t) =
∞∑
i=0

αi(t)e
jϕi(t)δ(t− τi(t))

cl(τ) =

∞∑
i=0

αie
jϕiδ(τ − τi)

� ACF: Uncorrelated scattering assumption:

E{c∗l (τ1)cl(τ2)} = Sc(τ1)δ(τ1 − τ2)

Sc(τ) ... multipath intensity profile (= delay power
spectrum; = average power delay profile)
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Frequency-selective fading
(cont’d)

� Time-dispersion implies frequency-selectivity

� Equivalent channel characterization by channel
transfer function (TF) Cl(f)

cl(τ)
F←→ Cl(f) =

∫ ∞

−∞

cl(τ)e
−j2πfτdτ

� ACF of channel TF

Sc(τ)
F←→ φC(Δf) = E{C∗

l (f)Cl(f +Δf)}
φC(Δf) ... spaced-frequency correlation function

� TF Cl(f) is wide-sense stationary (WSS in f ) if CIR
cl(τ) fulfills “uncorrelated scattering” (US in τ )
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Frequency-selective fading
(cont’d)

� Channel IR vs. channel frequency response
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Frequency-selective fading
(cont’d)

Multipath intensity profile: average power output of channel
as a function of delay
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Frequency-selective fading
(cont’d)

Characterization by parameters

� RMS delay spread

τrms =

√
τ2 − τ2

second centralized moment of normalized multipath
intensity profile

� mean and mean squared delay spread

τ =

∫
τSc(τ)dτ∫
Sc(τ)dτ

τ2 =

∫
τ2Sc(τ)dτ∫
Sc(τ)dτ

� Coherence bandwidth

Bc ≈ 1

τrms
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Frequency-selective fading
(cont’d)

Characterization of mul-
tipath intensity profile
(simplified; suitable for
indoor channels)

� Exponentially
decaying part

� Line-of-sight (LOS)
component

� Defined by channel
parameters

Channel parameters:
total power P0

K-factor (rel. strength of LOS)
RMS delay spread (duration)

Ph(t) [dB]

t
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The WSSUS channel

� joint modeling of

� time dispersion (= frequency selectivity)

� and time variability (= Doppler spread)

� Define: ACF of time-variant CIR cl(τ ; t)

E{c∗l (τ1; t)cl(τ2; t+Δt)} = φc(τ1; Δt)δ(τ1 − τ2)

assumes:

� time-variations are wide-sense stationary (WSS)

� attenuation and phase shifts are independent at τ1
and τ2: uncorrelated scattering (US)

� for Δt = 0: φc(τ ; Δt) = Sc(τ) multpath intensity profile

� φc(τ ; Δt) ... lagged-time correlation function
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The WSSUS channel (cont’d)

An equivalent representation of the t-var. CIR cl(τ ; t):

� Time-variant channel transfer function (TF) Cl(f ; t)

cl(τ ; t)
Fτ←→ Cl(f ; t) =

∫ ∞

−∞

cl(τ ; t)e
−j2πfτdτ

� from US property follows WSS in f -domain

� equivalent characterization (ACF)

φC(Δf ; Δt) = E{C∗

l (f ; t)Cl(f +Δf ; t+Δt)}
spaced-frequency spaced-time correlation function
(WSSWSS!)
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The WSSUS channel (cont’d)

� time- and frequency-selective transfer function
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The WSSUS channel (cont’d)

� Equivalent representations: time-variant system
functions – Bello functions [Bello63]

� cl(τ ; t) and Cl(f ; t) and two more Fourier
transformed functions w.r.t. t ↔ ν and f ↔ τ

� Equivalent (2-nd order) characterizations: correlation
functions of Bello functions

� φc(τ ; Δt) and φC(Δf ; Δt) and two more Fourier
transformed functions w.r.t. Δt ↔ ν and Δf ↔ τ

overview shown on next slide
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The WSSUS channel (cont’d)
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The WSSUS channel (cont’d)

� Doppler-delay scattering function

[Paulraj; fig 2-9]
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Channel as a space-time
random field

� Homogenous (HO) channel is (locally) stationary in
space

� characterization:

E{c∗l (τ ; t;d)cl(τ ; t;d+Δd)} = φd(τ ; t; Δd)

� agrees with discrete scattering model: each
scatterer has discrete ToA τi and AoA θi

� space-angle transform: assume d lies on x-axis;
parameterized by x (and dropping t)

cl(τ ;x) =

∫ ∞

−∞

cl(τ ; θ)e
−j2π sin(θ) x

λdθ

� we may define the angle-delay scattering function
Sc(τ ; θ)
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Channel as a space-time
random field (cont’d)

� Angle-delay scattering function

[Paulraj; fig 2-10]
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Channel as a space-time
random field (cont’d)

Sc(θ) ... angle power spectrum: average power vs. angle
of arrival

� Characterization by parameters:

� RMS angle spread: θrms =

√
θ2 − θ

2

second centralized moment of normalized angle power
spectrum

� mean and mean squared angle spread

θ =

∫
θSc(θ)dθ∫
Sc(θ)dθ

θ2 =

∫
θ2Sc(θ)dθ∫
Sc(θ)dθ

� Coherence distance Dc ∝ 1
θrms
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3-3 Classification of
Small-Scale Fading

� Compares system and channel parameters

Classification w.r.t. symbol period w.r.t. bandwidth

Ts Bs ∝ 1/Ts

dispersiveness

flat fading Ts � τrms Bs � Bc

frequency selective Ts < τrms Bs > Bc

time variations

slow fading Ts � Tc Bs � νrms

fast fading Ts > Tc Bs < νrms
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Classification example – GSM

� Key air-interface parameters:

� Carrier frequency ... 900 MHz, 1.8 GHz

� Bandwidth ... 200 kHz

� Frame; slot length ... ∼4.6 ms; ∼0.6 ms

� Time dispersiveness

� τrms (typical urban and suburban) ... 100–800 ns

� corresponds to Bc ≈ 1.2–10 MHz

� flat fading

� Time variability

� assume v = 50 m/s at fc = 1 GHz → νmax = 167 Hz

� corresponds to Tc ≈ 6 ms

� Time-invariant during slot
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Classification example – WLAN

� Key air-interface parameters:

� Carrier frequency ... 2.4; 5 GHz

� Bandwidth ... 17 MHz (sampling f: fs = 20 MHz)

� OFDM symbol length ... 4 μs

� Time dispersiveness

� τrms (indoor) ... 10–300 ns

� corresponds to Bc ≈ 3–100 MHz

� frequency selective

� Time variability

� assume v = 2 m/s at fc = 5 GHz → νmax = 33 Hz

� corresponds to Tc ≈ 30 ms; several 1000 symbols

� Time-invariant during packet
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