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~ Abstract—Lossy coding of speech, high-quality audio, still explain why he would delay further consideration of lossy
images, and video is commonplace today. However, in 1948, fewcompression until 10 years later. By 1959, work in scalar
lossy compression systems were in service. Shannon '””Oducedquantization and PCM was well underway [196] and differen-

and developed the theory of source coding with a fidelity criterion, . . . . .
also called rate-distortion theory. For the first 25 years of its 1@ encoding had received considerable attention [180], [186],

existence, rate-distortion theory had relatively little impact on [215].

the methods and systems actually used to compress real sources. Shannon coined the term “rate-distortion function” when he

Today, however, rate-distortion theoretic concepts are an im- revisited the source-coding problem in 1959 [2]. The insights

portant component of many lossy compression techniques and 544 contriputions in that paper are stunning. In particular

standards. We chronicle the development of rate-distortion theory . . . . . L
rate-distortion terminology is introduced, the rate-distortion

and provide an overview of its influence on the practice of lossy X ) ; - :
source coding. function R(D) is carefully defined, positive and negative cod-

Index Terms—bata compression, image coding, speech coding,mg theorems are proved, propertiesifD) are investigated,

rate distortion theory, signal coding, source coding with a fidelity the expreSSIQn foR(D) in several important Cas_es is derived,
criterion, video coding. some numerical examples are presented, the important lower

bound to R(D), now called the Shannon lower bound, is
derived, and the duality betweeR(D) and a capacity cost
. INTRODUCTION AND PROLOGUE function is noted. A lifetime of results in two papers!
HE concept of specifying the rate required to repre- We treat Shannon’s seminal contributions in greater detail
sent a source with some less-than-perfect fidelity waelow, also emphasizing how they inspired others to begin
introduced by Shannon in his landmark 1948 paper. In Panaking significant contributions both to rate-distortion theory
V thereof, Shannon describes the idea of “continuous infaand to laying the groundwork for advances in the practice
mation” and defines “The Rate for a Source Relative to af lossy source coding. Specifically, we survey the history
Fidelity Evaluation.” Furthermore, he states the first theoreand significant results of rate-distortion theory and its impact
concerning such lossy representations (his Theorem 21) amdthe development of lossy source-compression methods. A
outlines its proof via an AEP-like argument. Shannon thdmistorical overview of rate-distortion theory is presented in
writes the expression for the rate for the desired “valuatiothe first part of the paper. This is followed by a discussion
(distortion) and poses the constrained optimization probleofi techniques for lossy coding of speech, high-quality audio,
to be solved for the transition probabilities. Then he givesddill images, and video. The latter part of the paper is not
general form of the solution to this optimization problem (nowntended as a comprehensive survey of compression methods
widely called the backward test channel), and specializes itdaad standards. Rather, its emphasis is on the influence of
the important special case of difference distortion measureate-distortion theory on the practice of lossy source coding.
In Theorem 22 he gives the exact rate for an ideal bandlimitedThere is both logic and historical precedent for separating
Gaussian source relative to a mean-squared error (MSE¢ treatment of lossy source coding into a theory component
fidelity criterion, and in Theorem 23 he bounds the MSEnd a practice component. Davisson and Gray took this
information rate of a bandlimited non-Gaussian source in terrapproach in the Introduction of their 1976 compilation of
of now-classic expressions involving the source power and thapers on Data Compression [183]. Additionally, there is a
entropy rate power. A most auspicious beginning indeed! continuity in the development of rate-distortion theory and,
In 1948, although pulse-code modulation (PCM) was beirgimilarly but separately, in the development of the practice of
developed for speech applications [259] and Dudley’s vocodessy source coding. These continuities deserve preservation,
had been around for about ten years [260], actual implemesince appreciation for research and development insights is
tations of lossy digital compression systems were nonexisteamhanced when they are embedded in their proper historical
This testifies to the power of Shannon’s insights but also helpsntexts.
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2) It provided the means by which to extend informatioactually an estimation error. It represents a specified level of
theory to analog sources. Such an extension was necean-squared error (MSE) between the sigmél(¢)} and an
sary because all analog sources have infinite entropy bstimate{f((t)} of the signal constructed on the basis of data
virtue of their amplitude continuity and, therefore, canabout{X (¢)} provided at a rate oR bits per second. That is,
not be preserved error-free when stored in or transmitted

through practical, finite-capacity media. N = lim L/T th[X(t) _ X(t)]Q.
3) Shannon considered the results to have inherent signifi- T—eo 21" )1
cance independent of their analogies to and connectiqpSyas, and remains, popular to express MSE estimation
with channel theory. accuracy as a “signal-to-noise ratic§/ N, as Shannon did in
(2). It must be appreciated, however, thaf(¢)— X (¢)} is not
A. A Brief Detour into Channel Theory noise in the sense of being an error process that is independent

Shannon’s most widely known and most widely abuse®f {X(#)} that nature adds to the signal of interest. Rather,
result is his formula for the capacity of an ideal bandlimitedl iS a carefully contrived error signal, usually dependent on
channel with an average input power constraint and an impaieX (1)}, that the information theorist endeavors to create in

ment of additive, zero-mean, white Gaussian noise, namelyarder to conform to a requirement that no more tharits
per second of information may be supplied abgit(¢)}. In

C = Wlog, (1+ P/N) bits/s. (1) modern treatises on information theory, the symbdl,™ a

. . L . mnemonic for average distortion, usually is used in place of
Here, P is the prescribed limitation on the average iNPUL; This results in an alternative form of (2), namely,
power, W is the channel bandwidth in positive frequencies
measured in hertz, andv is the power of the additive R(D) = Wlog,(5/D) bits/s (3)
noise. Since the noise is white with one-sided power spectral, | _ _ )
density Ny or two-sided power spectral densityo/2, we which is referred to as the MSE rate-distortion function of the

have N = N,W. Of course, the result does not really requir§®4r¢- _
that the noise be truly white, just that its spectral density be Formula (3) gets abused less widely than formula (1), but

constant over the channel's passband. Common abuses coR&Rably only because it is less widely known. Abuses consist,
of applying (1) when analogously, of applying it to situations in which
i) The noise is non-Gaussian. i) The signal is non-Gaussian. |
i) The noise is not independent of the signal and/or is not ) Distortion does not depend simply on the difference of
additive. X_(t) a_md _X(t). | A
iii) Average power is not the (only) quantity that is con- iif) Distortion is measured by a function oX (¢) — X (¢)

strained at the channel input. other than its square.

iv) The noise is not white across the passband and/or thdv) The signal's spectral density is not flat across the band.
channel transfer function is not ideally bandlimited. Again, abuse i) is conservative in that it results in an overes-

imate of the minimum rate? needed to achieve a specified
SE estimation accuracy because white Gaussian sources are

Abuse ii) may lead to grossly underestimating or grossk}€ most difficult to handle in the sense of bit rate versus
overestimating capacity. A common instance of abuse iffjor- Abuses i) and iii), which often stem in practice from
consists of failing to appreciate that it actually may be peaRCk Of knowledge of a perceptually appropriate distortion
input power, or perhaps both peak and average input powd}easure, can result in gross underestimates or overestimates
that are constrained. Abuse iv) leads to an avoidable er@r{i- Abuse iv) can be avoided by using a water-pouring
in that the so-called “water pouring” result [3], generaliziné’ene_ral'z_at'on of (3)_ that we shall discuss s_,ubsequently. In
(1), yields the exact answer when the noise is not Whit@pnmpanon of that discussion, we recast (3) in the form

the C'han.nel is not bandlimited, and/or the channel’s transfer R(D) = max [0, W log(SoW/D)]. (4)
function is not flat across the band. (See also [6] and [7].)

This form of the equation explicitly reflects the facts that
B. Coding for Continuous Amplitude Sources i) the signal spectrum has been assumed to be constant

. . . at level Sy across the band of width? in which it in
There is a pervasive analogy between source-coding tf?}%-

: X nzero, and ii)R(D) = 0 for D > S,W, because one
ory and channel-coding theory. The source-coding result ﬂESatn achieve an MSE of = S,W without sending any
corresponds to (1) is —e0

information simply by guessing thaX(¢) = 0. (If {X(¢)}
R = Wlog,(S/N) bits/s (2) has a nonzero meam(t), then of course one guessex)
instead of zero. In general, adding a deterministic mean-
It applies to situations in which the data source of interesalue function to the signal process does not change its
is a white Gaussian signal bandlimited [tf| < W that has rate-distortion function with respect to any fidelity criterion
power S = SoW, where .S, denotes the signal's one-sidedhat measures average distortion as some functional of the
constant power spectral density for frequencies less Wian difference proces§X (t) — X(t)}.) The base of the logarithm
The symbol, NV, although often referred to as a “noise,” idn (4) determines the information unit—bits fdbg, and

Abuse i) is conservative in that it underestimates capac
because Gaussian noise is the hardest additive noise to co
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nats forlog,. When we deal with continuously distributedsurprisingly, the inverse rate-distortion function is called the

guantities, it is more “natural” to employ natural logs. Whedistortion-rate function.)

no log base appears, assume that a natural log is intended. Suppose, for example, that we wish to send data about the

aforementioned bandlimited white Gaussian procgk$t¢)}

over an average-input-power-limited, ideally bandlimited

AWGN channel. Assume our task is to construct on the basis

of what we receive at the channel output an approximation
It is appropriate at this juncture to comment on the re-X(¢)} that has the least possible MSE. The source and

lationship between rate-distortion theory and the theory tHe channel have the same frequency bafld< W. Since

deterministic processes. The Wold decomposition theoreR{D) = W log,(S/D), the distortion-rate function is

assures us, among other things, that any bandlimited random )

process is deterministic in the following sense: it can be D(R) = 5271/%

_prgd_icted Wi'_[h zero MSE infinitely far into the future _andso (1) and (4) together tell us that

infinitely far into the past once one knows the values it has

assumed in an arbitrarily small open interval. This is because

the sample paths of such processes are analytic functions with

probability one, which implies that they have derivatives qf,

all orders at every instant. Knowledge of the process over

an arbitrarily small open interval allows each such derivative D/S > (1+P/N)~t. (6)

:ﬁ b.e tcomlp Ete? r.nth S]erfﬁd.tacf uracy at anyt p(()j'.:ft WlthlrIlhis tells us that the achievable error power per unit of source
€ intefval by taking he imit ot an appropriate diflerence,, o (i.e., the achievable normalized MSE) is bounded from

quotient. This, in turn, permits using Tay]or series or oth Jelow by the reciprocal of one plus the channel signal-to-noise
techniques to extrapolate the process with perfect accurg

into the arbitrarily remote past and future. This suggests thrél}llo (SNR).

the ideal bandlimited Gaussian process we have been studying

should have an MSE rate-distortion function that is identicallg. An Optimum System via a Double Coincidence
zero for all D because one needs to supply information
about the process only during an arbitrarily short intervq
after which it becomes known perfectly for all time. Yetys goqtion |1-B over the channel of Section II-A. It consists
Shannon’s formulak(D) = W log (5/D) says that one must ¢ 4o following steps:

keep supplying information about it for all time at a rate 0?

R(D) > 0 in order to be able to reconstruct it with a MSE Step 1: TranmitX(¢) scaled to have average powgr that

C. Deterministic Processes Have Nonzero
Rate-Distortion Functions

~ Wlog(1+ P/N)

D> D(C)= Sexp W

There happens to be a trivial scheme for achieving equality
h (6) when faced with the task of communicating the source

of D < S. is, put/P/SX(¢) into the channel.

This apparent contradiction is readily resolved. The sticking Step 2: SetX(¢) equal to the minimum mean-square error
point is that it requires an infinite amount of information to (MMSE) estimate ofX(¢) based solely on the
specify even a single continuously distributed random variable instantaneous channel outpytP/SX(t) + N(t)
exactly, let alone the uncountable infinity of them indexed at time t.

_by all the points in an open mterval._Ac_cordlneg, when Since the signal and the channel noise are jointly Gaussian
information is provided at a finite rate, which is always the case . : . >
. : : . nd zero mean, the optimum estimate in Step 2 is simply a
in practice, one never learns the values in any interval perfec M : : :

) . inear scaling of the received signal, namely,
no matter how long one gathers information about them.
Determinism in the above sense thus is seen to be a purely X(t) — o[\/P/SX(t) + N(#)]

mathematical concept that is devoid of practical significance.

The operative, physically meaningful measure of the rate Be optimume is found from the requirement that the error

which a random process, even a so-called deterministic randgfihe optimum estimator must be orthogonal to the data
process, produces information subject to a fidelity criterion is

prescribed by Shannon’s rate-distortion theory. EX({#) - X®vP/SX({t)+N(t)]=0.

. . This may be written as
D. The Basic Inequality

A basic inequality of information theory is El(ay/P[S —1)X(t) + aN@)|[V P/SX(t) + N(t)] = 0.

D> R'(0) (5) Using ES2(t) = S, EN%(t) = N, and EX(£)N(t) = 0,

) ) o we obtaina = PS/(P + N). The resulting minimized
sometimes referred to as thidormation transmission inequal- normalized MSE is easily computed to be

ity. It says that, if you are trying to transmit data from a source

with rate-distortion functionR(D) over a channel of capacity D/S=(14+P/N)™* 7)
C, you can achieve only those average distortions that exceed

the inverse of the rate-distortion function evaluated’afNot which means we have achieved equality in (6).
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;'“ MMMMMMM ey major developments in rate-distortion theory over the fifty
cousce |LXi| source CHANNEL i§ years from 1948 to 1998.
{ |ENCODER ENCODER| |
[ _,i lll. THE FIFTIES
ENCODER
A. The Russian School
CHANNEL From 1949 to 1958 no research was reported on rate-
' distortion theory in the United States or Europe. However,
there was a stream of activity during the 1950’s at Moscow
[T ST e e e e e n . . L ,
‘ | University by members of Academician A. N. Kolmogorov's
Usé f SOURCE CHANNEL | | probability seminar. Kolmogorov, a renowned mathematician
- y; DECODER DECODER i; who founded axiomatic probability theory and contributed
i : many of its fundamental limit laws, saw an application for
““"MWD;O';E;“"'“ Shannon’s information theory in the long-standing isomor-
phism problem of ergodic theory. That problem concerns
Fig. 1.

necessary and sufficient conditions for when two “shifts” can
be placed in a one-to-one, measure-preserving correspondence.
It includes as an important special case the question of
Thus the simple two-step scheme of instantaneously scahether or not two given random processes, or sources, can
ing at the input and at the output results in an end-to-eh@é viewed as perhaps intricately disguised rearrangements of
communication system that is optimum. No amount of sourtiee same information stream. Shannon’s theory showed that
and/or channel coding could improve upon this in the MS&ach discrete-amplitude information source has an entropy
sense for the problem at hand. This fortuitous circumstanceréige H that measures in a fundamental way the rate at
attributable to a double coincidence. The first coincidencewhich it produces information, and that any two sources
that the source happens to be the random process that driveshe same entropy rate can be “coded” into one another
the channel at capacity. This is, the given source, scaled Ibgslessly. Thus entropy (more exactly, entropy rate) emerged
VP/S, is that process of average power not exceedihg as a promising candidate to serve as the long-sought invariant
which maximizes the mutual information between the inpin the isomorphism problem. However, “coding” in Shannon
and output of the channel. The second coincidence is thheory differs from “coding” in ergodic theory. Shannon’s
the channel just happens to provide precisely the transitioading concerns operations on possibly long but always finite
probabilities that solve the MSE rate-distortion problem for thglocks of information, thereby honoring a tie to practice,
given source. That is, when the channel is driven by the scal@tlereas the codes of ergodic theory operate on the entirety
source, its output minimizes mutual information rate with thef each infinite sequence that constitutes a realization of an
source over all processes from which one can calculate engodic flow. Thus it was not a trivial matter to establish that
approximation to the source that achieves a normalized M®ktropy rate could indeed serve as an invariant in the sense of
not in excess of1 + P/N)~*. ergodic theory. Kolmogorov and Sinai [5], [8] succeeded in
We are operating at a saddle point at which the mutusthowing that equal entropy rates were a necessary condition
information rate is simultaneously maximized subject to thfer isomorphism. Years later, Ornstein [9] proved sufficiency
average power constraint and minimized subject to the averagéhin an appropriately defined broad class of random station-
distortion constraint. The slightest perturbation in any aspeaty processes comprising all finite-order Markov sources and
of the problem throws us out this saddle—unequal sourteir closure in a certain metric space that will not concern
and channel bandwidths, non-Gaussianness of the sourcei®here. With the Moscow probability seminar’s attention thus
channel, an error criterion other than MSE, and so on. Therned to information theory, it is not surprising that some of
result of any such perturbation is that, in order to recovés members also studied Section V, The Rate for a Continuous
optimality, it is in general necessary to code both for the sour8surce. Pinsker, Dobrushin, laglom, Tikhomirov, Oseeyevich,
and for the channel as depicted in Fig. 1. Erokhin, and others made contributions to a subject that has
The source encoder and channel decoder usually havectone to be called-entropy, a branch of mathematics that
implement complicated many-to-one mappings that depend subsumes what we today call rate-distortion theergntropy
the values their inputs assume over long durations, not justi@concerned with the minimal cardinality of covers of certain
one instant. Hence, whereas a surface perusal of Shannapgaces by disks of radius As such, it is a part of topology if
founding treatise [1] might, via the key formulas discussealcomplete cover is desired. If, however, a probability measure
above, instill the illusion that all one ever has to do to buils placed on the space being covered, then one can consider
an optimum communication system is simply to insert into theovering all but a set of measue whereé = 0 is also
channel a version of the given source trivially accommodatedvalue of considerable significance [10], [11], [1, p. 656].
to whatever channel input constraints may prevail, nothidgalso becomes interesting to consider the expected distance
could be further from the truth. The goals of this tutorial papdérom a point in the space to the closest disk center, which is
include exorcising any such misconception and surveying ttiee approach usually adopted in rate-distortion theory.
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Most of the attention of scholars efentropy was focused Let us now makeA sufficiently small thatS;(f) becomes
on the asymptotic case in which — 0. This doubtless effectively constant over the frequency interval in which it
accounts for why the symbelwas selected instead of, s@, is nonzero,S;(f) ~ S;,iA < f < (i + 1)A.! Since the
for distortion. It was appreciated thaentropy would diverge subprocesseSX;(¢)} are independent of one another, it is best
ase — 0 in all continuous-amplitude scenarios. The problero approximate each of them independently. Moreover, given
was to determine the rate of divergence in particular casmsy such set of independent approximants, simply summing
of interest. Thus when invited to address an early informatidghem yields the best MSE approximation QX (¢)} that can
theory symposium, Kolmogorov [3] emphasized in the portiome formed from them, the MSE of said sum being the sum
of his report dealing with:-entropy laglom’s expression for of the MSE’s of the subprocess approximants. Furthermore,
the limiting information rate of Wiener processes«as+ 0 the source-coding rate will be the sum of the rates used to
and extensions thereof to more general diffusions. However, &ygproximate the subprocesses.
also reported the exact answer for thentropy of a stationary = Subprocess{ Xy(¢)} is an ideal bandlimited zero-mean
Gaussian process with respect to the squdrgtiorm forall Gaussian source with bandwidth and spectral density
¢, not juste — 0 (his equations (17) and (18)). That resultS(f) = So,0 < f < A. It follows from (4) that the minimum
and its counterpart for the capacity of a power-constrainégdformation rate needed to describe it with an MSE I
channel with additive colored Gaussian noise, have come todreless is
known as the “water-pouring” formulas of information theory.
In this generality the channel formula is attributable to [12] Ro(Do) = max [0, Alog (SoA/Dy)]-
and the source formula to Pinsker [13], [14]. We shall call ) ) o
them the Shannon—Kolmogorov—Pinsker (SKP) water-pouringSubprocess| X;(#)} for any < > 0 also is a bandlimited
formulas. They generalize the formulas given by Shanngff0-mean Gaussian source with bandwidihin positive
in 1948 for the important case in which the spectrum dféduencies, its frequency band beifigh, (i + 1)A) instead
the source or of the channel noise is flat across a band &fd%; &) Consider any coded representation of it with ritte
zero elsewhere. The water-pouring formulas were rediscoveRiE Per second from which one can produce an approximation
independently by several investigators throughout the 195@& it that has an MSE of);. Observe that we always can

and 1960's. mimic this (R;, D;)-performance by by mixing down to base-
band [0, A), performing the same coding and reconstruction
B. The Water Table operations on the result, and then mixing the approximation

thus produced back into the bafich, (i+1)A). It follows that

Here is a simple way of obtaining the SKP water-pouringye pest rate—distortion tradeoff we can achieve for subprocess
formula for the MSE information rate of a Gaussian sourcg)(i(t)} is

[12]. The spectral representation theorem lets us write any
zero-mean stationary random proce$éX (¢)} for which Ri(D;) = max [0, Alog (S;A/D;)].
EX(t)* < oo in the form

o0 By additively combining said approximations to all the
X)) = / ¢t de(f) subprocesses, we get an approximatiofXd¢) } that achieves
oo an average distortion of
whereé(f) is a random process with zero mean, uncorrelated
increments. Hence, ifA and B are two disjoint sets of D:ZDi

frequencies, the zero-mean random proceqs€s(t)} and

{Xp(t)} defined by and requires a total coding rate of

Xa(t)= A e dg(f) R= ZRi(Di) = Zmax [0, Alog (S;A/D;)].

T

and

Xg(s) :/ & 9d¢(g) In order to determine the MSE rate-distortion function of
B {X (%)}, it remains only to select thosB;’s summing toD
satisfy EX_4(t) X p(t) = 0 becauseEd¢(f)dé(g) = 0 when which minimize thisR. Toward that end we set
f € Aandg € B. That is, processes formed by bandlimiting . )
a second-order stationary random processes to nonoverlapping d(R+A""D)/dD; = 0, ¢=0,1,2,---

frequency bands are uncorrelated with one another. In thg A\ L ltinli b " lected t
case of a Gaussian process, this uncorrelatedness impW e A IS a Lagrange mulliplier subsequently selected 1o
eve a desired value dP or of R. Each D; of course

independence. Thus we can decompose & Gaussian IC)ronever exceeds; A, the value that can be achieved by sending
{X(¢)} with one-sided spectral densig( f) into independent no information ébou{Xi(t)} and then usingt; (#) = 0 as the

Gaussian processegX,(t)},¢ = 0,1,--- with respective . . ) ) )
spectral densities;(f) given by approximant. If the solution associated with a particular value

g _ S(f)7 if iIA< f< (L + 1)A _ 1There is some sacrifice of rigor here. Readers desirous of a (_:are;ful_der_iva-
z(f) o th - tion based on the Kac—Murdock-Szego theory of the asymptotic distribution
’ otherwise of the eigenvalues of Toeplitz forms may consult Berger [26].
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A of the Lagrange multiplier is such th&); < S;A, then the S(f)/2, f > 0. Replacing the parameter by 8 = A/2, we

preceding equation requires that\/D; + A~ = 0, or find that

Di = )A. Dy = [ winfp, o) ®)
The valuex = 0 corresponds taD; = 0 for all ¢ (hence, iy 1
D = 0) and R = co. This expresses that fact that perfect Ry :/ max {0, —log(é(f)/e)} df. 9)
reconstruction of a continuously distributed source cannot be -0 2

ically satisfying but devoid of physical usefulness. For finitgs the argument ob(-); of course,df then gets replaced in

values of\, we deduce that (8) and (9) bydw/(2n).
AA, if A<S; The parametric representation (8) of the MSE rate-distortion
D; = S;A, if A>S;. function of a stationary Gaussian source is the source-coding

) ) analog of the SKP “water-pouring” result for the capacity of an
It follows that thel) and 1t values associated with parametef, t_nower-limited channel with additive stationary Gaussian
value A are noise. The source-coding result actually is better described in
Dy = Z AA + Z S;A terms of a “water table,” though people nonetheless usually
(15 57} (15 <A} refer to it as “water pouring.” Specifically, in Fig. 2, the
. source’s spectral density is shown as a heavy “mold” resting
= Z Amin (A, 5) atop a reservoir. In those places where there is air between the
¢ surface of the water and the mold, the surface is at uniform
and height #; elsewhere, the mold presses down to a depth lower
_ a thané. The water heightnin [#, &(f)] is the MSE distortion
B = zi:max [0, Alog (53/A)] as a function of frequency. Equivalently, at each frequency
) the amount, if any, by which the height of the mold exceeds
We remark that the Lagrange solution tells us that to corthe water level, namelynax [®(f) — 6,0], is the portion of
pute a point(D, B(D)) on the MSE rate-distortion function the signal power at that frequency that is preserved by the
of {X(¢)}, we should combine points on the rate-distortiofyinimum-rate data stream based from which the source can
functions R;(-) of the subprocesses at points at which thge reconstructed with average distortion.
slope R;(-) is the same for ali. That is, &;(D;) does not  Equations (8) and (9) also specify the MSE rate-distortion
Constant slope means that the same marginal tradeoff is bejgt the range of integration tdf| < 1/2 or to |w| < . In

drawn between rate and distortion for each of the independgfieh casesp(w) is the discrete-time power spectral density,
components. Indeed, intuition suggests that this must be §1§eriodic function defined by

case; otherwise it would be possible to lower the ovefall
for fixed D by devoting more bits to subprocesses being )
reproduced at points of lower slope and fewer bits to processes bw) = Z P(k) exp (jwk)

being reproduced at points of slope. In this connection the h=oee

reader should observe that the slopefp{D) is continuous where ¢(k) = EX; X4 is the correlation function of the
everywhere except a = S;A, where it jumps from-1/S;  source data. Note that when the paramétassumes a value
to 0. Hence, one can draw a tangent line&g(-) at D = less than the minimufnof @(-), which minimum we shall
S;A with any slope between-1/S; and 0. For purposes of denote byD*, (8a) reduces tdy = 6, which eliminates the
combining points in the sense of this paragrafil(,-) should parameter and yields the explicit expression

be considered to have all slopes betweeh/S; and 0 at

o

1 ™
D = SiA. R(D) = —/ log [®(w)/D]dw, D < D*.
As A — 0 the above sums constituting our parametric dr |,
representation ofR(D) become integrals over frequencyys may be recast in the form
namely,
1
> R(D) = -log D D < D*
D)\ :/ min [)\,S(f)] df ( ) 9 og (QO/ )7 >
and ’ where

- [ " tnax[0,log (S(£)/ V)] df. Q0 = exp {% [ s dw}

—T

Two-sided spectral densities with their attendant negative . . . .
) —_ . 2~ IS known in the information theory literature as #ropy rate
frequencies are less forbidding to engineers and scientists

today than they were in the 1940's. Accordingly, the abo owc_arof {X1}. We shall re’turn to this result when discussing
. . 7 tﬁe literature of the 1960’s.
result now usually is cast in terms of the two-sided spectral

density®( f), an even function of frequency satisfyidq f) = 2More precisely, less than the essential infimum.
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[V. SHANNON'S 1959 RAPER
In 1959, Shannon delivered a paper at the IRE Conven

in New York City entitled “Coding Theorems for a Discret
Source with a Fidelity Criterion” [2]. This paper not only
introduced the term “rate-distortion function” but also pu‘.ro
lossy source coding on a firmer mathematical footing. Major

contributions of the paper are as follows.

« Definition and properties of the rate-distortion function.

* Calculating and bounding aRk(D).
e Coding theorems.
¢ Insights into source—channel duality.

A. Definition and Properties of the Rate-Distortion Function

A discrete information sourcis a random sequendeX} }.
EachX; assumes values in a discrete getalled thesource
alphabet The elements of4 are called theletters of the
alphabet. We shall assume, until further notice, that there

finitely many distinct letters, say/ of them, and shall write

A = {a(0),a(l),---,a(M — 1)}. Often we leta(y) = j and
henceA = {0,1,---, M — 1}, the binary cased = {0,1} is
particularly important.

The simplest case, to which we shall restrict attention
now, is that in which:

alphabet—may be but need not be the samedasVe shall
tigpite B = {b(0),b(1),---,b(N — 1)}, where N < M,
N =M, and N > M all are cases of interest. When (10)
applies, we say we havesingle-letter fidelity criteriorderived
Shannon defined theate-distortion functionR(-) as fol-
lows. First, let@ = {Q(b| a),a € A, b € B} be a conditional
probability distribution over the letters of the reproduction
alphabet given a letter in the source alphab@iven a
source distributiod p(5)}, we associate with any sueh two
nonnegative quantitied()) and I(Q) defined by

4Q) = 3 3 p@Q(b | a)d(a,b)

aCAWCB
and
Qb | a)
I = a)Q(b ] a)log
L @=X T wae00 s (405)
where
g(b) = > p(@)Q(b | a).
acA
f

Yhe quantitiesd(@)) and I(Q) are, respectively, the aver-
age distortion and the average Shannon mutual information

1) The X; are independent and identically distributed c,ciated withy.

(i.i.d.) with distribution {p(a),a € A}.

2) The distortion that results when the source produc

the n-vector of lettersa = (ay, - -,a,) € A" and
the communication system delivers thevector of let-
tersb = (by, -
representation of; is

dfa,8) ==t S " dax, be).

k=1

(10)

Here, d(-,-) : A x B — [0,00) is called asingle-letter
distortion measure The alphabet3—variously called the

The rate-distortion function of the i.i.d. sourde&,,} with
fetter distribution{p(a) = P[X; = a]} with respect to the
single-letter fidelity criterion generated ldy-, -) is defined by
the following minimization problem:

R(D) = Q).

,b,) € B™ to the destination as its

min (12)
Q:d(Q)<D

3Such aQ often is referred to as &st channelHowever, it is preferable
to call it a test systembecause it functions to describe a probabilistic
transformation from one end of Fig. 1 to the other—from the source all
the way to the user—not just across the channel. Indeed, the rate-distortion
function has nothing to do with any chanr@r se It is a descriptor of the
combination of an information source and a user's way of measuring the

reproduction alphabet, the user alphabet and the destinati@iortion of approximations to that source.
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Since the generally accepted object of communication is to  segments iN(Dyin, Dimax) (S€e d) above), no two of
maximize mutual information, not to minimize it, many people them share a common endpoint.

find the definition of the rate-distortion function counter- f) R(D.;,) < H, where

intuitive* In this regard it often helps to interchange the

independent and dependent variables, thus ending up with a H=- Zp(a) log p(a)
distortion-rate functiondefined by aCA
D(R)= min d(Q). (12) is the source entropy. If for eaehe A there is a unique
QI(Q)<E b € B that minimizesd(a, b), and eactb € B minimizes

Everyone considers that minimizing average distortion is ~ @(@;b) for at most ones € A, then R(Duin) = H.
desirable, so no one objects to this definition. Precisely theSome of these properties were established by Shannon [2],
same curve results in théD, R)-plane, except that now including the essential convexity property d). For proofs of the
R is the independent variable instead Bf Distortion-rate Others see Jelinek [27], Gallager [7], and Berger [26].
functions are more convenient for certain purposes, and rate-
distortion functions are more convenient for others. One showd Calculating and Bounding aR(D)

become cpmfortable W'th,bOth_' . 1) Calculating Discrete Rate-Distortion Function§:he do-
Properties of the rate-distortion function include: main of variation of@) in the definition ofR(D) (see (11)) is
a) R(D) is well defined for allD > Dy,;n, where contained in theM (N — 1)-dimensional probability simplex
defined by the equality constraints
Doin Z p(a) min d(a, b).

acA bEB Z Qb |a)=1, for everya € A
The distortion measure can be modified to assure
that D, = 0. This is done via the replacemen . . .
d(a,b) «— d(a,b) — min, d(a,b), whereupon tEe whole and the inequality constraints
rate-distortion curve simply translates leftward on the Qb |a) >0, for all (a,b) € A x B.
D-axis by Di,.
b) R(D) = 0 for D > Dy, Where In addition, the variation is confined to thoégs that satisfy

the constraint on the average distortion, namely,
ZZp Qb | a)d(a,b) < D.

Moreover, the objective functiod(() is a convex func-
tion of Q.°> Hence, determining?(D) amounts to solving a
convex mathematical programming problem. This justifies the
following statements.

1) There are no local minima in the search region, just a

lone global minimum. HenceR(D) exists despite the
fact that a minimum rather than an infimum appears in

Dmax = Inblnza:p(a)d(av b)

D,ax is the maximum value o) that is of interest,
since R(D) = 0 for all larger D. It is the value ofD
associated with the best guess{&,} in the absence
of any information about it other thampriori statistical
knowledge. For example),,,.x = 1 — max, p(a) when
A=Bandd(a,b)=1ifb#£acand0if b=a

¢) R(D) is nonincreasing irD and is strictly decreasing at
every D € (Duin, Diax)-

d) R(D) is convex downward. It is strictly convex in the

range(Dinin, Dimax) Provided N < M, whereN = |B| its definition because this minimum always is achieved,
and M = | A|. In addition to the ever-present straight- 1Ot ust closely approached. The minimum need not
line segment’(D) = 0, D > D if N> M then necessarily occur at a distinct point; it may be common

to a subset of points that constitute a closed, convex

subset of the domain.

2) Kuhn-Tucker theory provides necessary and sufficient
conditions met by a test systegh that minimizes/ (@)
subject to the constraints (i.e., solves the minimization

“Indeed, Shannon himself seems to have fallen prey to said information-  problem that defineg(D)).

maximizing mindset in the abstract of his 1959 paper, where he wrote (0r3) The constraintD(Q) < D always is satisfied with

someone typed): lity by th N H I th .
In this paper a study is made of the problem of coding a discrete equality by the minimizingy. Hence, all the constraints

source of information, given &delity criterion or a measure of the except Q(b | a) > 0 can be handled by Lagrange
distortionof the final recovered message at the receiving point relative multiplier theory.
to the actual transmitted message. In a particular case there might be a
certain tolerable level of distortion as determined by this measure. It is
desired to so encode the information that the maximum (sic) possible  5That is,
signaling rate is obtained without exceeding the tolerable distortion
level. IAQ1 + (1= N)Q2) < M(Q1) + (1= M)I(Q2)
The final sentence of this quote should be replaced by, say, “It is desired to
minimize the signaling rate devoted to the encoded version of the informatifor any A € [0, 1] and any two test syster{g2(b | a)} and{Q2(b | a)}.
subject to the requirement that the tolerable distortion level is not exceede8¢ee, for example, [7].

R(D) can possess one or more straight-line segments in
the rangeD iy < D < Dyax.

e) The slope ofR(D) is continuous i Dy, Dmax) and
tends to—occ as D | Dy,. If there are straight-line
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Because of the last item on this list, much insight can heansition probabilities that solve the rate-distortion problem
gained into the problem of computing(D) by temporarily for the Bernoull(%) source atD = e. Again, this double
ignoring the constraint® (b | ) > 0 and equating to zero the coincidence represents a precarious saddle point. If the channel
derivative of the Lagrangian functiondl Q) = I(Q)+sd(Q) were not available precisely once per source symbol, if the
with respect to each componeftb | a) of Q. Following this  Bernoulli source were to have a bias# 1, if the channel
approach, Shannon [2] showed that, for a fixed vatuef \ere not perfectly symmetric, or if the distortion measure were
the Lagrange multiplier, the minimizing, call it {Q.(b | not perfectly symmetric (i.e., ifi(0,1) # d(1,0)), it would

a)}, always is given in terms of a probability distributionyecome necessary to employ source and channel codes of long

{g:(b),b € B} by the prescription memory and high complexity in order to closely approach per-
Q.(b | a) = As(a)gs(b) exp [sd(a,b)] formance that is ideal in the sense of achieving equality in the
information transmission inequality (5). Shannon illustrated
where how algebraic codes could be “used backwards” to encode the
ATl a) = Z 4, (b) exp [sd(a, b)]. equiprobable binary source efficiently with respect to the error

frequency criterion for cases in which the medium connecting
the source to the user is anything other than a BSC. This
1i%'ea was extended by Goblick [29] who proved that ideally
efficient algebraic codes exist for this problem in the limit of
large blocklength.

hTo enhance appreciation for the fragility of the double-

oincidence saddle point, let us replace the Berngylli
source with a Bernoullp) source,p # % Calculations (see
[26, pp. 46—47]) reveal that the rate-distortion function then
becomes

distortion function parameterized byto that of determining
the unknown distribution{q;(b)}. The hardest part of that
is to determine for which values @ if any, ¢,(b) = 0. In
certain problems with sufficient symmetry and/or small enou
|B], qs(b) is strictly positive for allb € B (except perhaps at
$ = Smax, the value ofs that corresponds t®,,,,..) Shannon
[2] used this circumstance to determif&D) in the special
case of an equiprobablé/-ary source withd(a,b) = 1 if

b # a andd(a,b) = 0if b = a. The result is

R(D) = log, M — h(D) — (1 — d) log,(M — 1),

0<D<1—M"'=Dyax (13) Although the optimumbackward system transition proba-
bilites P(a | b) remain those of BS@), the optimum
forward transition probabilities become those of a binary
h(z) = —zlogy z — (1 — x)logy(1 — ). asymmetric channel. Hence, it is no longer possible to obtain
an optimum system simply by connecting the source directly
to the BSC and using the raw channel output as the system'’s
Qb a) = {1 - D, ?f b=a reconstruction of the source. Not only does the asymmetric
D/(M-1), ifb#a source fail to drive the BSC at capacity, but the BSC fails to

which says that the whole system should be constructed prvide the asymmetric system transition probabilities required
such a way that its end-to-end probabilistic transition structui® the R(D) problem forp # 1/2. For example, suppose

R(D) = h’(p) - h(D)7 0 S D S Inin(pv 1 _p) = Dma.x~

whereh(-) is Shannon’s binary entropy function

The optimizing @ is

mimics that of anM-ary Hamming channel. p = 025 so that R(D) = 0.811 — k(D) bits per letter,
In the special case of a binary equiprobable soiide= 2), 0 < D < 0.25 = Duax. Further suppose that = 0.15
(13) reduces to so that the channel capacity & = 1 — ~(0.15) = 0.390

bits per channel use. Direct connection of the source to the
R(D)=1-hD) =1+ Dlog, D+ (1 - Dlog,(1— D), channel yields an error frequency Bf= ¢ = 0.15. However,
0< D <1/2=Dpax evaluating the distortion-rate function & in accordance
%jtg (5) shows that a substantially smaller error frequency of
—(

The desired end-to-end system behavior then becomes that . . .
0.390) = 0.0855 can be achieved using optimum source

binary symmetric channel (BSC) with crossover probability ,
It follows that, if one seeks to send a Berno(lj source over and channel coding. _ _ _
a BSC that is available once per source letter, then optimym! € formula that Shannon provided for the rate-distortion
performance with respect to the single-letter fidelity criterioffnction of an A-ary equiprobable source with distortion
generated byi(a,b) = 1 — 8,, can be obtained simply by assessed by the single-letter Filstortlon .meagi,(r@ b) =
connecting the source directly to the BSC and using the raw~ da,s, Namely (13), actually is a special case of a more
BSC output as the system output. There is need to do a@§neral result published the preceding year by Erokhin [31],
source and/or channel coding. The average distortion will Bestudent in Kolmogorov’'s seminar. At Kolmogorov's urging
D = ¢, wherec is the crossover probability of the BSC. Erokhin considered a general i.i.d. discrete source with a finite
This is another instance of a double coincidence like that countably infinite alphabet and found a formula for what
of Section II-E. The first coincidence is that a Bernqdlli we would now call its rate-distortion function with respect to
source drives every BSC at capacity, and the second coiritie error frequency criterion. Erokhin’s result is that the rate-
dence is that BS() provides precisely the end-to-end systerdistortion function in question is given parametrically by the
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equations where
Dg=1—-5y+ (9(N9 — 1) h(p) = —/ p(a}) logp(a:) dx
Ry=— Y pla)logp(a)+ (1 — Dp)log (1 — Dy) -
a:p(a)>6 is the differential entropy of the instantaneous source density
+ (Ng — 1)8log 6, andh(gs) is the differential entropy of the “tilted” density

where N, is the number of source letters whose probability g9:(2) = ooexp (sdlz))
exceedd) and S is the sum of the probabilities of thegé, S exp (sd(z)) dz

) < fh< . . . . .
letters T.he parametet traverses the range < ¢ < p(ay) associated with the parameterand the difference distortion
as D varies from0 t0 Dy = 1 — p(aq), wherep(ay) >

p(az) > pla) for all othera € A — measurel(-). The distortion coordinat®; is given by
2 -~ .

Moreover, the optimum output probability distribution Y A
{q(b)} corresponding to parameter valdds D = o d(z) exp (sd()) dz.
q(b) = max [0, p(b) — 6] ) Rp(D) of (14) has been named the Shannon lower bound [26].
> max [0, p(b) — 6] In the case of squared errai(a, b) = (b—a)?, the parameter
b

s can be eliminated and the Shannon lower bound can be
This, in turn, shows that saifly(b)} is supported on a subsetexpressed in the compact form
of letters assigned high probability by the source. In other 1
words, more and more letters of low source probability are Rp(D) = -log(Qo/D)
dropped out of use as reproduction letterd?aand henceD, 2
increases. Once a letter drops out of use, it never reappears¥Bere Qo is the entropy power of the source density. That
larger values ofD, a property that is by no means commots: Qo is the variance of a Gaussian r.v. that has the same
to all rate-distortion functions. For cases in which| < o, differential entropy as doeg(-), namely,

the parametef can be eliminated whet < 6 < Pmin; wherg Qo = (%G)_l exp (2h(p)).
Pmin denotes the smallest of th€a), a € A. This results in
the explicit formula If a typical source r.v.X; can be expressed as the sum

] of two independent r.v.’s, one of which i&(0, D), then

R(D) = H — hy(D) — Dlog(|A| — 1), R(D) = Ry (D). The largest value oD for wh(ich t?ﬂs can

0< D <pmin(lA—1)-  pe done is called theritical distortion and is denoted by*.

We shall later interpret this as an instance of tightnedd€ critical distortion can be as small @sin which case the -
of a discrete version of the Shannon lower bound, witRhannon lower bound to the MSE rate-distortion function is
Pumin(|A| — 1) in the role of the associated critical value ofowhere tight. At the other extreme, if the source variables
distortion D*. are themselvesV'(0,57) r.v., thenQy = D* = 0? = Dy

2) The Shannon Lower Boundhannon then revisited theS® that the Shannon lower bound is everywhere tight and
problem of continuous amplitude sources. Skeptics of Shan- 1 )
non’s prowess in rigorous mathemafichould note that the R(D) = max {0’ Qlog (o /D)} (15)
paragraph introducing his treatment of “cases where the input ) ) ) )
and output alphabets are not restricted to finite sets but vj—@_s result is the time-discrete version of (4). It corresponds to
over arbitrary spaces” contains the phraseology “Further, ing samples of the ideal bangll_mned Gaussian noise process
assume a probability measuie defined over a Borel field 2V times per second and defining = S, Its presence
of subsets of thed space. Finally, we require that, for eactS In keeping with one of Shannon's avowed purposes for
» belonging to B, d(m,z) is a measurable function withWriting his 1959 paper, namely, to provide “an expansion and
finite expectation.” [2] For the case of a difference distortiofétailed elaboration of ideas presented in [1], with particular
measurei(a,b) = d(b — a) and an i.i.d. time-discrete Sourcereferenc_e to the dlsc_rete case.” (In.terpretm_g “discrete” here to
producing absolutely continuous random variable (r.v.) withéan discrete amplitude and/or discrete time.)
probability densityp(-), Shannon used variational principles !t iS noteworthy that, even when treating situations charac-
to derive a lower boundi,(D) to the rate-distortion function t€rized by abstract reproduction alphabets, Shannon nonethe-

described parametrically as follows: less m_eticulou_sl_y employ_ed discret_e output random variables.
“Consider a finite selection of points; (: = 1,2,---,1)
R(D;) =z Rr(D5) := h(p) — h(y;) (14)  from the B space, and a measurable assignment of transition

6There are none who doubt Shannon'’s insight and creativity. Howevgatobabilities ¢(z; | m)” [2]. Perhaps Shannon did this to
there are those who think that Shannon wrote his papers in a mathematicg¥jlate the reader from the theory of abstract spaces but

casual style not to make them more widely accessible but because he was not likelv qi hi . fth d
conversant with the measure-theoretic approach to probability and rand S Seems unlikely given nis accompanying use of the words

processes. Those people are mistaken. That the renowned academician Ameasurable assignment of transition probabilities.” Also, pro-

Kolmogorov referred to Shannon’s conception of information coding in tem\ﬁding the reader with such insulation was less a matter for

of the asymptotics of overlapping spheresiifdimensional finite geometries . . . . .
in the limit asn — oo as “incomparably deep” [4] should in itself have beerCONCEM IN 1959 as it had been in 1948. A better eXplanat'on 1S

enough to silence such skepticism, but alas it persists. that Shannon appreciated that the representation of the source
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would always have to be stored digitally; indeed, his majarhere R,,,(d) is to defined to be the minimum mutual infor-
motivation for Section V in 1948 had been to overcome thmation rate between a vectdf of m successive source letters
challenge posed by the fact that continuous-amplitude dasad any random vecto¥ jointly distributed withX in such a
has infinite entropy. But, there is an even better explanationay that Ed(X, X) < D, whered(-,-) is the operative local
It turns out that the output random variabethat results from distortion measure of span He then stated a “Positive Coding
solving the rate-distortion problem for a continuous-amplitudeheorem” and a “Converse Coding Theorem” and sketched
source usually is discrete! The region, if any, in which theheir proofs. Both theorems were phrased in terms of what can
Shannon lower bound is tight for distortions smaller than sona@d what cannot be accomplished when faced with the task of
positive D* turns out to be the exception rather than the rule tansmitting information about the given source over a given
that X is indeed continuous for eadh in the rangel0, D*).  channel of capacity” and then generating a reproduction of
However, forD > D* Rose [158] recently has shown that thehe source based on the information available at the channel
optimum X is discrete. (See also work of Fix [159] dealindutput. As such, they are examples of what we now call
with cases in whichX has finite support.) In retrospect, itinformation transmission theorems or joint source—channel
seems likely that Shannon knew this all along. coding theorems. We summarize their content by using the first
and second sentences of Theorem 21 of Shannon’s 1948 paper
C. Source Coding and Information Transmission Theoremsquoted above, with the terminology appropriately revised to

Shannon did not state or prove any lossy source codiﬂbthe current context.

theorems in his classic 1948 paper. He did, however, state angbositive Theorem:If an ergodic source has a rate-distortion
sketch the proof of an end-to-end information transmissiginction R(D) with respect to a fidelity criterion generated by
theorem for the system of Fig. 1, namely, his Theorem 23.|ocal distortion measure, then it is possible to encode the
Since the notation?(D) did not exist in 1948, Shannon’soutput of the source and transmit it over a channel of capacity

theorem statement hag in place of D and R; in place of ¢ with fidelity as nearD as desired provided&(D) < C.

R(D). It reads: )
Converse TheoremLet R(D) andC be as in the statement

Theorem 21: If a source has a rafig for a valuation  of the Positive Theorem. IR(D) > C then it is not possible
vy it is possible to encode the output of the source and g transmit an encoded version of the source data over the

transmit it over a channel of capacity with fidelity channel and then reconstruct the source with fiddlitgn the
as nearv; as desired provided?; < C. This is not basis of what is received.

possible if B, > C. ) ) )
It is also possible to state and proseurce coding theorems

In 1959 Shannon included the word “Theorems” in the title Qf,at depend only on the source and the distortion measure and
his article [2] and was true to his word. have no connection to any channel.
He began by generalizing from a single-letter distortion

measure to docal distortion measure of spap, denoted  Definition: A block source code of ratg? and block-
d: A9 x BY — [0,00), and then defining the distortion forlength n is a collection of M = [2"R(P)] n-vectorsC =

blocks of lengthm > ¢ according to the prescription {b1,- -+, bar}, Where eacld; belongs to thenth-power 5™ of
the reproduction alphabet.

1 m—g+1 o ' ) N

Z d(ag, Gpgs - Qhpg1; Definition: Given a block source codg and anyz € A",

m—g+1 £~ b(zx) € Cis animageof z in C if d(z,b(x)) < d(z,b) for all
b € C; certain vectorge may have more than one imagedn

d(a,b) =

bry brt1y - brpg—1)-

) ) o ) The reader will appreciate that a block source code is

Local distortion measures represent a significant |mprovem%ri‘|1'np|y a collection of vector quantizer “centroids,” and that

over single-letter distortion measures in many situations mapping each source word into an image of itself amounts to
interest. For example, if one is compressing a text that Contam%imum—distortion vector quantization

multidigit numbers, such as a company’s annual report, a local
distortion measure allows one to assign greater penalties td0sitive Source Coding Theorenet R(D) denote the
errors made in the more significant digits of such numbefate-distortion function of an ergodic source with respect to a
than to errors in the less significant digits. Generalizing tolacal distortion measurd. If R > (R(D) then for sufficiently
local distortion measure in no way complicates the proof ¢drge » there exists a block source codeof rate R and
source coding theorems, but it significantly complicates thdocklengthn for which Ed(X,b(X)) < D.
analytical determination oR(D) curves [30].

Next he extended from i.i.d. sources to general ergodtj;&l
sources. This required generalizing the definition &( D) to

Converse Source Coding Theorerif: R < R(D) then for
n there does not exist a blocklengthsource code of rate
R for which Ed(X,b(X)) < D.

R(D) = lim inf R, (d) The proof of the Converse Theorem given by Shannon is
adequately rigorous. A corresponding proof of the Converse

"Ergodic sources need not necessarily be stationary. It appears that Shar%gtwce C?Od'ng Th.eorem can be Obta'r!ed S|m|larly_ by 'nV_Ok'ng
intended his discussion to apply to stationary ergodic sources. the readily established facts th&t,(-) is monotonic nonin-
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creasing and convex downward for evesyat appropriate then determining its capacity subject to a bound on expected
places in the argument. transmission cost amountst@aximizinga mutual information
The situation with respect to the Positive Theorem is moggibject to a linear inequality constraint and results in a capac-
delicate. The nuance is that proving the theorem involvigg—cost function for the channel thatéencavedownward. He
approximating the source by a sequence of sources:the says, “Solving this problem corresponds, in a sense, to finding
of which produces successivevectors independently of onea source that is just right for the channel and the desired cost.”
another according to the-dimensional marginal of the givenHe then recapitulates that finding a source’s rate-distortion
stationary source. As — oo intuition suggests that the ap-function is tantamount taminimizing a mutual information
proximating sources will “converge” to the given source in theubject to a linear inequality constraint and results in a function
sense of mimicking its dependencies ever more closely, excegit is convexdownward. “Solving this problem,” Shannon
perhaps in relatively narrow intervals near the boundaries €dys, “corresponds to finding a channel that is just right for
successive blocks. However, there are certain ergodic sourg®s source and allowed distortion level.” He concludes this

that exhibit extraordinarily long-range statistical dependenciggndmark paper with the following two provocative sentences:
Initial efforts to prove the Positive Theorem rigorously in the

generality stated by Shannon encountered obstacles imposed is duality can be pursued further and is related to
by the possibility of such long-range dependencies. Over the@ duality between past and future and the notions of
decades, a succession of increasingly general theorems wer€0ntrol and knowledge. Thus we may have knowledge
proved. First, it was proved only for finite-order Markov ©f the past but cannot control it; we may control the
sources, then for strongly mixing sources [24], then for block- future but have no knowledge of it.
ergodic sources [25], then for weakly mixing sources, and
finally for general stationary ergodic sources [7]. The extent
to which Shannon knew, or at least intuited, that the Positive With regard to rate distortion, the 1960’s were a decade
Theorem is true for general ergodic sources shall remdiRaracterized principally by doctoral dissertations, conference
forever unresolved. Later, it was shown that even the ergoditesentations, and book sections. Centers of rate-distortion the-
assumption can be removed; stationariness is sufficient [18]y research were M.L.T. (to which Shannon had moved from
Also, a proof of the source coding theorem via large deviatioB€!l Labs), Yale, Harvard, Cornell, UC Berkeley, and USC.
theory was developed by Bucklew [16]. Columbia, Brooklyn Poly, Purdue, Stanford, and Caltech/JPL
In 1993 Kieffer wrote an invited survey paper [17] concerr@lso were represented.
ing source coding with a fidelity criterion. This comprehensiv MIT
and well-crafted article focused principally on source cod-’
ing theorems, recapitulating how they were developed withAt M.L.T., Fano and later Gallager supervised doctoral dis-
increasing generality over time, including relatively recergertations that addressed aspects of rate distortion. Specifically,
emphases on universality, multiterminal models, and codifgpblick [29] wrote about algebraic source codes, about rate
for sources modeled as random fields. Kieffer was selected fhgtortion for certain situations involving side-information, and
this task in considerable measure for his several contributicaigout the rate at which the performance of block source codes
that proved source coding theorems with increasingly relaxeduld be made to converge to points on tR€D) curve as
conditions in increasingly general contexts [18], [19], [20plocklength increases. Another dissertation, by Pilc [32], [33]
[21], [22], [23]. Kieffer's survey article also contains analso bounded the performance of optimum source codes as a
invaluable bibliography of 137 items. function of their blocklength. Recent research by Yang, Zhang,
It is not our purpose here to enter into the details @&nd Wei corrects the work of Pilc and extends it to sources
proofs of source coding theorems and information transmissiatth unknown statistics that possess memory [34], [35], [36];
theorems. Suffice it to say that at the heart of most proadge also related work by Linder, Lugosi, and Zeger [37], [38].
of positive theorems lies a random code selection argumentPinkston wrote both a masters thesis [39] and a doctoral
Shannon’s hallmark. In the case of sources with memory, thssertation [40] concerning aspects of rate-distortion theory.
achievability of average distortio® at coding rateR?,(D) The former concentrated on computiitf) and developing
is established by choosing long codewords constructed @fdes for situations in whicH(a,b) = oo for certain(a, b)-
concatenations of “super-letters” frol*. Each super-letter pairs; this theory parallels analogous in some respects to the
is chosen independently of all the others in its own codewotdeory of the zero-error capacity of discrete channels. The
and in the other codewords according to the output marginatter also appeared in part as a journal paper [41].
q(b) of the joint distributionp(a)Q(b | a) associated with the
solution of the variational problem that defings (D). B. Yale
At Yale, Schultheiss supervised a bevy of doctoral stu-
. . _ dents who studied rate distortion. Gerrish [28] dissected the
D. Insights into Source-Channel Duality variational problem definingR(D) in considerable detail.
Shannon concluded his 1959 paper on rate-distortion thedkghough he did not use Kuhn—Tucker theory, Gerrish derived
with some memorable, provocative remarks on the dualithe necessary and sufficient conditions for optimality that
of source theory and channel theory. He mentions that, a@pplication of that theory would have produced. Specifically,
costs are assigned to the use of its input letters of a chanre, showed that),(b | a), as given above in Section 1V-B,

V. THE SIXTIES
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is optimum for parameter value if and only if the output treatment of coding for unknown sources varying over a class
distribution ¢;(b) that generates it satisfies the condition  either randomly or under the control of an adversary [69]. It
_q it go(8) > 0 was shown, among _other th_ir_lgs, that th_e discrete-time Wiener
cs(b) = Zp(a))\s(a) exp [sd(a,b)]{< 1 i S(b) _ Process also exhibits a critical distortion phenomenon, the
a = 4\0) = value of D* being 02 /4, where o2 is the variance of the
increment between samples. Furthermore, it was established

where
that the rate-distortion function of the Wiener sequence did
A Ha) = qu(b) exp [sd(a, b)]. indeed specify its MSE information rate despite the process
b being nonstationary. The treatment of unknown sources, like

Using this result Gerrish considerably expanded the clal® work of Sakrison on classes of sources cited below, helped
of discrete rate-distortion problems for whick(D) could Pave the way for subsequent studies of universal lossy source

be determined analytically. He also concocted the famo@@ding.
example

A=B=1{0,1,2  d(a,b)=|b—aq

D. Harvard

_ _ = At Harvard, Tufts supervised an active group of com-
p(l)=p p(0) =p(2) = (1 -p)/2. munication theorists including Ramamoorthy, Fine, Kellogg,
This example has the property thatifis sufficiently small, Trafton, Leiter, Shnidman, and Proakis. Two others of Tufts’s
thenq(1) is positive for a range of smalD, is zero for slightly students, Berger and Gish, explicitly considered rate-distortion
larger distortions, and then becomes nonzero for still largéeory as a means for developing absolute performance limits
distortions; atD = Dy.x = 1 — p, ¢(1) = 1 regardless of against which to compare the communication and quantization
the value ofp. This example showed that even in a case wifchemes they analyzed [70], [71]. Berger's results showed
small alphabets and considerable symmetry, there is no simfflat, although optimum PAM systems are quite efficient for
behavior to the sefb : ¢(b) = 0} as a function of distortion, COmmunicating various types of data sources over filtered
in contrast to what Erokhin had established for the error fréhannels with additive Gaussian noise when the SNR is low,
quency criteriond(a, b) = 1—§, ;. McDonald and Schultheissthe.gap between optimum PAM_and |nformatlon—thepretmally
[42]-[44] obtained results generalizing the Shannon-Pinskgptimum systems widens meaningfully as the SNR increases.
water table result for Gaussian processes and MSE distortigiS was among the insights that led Price and others to
to different sorts of constraints on the error spectrum. Huari§alize that dramatic gains in signaling rate still remained to be
Spang, and Schultheiss [45], [46] derived enhanced vect§aped in the transmission of digital data over clean telephone
guantization schemes with and without feedback by usifgiannels. Gish's results led to collaboration with Pierce on a
orthogonal transformations inspired by considerations frofeory of asymptotically efficient quantizing [72].

rate-distortion theory. Studying the expressiog log (Qo/D) for the MSE rate-
distortion function of a Gaussian sequence for< D* (cf.
C. Cornell Section 11I-B), Gish and Berger [73] noticed that the formula

. . . for the entropy rate power, namely,
Research in rate-distortion theory at Cornell was spear-

headed by Jelinek and subsequently by Berger. Jelinek an- 1 /7

alyzed the behavior of rate-distortion functions for small Qo :exp[g/ log &(w) dw}

distortion [59]. Also, he used the theory of branching processes -

to show that performance arbitrarily close to théD) curve is also the formula for the optimum one-step prediction error.
could be achieved via tree codes [60]. (See also the pafénat is, the entropy rate powep, equals the variance of
by Davis and Hellman [58] in which a more precise anathe minimum MSE estimate aoX; based on{X,,j < k}.

ysis was conducted using branching processes with rand®his is both intriguing and confounding. A confluence of
environments.) Jelinek and Anderson [61] introduced Me fundamental quantities always is intriguing. Here is what is
algorithm, an implementable procedure for encoding tree codemfounding. The sequence of successive one-step prediction
analogous to sequential decoding and stack decoding of tegeors, also called thennovations processs stationary, zero-
and trellis channel codes, and documented its performanmmean, uncorrelated, and Gaussian. Let us cdllif}. Rate-
relative to bounds from rate-distortion theory. Under Bergertistortion theory tells us thafl,} can be encoded with an
direction, information rates of sources modeled as dynamiSE of D using any data rat& > % log (Qo/D) but no data
systems were determined by Toms [64], tree encoding &te smaller than this. Hence, in the range< D < D*,
Gaussian sources with memory was studied by Dick [68he MSE rate-distortion function of X} is equal to that
and studies of complete decoding algorithms for triple-erroof {I;.}. This suggests that perhaps an optimum encoder
correcting algebraic source codes were initiated by Vandehould computd I} from {X;} and then use a code of rate
horst [62], [63]. Also, a paper on using Slepian’s permutatiof log (Qo/D) to convey the memoryless sequengh.} to
codes as a mechanism for lossy source coding was writtenthg decoder with an MSE ab. However, it is unclear how
Berger, Jelinek, and Wolf during a summer visit to Cornell bthe receiver could use these lossy one-step prediction errors to
Wolf [66]. Solo papers by Berger during this period includedenerate aD-admissible estimate of X} }. Furthermore, the

a rate-distortion study of Wiener processes [67], [68] andrate-distortion problem does not impose a restriction to causal
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estimation procedures the way the one-step prediction problewth theoretical and practical importance. Some of these will
does, so the apparent connection between them is enigmbtcdealt with in the portion of the paper dealing with the early
indeed. 1970’s.

E. UC Berkeley G. Feedback Studies: Stanford, Columbia, Caltech/JPL

Sakrison conducted and supervised research in rateSchalkwijk and Kailath’s celebrated work on capacity-
distortion at UC Berkeley. His initial papers [74]-[76]achieving schemes for channels with feedback gave rise to
treated source coding in the presence of noisy disturbancasidies of analogous problems for source coding. In this
gave geometric insights into the source coding of Gaussiaonnection, Schalkwijk and Bluestein [48], Omura [49], and
data, and treated the effects of frequency weighting Butman [50] studied problems of efficient lossy coding for
the distortion measure as part of an effort to deal wittases in which there is a feedback link from the user back to
edge effects and other perceptual considerations in imafe source encoder.
coding. His paper with Algazi [77] dealt explicitly with two-
dimensional coding techniques for images. In this connectiad, The Soviet School
basic formulas for the information rates of Gaussian randomDuring the 1960's, Soviet scientists continued to contribute

fields were being developed contemporaneously at PurduetBythe mathematical underpinnings of information theory in

_Hayes, Hat.)ibi’ anq Wintz [.SO]' Sakrison also supervised neral and rate-distortion theory in particular; see Pinsker
important dissertation in which Haskell [79] developed a ne 2], Dobrushin [53], [54], and Tsybakov [51]. Also, Do-

representation of the rate-distortion variational problem agd <hin and Tsybakov [55] wrote a paper extending rate-
used it to compute and bOl.md. _rate-distortio_n functions _in n_ovc%tortion theory to situations in which the encoder cannot
ways. _Probably the most s_|gn|f|ca_nt of SaI§r|son’s CorltrIbUtlorE)c‘bserve the source directly and/or the user cannot observe
was his paper dealing with the information rate of a SOUrGHe decoder output directly; see also Wolf and Ziv [56]. Like

that_is knowq only to bg!ong o a cc_artain class Of. SOUICERjinek, Lin’kov [57] provided tight bounds t&(D) curves
but is otherwise unspecified [78]. This paper contributed memoryless sources for small

setting the foundation for the study of universal lossy coding
that flourished in succeeding decades. | The Eirst Textbooks

F. USC In 1968, the first treatments of rate-distortion theory in

information theory texts appeared. Jelinek’s [27, ch. 11] and

At USC, Gray [81] studied rate-disto.rtion theory gnder tr_%‘allager’s [7, ch. 9] were devoted exclusively to rate-distortion
able tutelage of Scholtz and Welch. His doctoral d'ssertat'?ﬁ‘eory Gallager's proved therein Shannon’s 1959 claim that
cl_onta|?edh_n|1qany mtheresrt]lngb_results, perha_lpthhi most Stglrg'jodic:ity sufficed for validity of the positive theorem for
tiing of which was that the binary-symmetric Markov sourcg, ;.o coding with respect to a fidelity criterion. He also

exhibited a critical distortion phenomenon with respect t o4 ceq the following dual to the convex mathematical
the error frequency distortion measure that was similar ogramming problem that defineB(D): Let A denote a

that of MSE rate-distortion functions of stationary Gaussi Noctor with components\(a) indexed by the letters of the
sequences alluded to previously. SpecificallyPifl | 0) = source alphabed. Given any reals and anyA > 0 let ¢

P(0 | 1) = p describes the transition matrix of the binaryy.,ote the vector with compone b ;
. . i nt®), b € B defined b
symmetric source, he showed that there exists a posibive P ) y

such that e(b) = Z Ala)p(a) exp [sd(a, b)].

R(D) = h(p) — (D), 0<D<D". oA
Let
What's more, using intricate methods involving Kronecker
products of matrices and ordinary products efmatrices A, ={A20:c< 1}

drawn in all possible ways from a certain pair of matrices, h@allager proved that
found the explicit formula forD* for this problem, namely,

2 R(D)= max |sD+ pla)logA(a)|.
1
D=3 1—4/1— <1L> . m=min(p,1— p). s<0,ACA, ;
—-m

Expressing(D) as a maximum rather than a minimum allows

He showed that similar behavior is exhibited by the rat®ne to generate lower bounds (D) readily. Just pick
distortion functions of many autoregressive processes over raay s < 0 and anyA > 0. Then evaluate:. If the largest
and finite alphabets, though explicit determinationsf has component ofc exceedsl, form a new A by dividing the
proved elusive for any but the binary-symmetric case citediginal A by this largesi(b). The newA then belongs ta\,.
above. This work and extensions thereof were reported inteollows that the straight linesD + > p(a)log A(a) in the
series of journal papers [82]-[84]. Gray continued research @, R)-plane underbound&(D). Not only are lower bounds
his own on rate-distortion throughout succeeding decades aad?(D) produced aplenty this way, but we are assured that
supervised many Stanford doctoral students in dissertationsted upper envelope of all these lines actuadlyR(D). This
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dual formulation is inspired by and capitalizes on the fact that Step 3: Compute,.1(b) = ¢.(b)g.(b). » — r + 1. Return

a convex downward curve always equals the upper envelope
of the family of all its tangent lines. It turns out that all known
interesting families of lower bounds () are special cases
of this result. In particular, choosing the components stich
that A(a)p(a) is constant yields the Shannon lower bound

when the distortion measure is balanced (i.e., every row of2)

the distortion matrix is a permutation of the first row and

to Step 1.

Blahut proved the following facts.

1) The algorithm terminates for any rate-distortion problem

for any ¢ > 0.
At termination, the distance from the poigD,.,I,.)
defined by

every column is a permutation of the first column) and yields a
generalization of the Shannon lower bound when the distortion

D, = Zp(a))\,,(a)q,,(b) exp [sd(a,b)] d(a,b)
measure is not balanced. a,b

VI. THE EARLY SEVENTIES and

The period from 1970 to 1973 rounds out the first 25 years
of rate-distortion theory. Although it may have appeared to
those working in the field at that time that the subject was
reaching maturity, it has turned out otherwise indeed. The
seemingly “mined” area of computation of rate-distortion func-
tions was thoroughly rejuvenated. Furthermore, foundations
were laid that supported dramatic new developments on both
the theoretical and practical fronts that have continued apace
in the 25 years since. Perhaps the most astonishing thing about Blahut’s algorithm

Gallager’s primary interests turned from information theorig that it does not explicitly compute the gradient®f&- sD
to computer science and networks during the 1970’s. Howuring the iterations, nor does it compute the average distortion
ever, rate-distortion theory thrived at Stanford under Gray, abd average mutual information until after termination. In
Cornell under Berger, who wrote a text devoted entirely to th&actice, the iterations proceed rapidly even for large alpha-
subject [26], at JPL under Posner, at UCLA under Omura abéts. Convergence is quick initially but slows for large
Yao, and at Bell Labs under Wyngr. Newton—Raphson methods could be used to close the final
, . gap faster, but practitioners usually have not found this to be
A. Blahut's Algorithm necessary. The Blahut algorithm can be used to find points

A Cornell seminar on the mathematics of population genajn rate-distortion functions of continuous-amplitude sources,
ics and epidemiology somehow inspired Blahut to work ofyo; one needs to use fine-grained discrete approximations
finding a fast numerical algorithm for the computation of ratep the source and user alphabets. See, however, the so-
distortion functions. He soon thereafter reported that the poHlled “mapping method” recently introduced by Rose [158],
on ank(D) curve parameterized bycould be determined by which offers certain advantages especially in cases involving
the following iterative procedure [85]: continuous alphabets; Rose uses reasoning from statistical

Step 0: Setr = 0. Choose any probability distribution mechanics to capitali;e on t'he.fac.t, alluded to earlier, t.hat

go(-) over the destination alphabet that has omghe support of thg optlmum dlstrlbuthn over the reproduction

positive components, e.g., the uniform distributiof/Phabet usually is finite even whehis continuous.

qo(b) = 1/|B.
Step 1: Compute

I.=sD, + Zp(a) log Ar(a)

to the point(D, R(D)) parameterized by (i.e., the point
on the R(D)-curve at whichR'(D) = s) goes to zero
ase¢ — 0. Moreover, Blahut provided upper and lower
bounds on the terminal value éf — R(D,.) that vanish
with e.

B. R(D) Under Gray at Stanford

Following his seminal work on autoregressive sources and
certain generalizations thereof, Gray joined the Stanford fac-
ulty. Since rate distortion is a generalization of the concept
of entropy and conditional entropy plays many important
roles, Gray sensed the likely fundamentality of a theory of
conditional rate-distortion functions and proceeded to develop
it [160] in conjunction with his student, Leiner [161], [162].
He defined

-1
Mo(a) = <Z ¢-(b) exp [sd(a, b)]) ,  acA
b
Step 2: Compute
cr(0) =Y A(@)p(a) exp [sd(a,D)],

If max,c.(b) < 1+ ¢, halt.

bebB.

. _ o _ L Rxy(D) = min I(X; XY)

Centers of excellence in rate distortion emerged in Budapest undea€sisz

in Tokyo under Amari, in Osaka under Arimoto, in Israel under Ziv and his L. . oo L. .

“descendants,” in lllinois under Pursley, and at Princeton underwendt Where the minimum is over all r. &X' jointly distributed with

those developments belong to the second 25 years of information theory. (X7 Y) in such a manner thalf,‘X YXd(X7 X) < D. This not
9Blahut and, independently, Arimoto [86] found an analogous algorith@nly proved of useer sebut also led to new bounding results

for computing the capacity of channels. Related algorithms have since bggh classical rate-distortion functions. However, it did not treat
developed for computing other quantities of information-theoretic interest. Far,

a treatment of the general theory of such max-max and min-min alternatiyfﬁ"at later tume‘j_ OUt. to be the more Cha”engmg _prOblem of
optimization algorithms, see Csezand Tusnady [87]. how to handle side-informatioqY;} that was available to
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h(p) — h(p x D), if 0< D< D,

straight line from(D., h(p) — h(p * D.)) to (p,0), if D.<D<p (47

Rywz(D) = {

the decoder only and not to the encoder. That had to awaiiere Z; is the set of auxiliary r.vZ € Z jointly distributed
ground-breaking research by Wyner and Ziv [94]. with a generic(X,Y") such that:

Gray also began interactions with the mathematicians Orn-1) y — X — Z is a Markov chain; i.e.,
stein and Shields during this period. The fruits of those
collaborations matured some years later, culminating in a py.x,z(y, %, %) = py (Wpxy (2 | ¥)pzx (2
theory of sliding block codes for sources and channels that
finally tied information theory and ergodic theory together in 2y There existgy : 2 x  — & such that
mutually beneficial and enlightening ways. Other collabora-
tors of Gray in those efforts included Neuhoff, Omura, and Ed(X,9(2,Y)) < D.
Dobrushin [163]-[165]. The so-calledrocess definitionof
the rate-distortion function was introduced and related to the3) The cardinality of the alphabeX may be constrained to
performance achievable with sliding block codes with infinite * gatisfy |2 < |x| + 1.

window width (codes in the sense of ergodic theory). It was Consider the special case in whidh,} and {3} are

Sh".W.r! that the process.deﬂn.mon agrepo! W.'th Shannon's 19I§8rnoulli(%) and statistically related as if connected by a BSC
definition of the rate-distortion functiotiminf,, ... R, (D) of crossover probabilityy < 1/2 and d(a,b) = 1 — &,

for soturcttlas ind/or dlstort:jorlhrrleasures V\llgh“ger;\or]yf; I:/Ihor wz(D) for this case is shown in (17) at the top of this
mpgr an 'yo’ltr: fwas.pfroxet al one f_cqtu | ac 't?l | epage, wherey « d = p(1 — D)+ (1 — p)D and D. is such
window wi rom infinity o a farge, tinite value with only . he sraight-line segment fdp» > D, is tangent to the

a negligible degradation in the tradeoff of coding rate Versus o4 segment fop < D,. Berger had used Bergmans [89]

distortion, thereby making the theory of sliding block codet':;.]eory of “satellites and clouds” to show that (17) was an upper
practically significant. bound to R(D) for this binar . i
: . . y-symmetric case. The major
Seeing that Slepian and .WOIf.[%] had condu_cted Sem'n@gntribution of Wyner and Ziv's paper resided in proving a
research on lossless multiterminal source-coding proble nverse to the unlikely effect that this performance cannot

analogous to the multiple-access channel models of Ahlswede . . .
[90] and Liao [91], Berger and Wyner agreed that resear?(%?;jrgxgcil(qun’ and then generalizing to (17) for arbitrary

éhOUId ge done on82 Iog;y;ource—;:gdm% anetllorg]; of tr;e rclaove he advent of Wyner—Ziv theory gave rise to a spate of
over—Bergmans [88], [89] theory of broadcast channels. rE pers on multiterminal lossy source coding, codified and

and Wyner were the first to collaborate successfully on su mmarized by Berger in 1977 [95]. Contributions described

an endgavor, authormg what' proved to. be the first of MalNerein include works by &rher and Marton, [96]-[98], Berger
papers in the burgeoning subject of multiterminal lossy SOourge | Tung [99], [100], Chang [101], Shohara [102], Omura
coding [92] and Housewright [103], Wolfowitz [104], and Sgarro [105]. In

C. The Wyner—Ziv Rate-Distortion Function succeeding decades, further strides have been made on various
side-information lossy coding problems [153], [154], [128],

The seminal piece of research in multiterminal lossy sour .
. . . 55], [129], [130], and [156]. Furthermore, challenging new
coding was the paper by Wyner and Ziv [94], who consider multiterminal rate-distortion problems have been tackled with

lossy source coding with side-information at the deCOd(_'\cr(')nsiderable success, including theltiple descriptions prob-
Suppose that in addition to the sour¢&(;} that we seek ' 9 P b P

to convey to the user, there is a statistically related sourlceefn [145.]' [150.]’ [146]-[149], [151], [152], [157], [132], the
{Y3}. If {¥3} can be observed both by the encoder and ysyccessive refinements probl¢h33], and theCEO problem

decoder, then we get conditional rate-distortion thearla f34]_[136]' Applications of muitiple descriptions to image,

Gray. The case in which neither the encoder nor the decod&ic® audio, and video coding are currently in development,

sees{Y}, }, which perhaps is under the control of an adversargpd practigal Sr? hemes .based lqn syccessive refinement thepry
corresponds to Berger’s source-coding game [69]. The case 15 €merging that promise app !cat|on to progressive transmis-
which the encoder seed’.} but the decoder does not was " of images and other media.
long known [29] to be no different from the case in which ) . :
there is no{Y} }. But the case in which the decoder is privy tg’- Rate Distortion in Random Fields
{Y3} but the encoder is not proved to be both challenging andIn order for rate-distortion theory to be applied to images,
fascinating. For the case of a single-letter fidelity criterion anddeo, and other multidimensional media, it is necessary
(X%, Yi)-pairs that are i.i.d. over the indéx Wyner and Ziv to extend it from random processes to random fields (i.e.,
showed that the rate-distortion function, now widely denotezbllections of random variables indexed by multidimensional
by Rwz(D) in their honor, is given by parameters or, more generally, by the nodes of a graph).
. ) The work of Hayes, Habibi, and Wintz [80] extending the
Fwz(D) = Zez, (XZ1Y) (16)  \vater-table result for Gaussian sources to Gaussian random
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fields already has been mentioned. A general theory of tReéerce in his 1973 paper states [221], “In general, | am content
information theory of random fields has been propoundedth the wisdom that information theory has given us, but
[131], but we are more interested in results specific to rasemetimes | wish that the mathematical machine could provide
distortion. Most of these have been concerned with extendiagfew more details.”

the existence of critical distortion to the random field case andTo assess further the impact of Information Theory on lossy
then bounding the critical distortion for specific models. Theource coding 25 years after Shannon’s original paper, we
paper of Hajek and Berger [121] founded this subfield. Worxamine textbooks [222] and paper compendia [201], [183]
inspired thereby included Bassalygo and Dobrushin [12Ztpm around that time. It is clearly evident that except for
Newman [123], Newman and Baker [124] in which the criticadcalar quantization combined with entropy coding, and scalar
distortion of the classic Ising model is computed exactly, argliantization combined with transform coding for images, there
several papers by Berger and Ye [125], [126]. For a summamgas little in terms of concrete contributions.

and expansion of all work in this arena, see [127]. Part of the reason for this elegant theory not influencing the
practice of data compression can be traced to the observation
E. Universal Lossy Data Compression that the practitioners of information theory and the designers

Work by Fitingof, Lynch, Davisson, and Ziv in the earIyOf data compression systems formed mutually exclusive sets.

1970’s showed that lossless coding could be done efficien%/eb%?]z;ffyc'gleﬁzsgl O;;:gf:?l; E:Eg;ii:fhgiiii s(i)(r;n al
ithout prior knowled f the statisti f th bei ’ o e
without prior knowledge of fhe SIalisies of he source bein ough the papers by Pearson [218] and O’Neal [216] directly

compressed, so-calledniversal lossless codingThis was . s
followed by development of Lempel—Ziv coding [106] [107]|ncorporate some of Shannon’s ideas and results. Perhaps a
§ quote from Pearson’s paper implies the gulf that existed:

arithmetic coding [108]-[110], and context-tree weighted erS‘—

coding [111], [112], which have made universal Iosslesg—he concept of a rate_-digtortion functi_on, once gra_sped, Is
coding practical and, indeed, of great commercial value. conceptually a very satisfying one;” the implication being that

Universal lossy codindnas proven more elusive as regardgate—dlstortmn theory is not simple to comprehend, at least not

both theory and practice. General theories of universal |os"§£zf”5t reading. . . . L
coding based on ensembles of block codes and tree codes we owever, even information theorls_ts were not optimistic
developed [138]-[144], but these lack sufficient structure afd"ccMNY the impact of rate-distortion theory on the prac-
hence require encoder complexity too demanding to be cdfke of lossy source coding, but perhaps for.much d'ﬁefe”t
qﬁsons—they had a full grasp of the theory, its assumptions,

sidered as solving the problem in any practical sense. Reck Y its impl . . d the bi h
developments are more attractive algorithmically [113]-[12 nd its imp ementatlon requirements, an t. € picture they saw
as challenging. For example, rate-distortion theory requires

The paper by Yang and Kieffer [117] is particularly intriguing; del q h dels for i
they show that a lossy source code exists that is universal At accurate spurci Model, Ian dsucd modeis for |;;n|fortant
only with respect to the source statistics but also with respec urces were .JUSF €ing explored and were not well-known
the distortion measure. Though Yang—Kieffer codes code cHA Second, fidelity criteria for important sources such as

be selected priori in the absence of any knowledge about thgpeech and images were not well-developed, although work

fidelity criterion, the way one actually does the encoding doe¥as in progress [218]. Third, the AEP and random coding ar-

of course, depend on which fidelity criterion is appropriate tg)lilments psed in prqving information-theoret.ic results implied
the situation at hand. All universal lossy coding schemes foufigfPonential growth in th_e cod_ebook,_ and 3|“nce, as stated. by
to date lack the relative simplicity that imbues I_empe|_Zi\\,/Vozencraft and Jacobs in their classic text, “One cannot trifle
coders and arithmetic coders with economic viability. Perha}dth exponential growth” [248, p. 387]; many outstanding

as a consequence of the fact that approximate matches abd@igarchers felt that implementation complexity might be the

whereas exact matches are unique, it is inherently much faff@finating issue [227], [228]. o
to look for an exact match than it is to search a plethora of 12PPily, information theory has had a dramatic impact on

approximate matches looking for the best, or even nearly tl‘?ésy source codlng, or data compression, n thg IasF 25, years,
best, among them. The right way to trade off search effort glthough the three issues, source models, fidelity criteria, and
a poorly understood environment against the degree to whigfTPlexity, remain major considerations.

the product of the search possesses desired criteria has Ionf§ @ddition to the results, insights, and tools provided by

been a human enigma. This suggests it is unlikely that tRgannon’s two original papers [1], [2], the legacy of the first
“holy grail” of implementable universal lossy source coding® Ye&rs included the results by Huang and Schultheiss [45]
will be discovered soon. and Wintz and Kurtenbach [246] on bit allocation for scalar

guantizers, the rate-distortion function for autoregressive (AR)
processes and the MSE fidelity criterion as obtained by Gray
[82] and Berger [26], and the tree coding theorem for Gaussian
After 25 years, in 1974, the theory of source coding with AR processes and the MSE fidelity criterion given by Berger
fidelity criterion was well-developed, and extensive treatmeri36]. These results served as a springboard to developing lossy
were available in the literature, including a chapter in the boaloding techniques for sources with memory that explicitly
by Gallager [7] and the comprehensive text by Berger [263xhibit information-theoretic concepts.
However, the impact of rate-distortion theory on the practice of We start with a discussion of memoryless sources and then
lossy source coding, or data compression, was slight. Indepdyceed to examine results for sources with memory. This

VII. AN IMPACT ON APPLICATIONS
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is followed by developments of the several approaches toAn approach to combatting complexity in random codes
compression that have been useful for important sources sigho add structure, and researchers did just this by proving
as speech, still images, high-quality audio, and video. The gaalding theorems for tree and trellis codes that approach the
is to describe the contributions of information-theoretic resultate-distortion bound arbitrarily closely. Results were obtained
on the practice of lossy source coding without producing far tree coding of binary sources and the Hamming distortion
voluminous survey of lossy source compression methods foeasure by Jelinek and Anderson [61] and for tree coding of
the several sources. i.i.d. Gaussian sources and the MSE fidelity criterion by Dick,
Berger, and Jelinek [65]. Viterbi and Omura [242] proved a
trellis source coding theorem and Davis and Hellman [58]
Uniform and nonuniform scalar quantization was the prproved a tree coding theorem for source coding with a fidelity
mary technique for coding memoryless sources in 1974. Thes#erion, extending the work of Jelinek [60] and Gallager
quantizers were usually implemented with an adaptive stgi®0]. While this work did not directly impact applications,
size or scaling factor to allow the quantizer dynamic range tbdid lay the groundwork for later research on coding sources
respond to rapid variations in source variance, and hencewith memory that has found widespread applications.
reduce the number of levels needed to cover this range with the ikely, the most important lossy source-coding technique
allowable distortion. The adaptation was based upon trackitigat has sprung directly from information theory is vector
the input signal variance and was not motivated by amuantization. Only those who have a grasp of information
results from rate-distortion theory. The only real connectiadheory can appreciate the motivation for studying vector quan-
to information theory was through the idea of entropy codintizers (VQ'’s) for memoryless sources; additionally, there were
the quantizer output alphabet. Subsequent work by Farvardiany reasons for not pursuing VQ designs, even from an
and Modestino [187] investigated the performance of entropyformation theorist’'s viewpoint. Since performance grows
constrained scalar quantizers for a variety of source inpagsymptotically with vector lengttv and the number of input
distributions. At the same time, information theorists werngoints grows proportionally t@™ %, the exponential growth
studying the encoding of memoryless sources using rate-encoding complexity seemed too daunting to overcome.
distortion theory and began specifically drawing upon randoRurthermore, there was the indication from rate-distortion
coding arguments. theory that for Gaussian sources and the MSE distortion
Random coding arguments are a staple in proving positimeeasure, only a 0.255-bit/sample reduction in rate, or a
coding theorems, and hence, the existence of good souicg&3-dB reduction in distortion, with respect to entropy-coded
codes. However, many researchers and engineers, espec&lblar quantization, was available with vector quantization.
those interested in applications, find rate-distortion theoSome of the best information theorists found this daunting
wanting in that only the existence of good codes is demof228]. However, in the late 1970’'s and the early 1980’s, infor-
strated and that no method for finding a good code is givemation theorists did turn their attention to vector quantization.
This view is somewhat myopic, though, because each randonThere were three main thrusts at that time. One centered on
coding proof of the existence of a good code actually outlinesiaveloping algorithms for the design of nonuniform VQ's, a
code construction. For example, the proof of the achievabilisecond thrust examined uniform VQ performance and design,
of the rate-distortion function given in Cover and Thomaand a third studied the asymptotic performance (in block-
[252] begins by generating a codebook2f# reproduction length) of VQ's. Uniform VQ's were based upon lattices
sequences and assigning each of them a codeword index. Theny-dimensional space and this work drew upon algebraic
each input sequence of lengfti is encoded by finding that structures and space-filling polytopes. Of course, the attraction
sequence in the reproduction codebook that falls within the lattice (uniform) VQ’s was that the regular structure should
distortion typical set. allow fast encoding methods to be developed and thus avoid
If we actually desire to encode i.i.d. Gaussian sequencestioé exponential growth in encoding complexity with vector
length V with average distortiorD), we can then mimic this length N. The study of VQ performance included the lattice
proof and generate a codebook consisting’6f reproduction VQ structures and extended to higher dimensions some of the
sequences of lengtllv, where the individual componentsapproaches from scalar quantization. Algorithm development
of each sequence are i.i.d. Gaussian random variables wihnonuniform VQ design began with the algorithm by Linde,
zero mean and a variance of — D. For a given input Buzo, and Gray [204], now called the LBG algorithm. This
sequence of lengtlV, the encoding procedure is to find thaglgorithm was built upon thé-means algorithm from pattern
sequence in the codebook with the smallest distortion. Threxognition and the scalar quantizer design methods developed
we see that exactly following the proof of achievability yielddy Lloyd [205]. Although it only guaranteed local optimality
an explicit encoding procedure. Unfortunately, to accomplisind the encoding stage was still exponentially complex in the
this encoding step requires an exhaustive comparison of tNd2 product, the possibility of actually using a VQ and testing
current input sequence of length with all sequences in its performance became possible.
the codebook, and subsequently repeating this comparison fowe leave further broad discussion of scalar and vector
all input sequences of lengtlV to be encoded. Since therequantization to the excellent paper in this issue by Gray and
are 2R sequences in the codebook and must be large Neuhoff [196]. However, later when discussing particular lossy
to approach optimality, the encoding with such codebooks ssurce compression techniques, we will identify the role of
arbitrarily complex. vector quantization and the type of VQ employed.

VIIl. M EMORYLESS SOURCES
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In many applications, it was (and is) necessary to encodeMore specifically, Davisson [182] shows that theblock
several independent memoryless sources subject to an ovargk-distortion function for a source with covariance matrix
rate or distortion constraint. Thus in those applications withd,y and eigenvalues,; is given by
constraint on total rate, it becomes necessary to minimize total 1
distortion by allocating rate across several scalar quantizers. Rn(D) = 2—N[10g |®n
Clearly evident in each of these contributions is the rate-
distortion function for independent and identically distribute#here the distortion is assumed to be small< min A;.
Gaussian sources and the MSE fidelity criterion as derived byThese results amplify the work of Kolmogorov [3] and
Shannon [1], [2], or the distortion rate versidh= 022—2%, McDonald and Schultheiss [43]. Davisson also evaluates the

In particular, the bit-allocation methods for scalar quantizefgte-distortion function for a first-order Gauss—Markov source,
used the distortion rate version of Shannon’s result wifh model often used for images, and expresses the result as a
only a multiplicative scale factor on the variance, viz, adifference between thév-block rate-distortion function and
a criterion to be minimized by appropriate allocations dhe rate-distortion function asymptotic i
bits (rate). By adjusting this multiplicative factor, the rate
distortion relationship could be made to approximate that of a
distribution other than Gaussian, such as a Laplacian source

Thus for M independent sources with respective vari-
anceso?, the individual distortions as a function of rate ard"
D; = ~;0227 21 and the total distortion to be minimized is
D=Y"" D, subject to the overall rate constrali,~, R; <
R. The multiplier~; accounts for differences in distributions
and for different encoding methods. We append the r
constraint using a Lagrange multiplier, so that the function
to be minimized is

— log D]

Ry(D) ~ R(D) = 5 -log (1 - 7).

Thus forp = 0.95, the N-block encoding require8.4/N
ore bits per sample than the best possible.
Tree and trellis coding theorems for structures involving
transform decompositions are proved in [208], [217], and
[209].

The rate-distortion function for AR sources, derived by Gray

] and Berger [26], was a welcome addition since it came at
a time when AR processes were finding their initial application

to speech coding [170]-[172]. The elucidation of a tree-coding

J(R,A) =D+ AR. method for Gaussian AR sources and the proof of a tree-coding
theorem for these sources, [26], gave impetus to the application

Letting ; be a constant, the resulting rate allocation is of tree-coding technigues in speech-coding applications.

2
i

1
i =R+ 5 log, v Y™ A. Predictive Coding
ijl;ll Ufi Predictive coding was a well-known technique for source
compression based upon time-domain waveform-following by

Although this approach often produces noninteger bit ghe time the second 25 years rolled around. In fact, there
locations for scalar quantizers, amad hoc modifications are had been substantive contributions by the early 1950's [180],
required to produce integer allocations and to achieve t['!ﬁgﬁ], [215], with the paper by Elias being significantly
desired total bit rate exactly, the coupling of coding indepefotivated by information theory ideas—primarily entropy.
dent sources with different scalar quantizers and “Optimatiowever, by 1976, predictive Coding was an important prac-
bit allocation was introduced and served as a framework fg¢al approach to speech coding and also had applications
numerous future lossy coding techniques for both speech agdmage coding [201]. The principal motivation behind this
images. Several other approaches to this bit-allocation problegsrk, as well as its success, was the reduction in the dynamic
that allow integer bit allocations and other constraints are n@éhge of the quantizer input and the decorrelation of the
common. See Gersho and Gray [191] for a summary. quantizer input by the predictor. Rate-distortion theory was
just beginning to have an impact on predictive coders in
1976, and doubtless, Jayant [201] is correct in stating that, “...

An obvious approach to coding sources with memory whefimple DPCM is still one of the classic triumphs of intuitional
one already has numerous techniques for coding independgateform coding.” However, predictive coding was to become
sources is to determine a transformation that models tbgtraordinarily important in applications, and rate-distortion
source memory and then use this transformation to decomp@seory motivated coders were to play a major role.
the source with memory into several independent (or nearly1) Speech Compressiorinterestingly, multipath-searched
independent) memoryless sources. Perhaps the most expligitsions of differential encoders, such as delta modulation and
delineation of this approach and the role of rate-distortion thBPCM, predated or paralleled the development of the tree-
ory in coding sources with memory, in general, and transforonding theorem by Berger, and were motivated by intuition
image compression in particular, is given by Davisson [182Jnd estimation theory. In particular, Irwin and O’'Neal [199]
Davisson decomposes a source with memory into an expansstidied multipath searching of a fixed DPCM system to depth
of orthogonal components and allocates rate to each of th@sebut found only modest increases in SNR. Cutler [181]
components according to their variance, an approach that vimgestigated delayed encoding in a delta modulator with the
used previously by Gallager in proving a coding theorem fgoal of incorporating a more responsive (over-responsive)
such Gaussian random process sources [7]. encoder to track the sudden onset of pitch pulses.

IX. SOURCES WITH MEMORY
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Anderson and Bodie [168] drawing directly on the theorebooks typically contain many more samples per codeword than
ical results of Berger [26], and previous work on tree/trellifee codes, so the search complexity for these codebooks is
coding of i.i.d. sources, developed tree coders at 2 bits/sampated to codebook structure and sparsity. A breakthrough
for speech built around fixed DPCM code generators and time codebook excited techniques for speech has been the
MSE distortion measure. Significant increases in SNR weirgerleaved single pulse permutation (ISPP) codebook that
obtained, but the reconstructed speech had a substantial “hegmisists of a few sparse impulse sequences that are phase-
ing” sound superimposed on the highly intelligible speeckhifted versions of each other, where all of the pulses have
Becker and Viterbi [175] considered bit rates of 1 bit/sampliae same magnitude [230]. Prior to this technique, codebooks
and took an approach that included a long-term predictor anmgre often designed off-line by using training mode vector
a finite-state approximation to the AR model. Both the longjuantization.
and short-term predictors were adaptive. They also reportedlrhe impact of codebook-based approaches on speech coding
work on an alternative excitation based upon a trellis. Stewatandards has been dramatic. As shown in [179] and [194],
[236], [237] pursued trellis codes coupled with AR modelmany of the current standards for speech coding are code-
and pushed the rates down below 1 bit/sample. excited predictive coding and the quality obtained by these

The primary result of these studies was an increase in outpethniques is much higher than might have been expected.
SNR, but the output speech quality still suffered from audibleor example, G.729 has a Mean Opinion Score (MOS) rating
noise. To improve this speech quality and make tree codin§4.1, and G.728, a low-delay standard, has a quality rating of
a viable candidate for speech coding required adaptive cotl®—4.1 [179]. G.728 employs a five-dimensional gain-shape
generators and perceptually based fidelity criteria. Wilson améctor quantizer (VQ) for its excitation vectors. Vector quan-
Husain [245] examined 1-bit/sample tree coding of speetiation for side-information is also commonly used and plays
using a fixed-noise shaping motivated by the classi€al an important role in achieving the lowest possible transmitted
noise weighting from telephony. Later work, using innovativdata rate. The VQ’s used for the coefficient representation are
adaptive code generators, perceptually weighted distortitypically split VQ’s so that the dimension of the VQ’s can
measures, and new tree codes, achieved good-quality spdegtkept as small as possible. These VQ’s are designed using
with tree coding at 8 kbits/s [261]. the training mode method and training the VQ’s provides a

However, the major impetus for code-excited schemes $ubstantial improvement in performance over any other VQ
speech coding came from the paper by Atal and Schroedi®sign technique.

[174] that demonstrated that high-quality speech could be2) Image CompressionTree coding was also studied for
generated by a predictive coder with a Gaussian populaigthge compression and some interesting results were obtained
codebook with 1024 entries, each of length 40 samples. TiZd 1], [212]. The success of this approach for images has been
rate was estimated at 4 kbits/s, but the predictor coefficiemmich less than that for speech since a good image model is
were not quantized and the analysis-by-synthesis codebagtifticult to find and time-domain methods have not been able
search was accomplished by the use of a Cray computtr'lkeep pace with the much lower bit rates achievable in the
Thus this was very much a “proof-of-concept” paper, but #ansform domains.

principal difference between this work and previous research

by information-theoretic researchers on speech coding was that N

the authors used a perceptually weighted MSE to select e Source Decompositions

best codebook excitation sequence. Predictive coding is model-based and it works extremely

Atal and Schroeder [174] were aware of the earlier work amell when the linear prediction, or autoregressive, model can
tree coding, but they were also motivated by the analysisdequately represent a source. Early on, however, speech
by-synthesis speech-coding method called multipulse linesaid image compression researchers were drawn to frequency-
predictive coding [173], where the codebook consisted dbmain decompositions to account for source memory. Of
several impulses (say, 8 per frame of 40 samples or so) wiburse, this is very much an electrical engineering way of
arbitrary location and arbitrary magnitude. Multipulse lineahinking, namely, breaking a signal down into its constituent
predictive coding (multipulse LPC) produced good-qualitfrequency components, and then coding these components
highly intelligent speech, but the complexity of searchingeparately. Two prominent examples of this approach are
a relatively unstructured adaptive codebook was prohibitiveubband coding and transform coding.

From this initial work, the tremendous effort on codebook- In subband coding, the source to be compressed is passed
excited speech coders was spawned. The keys to produdimgugh parallel filter banks that consist of bandpass filters,
high-quality highly intelligent speech with these coders amnd the outputs of these filters are decimated and lowpass
that the code generators, or predictors, are adaptive and titaslated. Each of the resulting time-domain signals is coded
fidelity criterion includes perceptual weighting. The perceptuaking PCM (i.e., scalar quantization), DPCM, or some other
weighting attempts to keep the noise spectrum below that tohe-domain compression technique. At the receiver, each
the source spectrum at all frequencies of interest. signal is decoded and those signals that were not originally

Complexity is always an issue in tree coding and codebodbaseband are translated back to their appropriate filter band, all
excited approaches. In tree coding, complexity is addressggnals are interpolated (upsampled), and then all components
by nonexhaustive searching of the trees using depth-firate summed to yield the overall reconstructed source repre-
breadth-first, or metric-first techniques [169]. Nontree codsentation. One of the original challenges in subband coding
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was designing subband filters that provided good coveragetiéy generate good quality speech down to 4.8 kbits/s. Infor-
the desired frequency band without producing aliasing upomation theory has not had a major impact on these designs and
the reconstruction step due to the intermediate subsamplifigther discussion of these techniques is left to the references
The key advance was the development of quadrature mirfa@®4], [202], [235].
filters that, although they allow aliasing in the downsampling The application of wavelets to speech coding is relatively
step at the encoder, these filters cancel the aliasing durimgw and has yet to produce speech coders that are competitive
the reconstruction at the receiver. These ideas continue toiberate, quality, and complexity with the predictive coding
generalized and extended. Allocating bits across the subbanu=thods.
is a critical step as well, and the approach differs depending2) Image and Video Compressiofransform-based meth-
upon the source and the application. ods have been a dominant force in image compression at rates
Transform coders take ai-block of input source samplesbelow 2 bits/pixel for over 30 years. The first rate distortion
and perform aniM-point discrete transform on them. Thetheoretic result to have an impact on image compression was
principal idea is that a good transform will yield decorrelatethe distortion rate expression for an i.i.d. Gaussian source
or even independent components and will concentrate thgbject to an MSE fidelity criterion that was used for bit-
signal energy into fewer significant components. Bit-allocaticallocation calculations in transform coding. Typically, the
methods then discard unimportant frequency content and cadmsform coefficients were assumed to be independent and bits
each of the remaining components according to differing aaere allocated in proportion to the variances of the coefficients
curacies. The source can then be approximately reconstructedject to an overall constraint on total bit rate. The solution
from the coded components via an inverse transform. Mdst the resulting constrained optimization problem yields the
transforms that are popular in compression are unitary abi allocation to achieve the minimum average total distortion.
separable. The optimal transform in terms of energy compaction is
It can be shown that transform methods are a specthe Karhunen-Loeve transform [166] which produces uncor-
case of subband techniques where the subband syntheslated transform coefficients but requires the knowledge of
filters have impulse responses equal to the transform lthe statistics of sources and often involves highly complicated
sis functions, the analysis filter impulse responses are tt@mputations. Among many practical transforms, the Discrete
time-reversed basis functions, and the decimation factor @osine Transform (DCT) [223] is the one used the most,
each band is the transform blocklength. Furthermore, waveéspecially for two-dimensional signals. With good energy
methods allow for nonuniform tiling of the time—frequencyompactness and the existence of fast algorithms [176], [244],
plane, and therefore wavelet expansions generalize subb®iT-based transform coders are used in many applications
methods. In fact, any wavelet expansion has a correspondargl coding standards, such as H.320, JPEG [219], [243], and
perfect reconstruction filter bank interpretation. However, tHdPEG [178], [189].
differences between subband techniques and transform-domaiwWwhatever transform is used, the transform itself does not
techniques for coding are the frequency and time resolutimgmpress the source, and the coding step comes after the
which leads to a preferred quantization approach. transform, when transform coefficients are first quantized then
In the following sections, we discuss subband, transformntropy-coded under a certain bit budget. Therefore, how to
and wavelet-based compression methods for speech, stékign good quantizers and entropy coders for transform coef-
images, video, and high-quality audio, with emphasis ditients are a principal focus in transform coder design today.
information-theoretic influences. Wavelets are becoming the decomposition of choice for
1) Speech Compressionnterestingly, subband codingmost applications and new standards for still image and video
found its first applications to speech compression and theoding today. Wavelets provide excellent energy compaction
later to image compression, while transform coding had igd the variable time scales allow the various features of an
first applications to image coding and later to speech/audinage to be well-reproduced [258]. Other advantages include
compression. The primary motivation for subband coding Easy adaptive coding, as described in the following sections.
speech compression was the ability to code the subband8) Bit Allocation: In practical transform-coding schemes,
with differing numbers of bits in order to isolate distortionglifferent approaches have been used to achieve the coding
to their individual bands and to achieve better perceptuahits. Using optimal bit allocation, the number of quantization
coding performance. This turned out to be solid reasonimis devoted to a component is determined based on the
and subband coding of speech at 12 to 24 kbits/s awerage energy of the component. A simple yet effective way
very competitive in performance and complexity. The bib allocate the available code bits to different components is
allocations across the subbands can use the rate-distordescribed in [232], where code bits are assigned to transform
theory-motivated constrained optimization approach, babmponents bit by bit in a recursive way. At each stage, one
the existing subband speech coders employ experimentdllyis assigned to the component with the highest energy, then
determined allocations. this highest energy is reduced by half before going on to the
Most of the transform coders for speech have utilized theext stage. The procedure ends when all the available code
discrete cosine transform (DCT), although sinusoidal tranisits are assigned to the components.
forms and wavelets are also popular today. Transform-based more sophisticated bit-allocation scheme was proposed
coders can easily achieve high-quality speech at 16 kbitddy, Shoham and Gersho in [234]. Based on the reverse water-
and with perceptual coding and analysis-by-synthesis methofiling results, all the components should have the same
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quantization error except for those with energy lower thaherefore, information on which coefficients are coded for each
the quantization error. For an individual component, the slogample function also must be provided to the decoder. Coding
of its rate-distortion function is just the reciprocal of the quarthus consists of two steps: one for the location of the coded
tization leveld [26]. Therefore, this allocation scheme tries teoefficients, the other for their values.
find the slope that minimizes the total distortion for the rate- We refer to the coefficient location information as side-
distortion functions of all the components. However, to finthformation. For image coding, Ramchandran and Vetterli
this minimum distortion, this scheme becomes computationa[324] proposed a thresholding method optimized in an op-
intensive since it has to estimate the rate-distortion function ferational rate-distortion sense that can be very effective in
every transform component so that the best slope can be fouratlucing the number of coefficients to be coded without
This approach sometimes can achieve optimal performance $acrificing coding quality. In this method, whether a coefficient
a given set of coefficients and a fixed set of quantizers. Moie coded or not depends not only on its local coefficient
discussions on bit allocation can be found in [191]. value with respect to a threshold, but also on the total cost
Using fixed bit allocation, the number of bits used for eachf encoding a new coefficient. For each coefficient, the cost
component is fixed for all sample functions of the source, €6 coding is the total bits used for both the coefficient value
the encoder only needs to send out the allocation informatiand the coefficient location, and a decision strategy based on
once and all other code bits are used to encode the coefficieptimizing rate distortion performance for each data block is
values. When such schemes are used for two-dimensiodakigned so that the coder can decide if a coefficient higher
signals, they are also called zonal coding schemes [201], [232&n the threshold is worth being coded. Therefore, this method
because the coded coefficients are in fixed region(s) in tisestill a threshold-based coding scheme, but the focus is
two-dimensional data plane. on how to reduce the number of coded coefficients without
Optimal bit allocation is totally dependent on the statisticahtroducing significant error.
characteristics of the source; specifically, the variances ofAlthough this method makes decisions in a rate-distortion
transform components are needed and in general, the sowgerse, the statistical meaning of the rate-distortion function
has to be stationary. There are drawbacks to such codisglost. To calculate the coding cost, all data blocks are
schemes. To get accurate estimates of the variances, a reaseated independently and the rate-distortion function of each
ably large number of sample functions have to be process#ata block is obtained as if each data block represented a
before actual coding starts, which introduces encoding delaljfferent source [225]. The problem becomes how to merge
Further, in real-world applications, random sources are rarelif the different sources with rate-distortion optimality, and the
truly stationary—the statistics of transform coefficients chandmasic idea is the same as in the optimal bit-allocation scheme
either spatially or temporally, whereas estimation over a largescribed by Shoham and Gersho in [234], but in [234] the
number of sample functions can reflect only the averageal is to merge different transform components optimally,
behavior of the source. While producing constant-rate coddnile here the goal is to merge different sample functions.
sequences, coders using fixed bit allocation cannot adapt t@l) Side-Information and the Significance Mam two-step
the spatial or temporal changes of the source, and thus codaogling schemes such as threshold coding, after determin-
distortion may vary from sample function to sample functiomg which coefficients are to be coded, the encoder has to
due to changes of the source. determine how to encode this information in addition to
To deal with the random changes of a source, adaptieacoding the values of the chosen coefficients. A significance
schemes are used, and one very old, yet useful, schemenap is a representation of those transform coefficients with
the threshold method [177], [222], which is actually the bas&ufficient energy that they must be coded to achieve acceptable
of today's JPEG standard. Using a threshold, the coder a@tonstructed signal quality. For transform coefficients of a
determine if a coefficient needs to be coded by comparisgmple function, and a fixed threshalda binary bitmap can
its energy with a threshold. If the energy of the coefficiedie built to indicate which coefficients need to be coded. If a
is higher than the threshold, the coefficient will be encodedoefficient|c;;| > ¢, then it is significant and will be encoded,
otherwise, it will be treated as zero and discarded. As ope in the significance magy;; = 1, otherwise,b;; = 0,
posed to zonal coding which has to determine the optimaldicating that the coefficient is not encoded. If a source can
quantization level under a fixed code rate, threshold codibg decomposed intd/ components, then there are a tadl
is actually easier to approach: once a threshold is determindifferent patterns for the bitmap.
there is no need to do bit allocation. Since a large number ofTo encode the significance map, some practical coders
transform coefficients will be quantized to zero, this methasiake certain assumptions on the distribution of the significant
can greatly reduce the number of coefficients to be coded arwkfficients. In threshold coding methods such as JPEG, to
has the ability to adapt itself to changes of the source, sineacode the significance map, a predetermined Huffman coder
which coefficients are coded can change from sample functien used to encode the distance between two consecutive
to sample function. The drawback is that there is no contrsignificant coefficients. The Huffman coder is designed based
over the code rate, since whether a coefficient is coded or ot the distributions of those distances obtained in experiments,
depends only on its own local energy. Such coders usuatlych as was done in [177]. Since they are only experimental
produce variable rate code sequences. results, the coder may work very well for some images, but
From sample function to sample function, which coefficienis is also possible that it may perform poorly for images with
are coded can change due to nonstationarity of the sourdéferent statistical characteristics.
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Another approach to coding both the significance mamcoding process. Thus this method exhibits the concept of
and the coefficient values is Shapiro’s Embedded Zerotrdecomposing the source into several independent sources that
coding method [233] based on the self-similarity assumpti@re to be encoded subject to an overall limitation on rate.
on wavelet transform coefficients. Shapiro’s method is alSthe distortion measure to be minimized in this case is very
called the EZW algorithm, since the embedded zerotree is ugadch a perceptual one and the achievement of the desired rate
on the coefficients of a Discrete Wavelet Transform (DWTith the smallest audible distortion is done by iterative bit
The self-similarity assumption says that if a coefficient at @locations until certain masking criteria are satisfied. Lossless
coarse scale (i.e., low frequency) is insignificant, then all ttomding techniques are also routinely employed.
coefficients at the same location at finer scales (i.e., highemMNote that the approach for compression of high-quality
frequencies) are likely to be insignificant too. This means tlaudio is to devise a structure such that transparent perceptual
significance of higher frequency coefficients can be predictgdality is obtained, and whatever bit rate is necessary to
by the significance of a lower frequency coefficient at thachieve that goal is accepted (up to a point). Thus this com-
same location. Since DWT coefficients have a natural trpeession problem is very much a rate-distortion problem—that
structure, this makes it possible to use a quadtree to encodeitheminimize the rate for a specified distortion (perceptually
significance map and achieve impressive coding performant@ansparent)—as opposed to a distortion-rate problem, as in

Several related coding schemes have also been used basady speech-coding applications [194], [255].
on analogous ideas, such as Said and Pearlman’s set partition-
ing algorithm [226] which is basically similar to the EZW X. RECURRING THEMES
algorithm, in that they are all based on the self-similarity

assumption, thus making these methods limited to certain typeghe mt;‘luence 9f rafte-dlstortl(_)n thﬁory onf IosEy source C(_)d'
of transformations, such as the DWT. ing can be seen in a few recurring themes for the optimization

In their three-dimensional (3-D) subband coding schem f specmc. source coders. .The mqst common 15 to Qevelop
g operational rate distortion or distortion rate function for

Taubman and Zakhor [238] used a more general approa{ X . :
particular source, source coder, and distortion measure, and

to encoding the positions of coefficients, or the significan . : N
en consider the constrained optimization problem that results

map. They tried to exploit the spatial correlation betwee ; . X . :
coefficients to improve coding efficiency. Other approach Y appending the appropriate rate or distortion constraint. The
is for this approach lies in consideridgh-order rate-

to encoding the significance map have also been attemp .
[214]. Although no statistical assumption is necessary, like jstortion theory.
VQ schemes, this approach needs a training phase before it ) )
starts coding. A. Mh-Qrder Rafce _Dlsjtortlon Theory and

For image and video compression standards set in the [§@hstrained Optimization
10 years, the two-dimensional DCT is almost ubiquitous, Let X denote the input source vectk;, Xo,---, Xn)
appearing in the JPEG, H.261, MPEG1, MPEG2, H.263nd let its reconstruction be denoted By¥. The distortion
and MPEG4 standards [184], [194]. Although bit-allocatiobetweenX™ and XV is dnx(XY,X") so that the average
methods drawing upon rate distortion theoretic results has@stortion over all source vectors and reproductions is given
been suggestive, many of the bit-allocation methods in theg
standards are based upon off-line perceptual experiments. The 1
results are striking in that simple, uniform scalar quantizers can Dy = —E{dx(XN,XV)}).
generate excellent perceptual results at rates of 0.5 bit/pixel N
and above. Lossless coding techniques, including HuffmanThe Mh-order distortion rate function can then be written as
coding and arithmetic coding, are important components of
these standards as well. Dy (R)

Evolving standards, sugh as t]PEG-2000 a_nd MP_EG4, have _ inf {i[dN(Xl\’7Xl\’)] | iI(XN;XN) < R}
wavelet-based decompositions in place of or in addition to the ~ p(~|x~) [V N

DCT [184], [254]. and asymptotically in blocklength

C. High-Quality Audio Compression D(R) = lim Dy(E).

Compression for high-quality audio is most often for play- To find Dy (R2), we append the rate constraint with a
back applications that do not need real-time encoding; hentegrange multiplier and minimize the functional
relatively complicated techniques can be used for the en-
coding step. The basic approach has been to separate the (P(
input source material into blocks of time-domain samples
and then decompose _these samples Into frequ_ency-dom N to be/x(X?Y) and so the average rate in bits per source
components for encoding. The importance of this approagh o\ 'is
is that results from auditory masking experiments in terms o¥
the frequency-domain characteristics of the ear are available Ra — iE{E (X))
and can be incorporated in the distortion measure during the NTNTUR '

XN X)) = Eldn (XN, X)) + A(XY; X)),

Let us define the length of the codeword that represents
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Then, for a given source encodar, (X*V), and decoder robustness is often obtained in waveform coding of speech
An(XN) that yields ratel - and reconstructiork ¥, we can by simply fading the memory of the encoder and decoder to

write the operational distortion rate function as “forget” channel errors and thus resynchronize the encoder and
. decoder adaptation. Another common approach to resychro-
Dy (R) nizing the source encoder and decoder in video-compression

— inf {iE[dN(XN’XN)] | iE[EN(XN)] < R}. application; is to transmit an _intrqcoded frame (no motior_1
N compensation) at some specified interval. For example, this
. . happens every 132nd frame in the H.320 video conferencing
Dy (R) lower-boundsDy () and the bound becomes tightgiangard and is accomplished in the MPEG1 and MPEG2
asN — oo. We can pose a constrained optimization proble@anqards with I-frames. However, the I-frames in MPEG were
using the operational distortion rate function as inserted primarily for search-motivated applications more than
I, Bx) = Eldy (X, )] + AE[N(XY)). - (18) ©mor resllence. _—
Another way to achieve error robustness without implement-
Since the operational distortion rate function is not necei#ig error-correction codes is to use natural source redundancy
sarily convex or continuous, Lagrangian methods will not fingnd/or models of the channel to detect and correct errors.
DN(R), however, we can use the Lagrangian formulation feor example, Sayoo@t al [231] exploits known Markov
find the convex hull. properties of the source in an MAP search for the best match
Thus the approach is to iteratively minimize the functiondb a received sequence. Phamdo and Farvardin [220] take a
in (18) using an algorithm similar to the generalized Lloygimilar approach.

an,BN

method used for VQ design [191], [196]. For a given transmitted bit rate, splitting bits between source
coding and channel coding has the expected result—namely,
B. Duality if bits are allocated to channel coding and the channel is

. . - ideal, there is a loss in performance compared to source
An underutilized concept in obtaining lossy source com- . - . .
ccﬁdlng alone. Similarly, if there are no bits allocated to

pression methods is that of duality. Error-control coding an annel coding and the channel is very noisy, there will

source coding are dual problems in the following sens(é: ) .

; . N a loss in performance compared to using some error-
Decoding error-control codes consists of finding the besr tection coding. Numerous studies for speech. image. and
match to a received sequence given certain assumptionso.(% . 9. 1 . . P ’ 9e,

Video coding have investigated joint source—channel coding.

distortion criterion, and models. Alternatively, encoding fO.li_ se solutions specify the allocation of transmitted rate

source compression entails the same steps. Further, deﬁg ween source coding and channel coding for chosen sources
ing in source compression consists of receiving a particul ¥ 9 9 !

transmitted sequence and mapping it into a unique outp purce compression methods, and channel models to achieve

Similarly, encoding for error-control coding maps a presenté T:beSt sourcel_re(i_onstrtutétlon. £ which wirel .
input directly into a particular transmitted sequence. or many applications today, ot which wireless communica-

tgons is a prime example, channels are far from ideal and it is

The development of trellis-coded quantization (TC . .
velop ! quantization (TCQ) WaBﬁst to combine source and channel coding. The most common

spurred by this duality observation based upon results this | ident in standards is by th f I
trellis-coded modulation. In addition to providing good perfor\-'vay IS IS evident In standards 1S by the use ot unequal error
fotection (UEP). That is, some compressed source bits can

fi h coding at 16 kbits/s [253], TCQ is part of tiR
mance for speech coding a its/s [253] Qs parto ave a much more profound effect on reconstructed source

vertification model of JPEG-2000 at the time of this writing. | . .
fact, TCQ combined with wavelets was the top-ranked cod pahty than others, so these bits must be error-protected. Thus
' % source and channel coding is joint in the sense that the

in both objective and subjective performance at 0.125 and 0. i ) o
bit/pixel (bpp) during the JPEG-2000 evaluations [254]. channel coding uses knowledge of the source bit sensitivity as
well as the channel, and that the source compression frees up

Xl. RESEARCH CHALLENGES a portion of the bit rate for the error protection function.
, ) It is a recent trend in wireline and wireless applications
A. Joint Source/Channel Coding to sense the quality of the channel or the channel SNR versus

A fundamental result of information theory is that, assumingequency by sending known sequences or tones and then using
stationarity, optimal source coding and channel coding can th& channel quality information at the transmitter to optimize
considered separately without loss of optimality. There atigital communications system performance. Examples of this
two caveats to this statement: First, separating source andthod are precoding in V.34 modems, DMT-based ADSL
channel coding may be more complex than a combined desigodems, and SNR estimation in the 1S-127 mobile standard.
[167], [207]; and second, both source and channel coding md$fis same technique can be extended to joint source/channel
be performing optimally, because if one is suboptimal, theding where we could use channel quality measurements to
other may be aided by incorporating the knowledge of thigetermine how to partition the available transmitted bit rate
suboptimality. between source and channel coding.

Practitioners of lossy source coding for communications )
applications have always implemented coders that are robBstBackground Impairments
to channel errors to some degree, with some attributable loss ifOne of the principal challenges to mobile speech com-
source compression performance in the error-free case. Thisssion today is the presence of unwanted sounds or other
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speakers at the handset or microphone input. In order for the Variable-Rate Coding
speech coders to achieve the desired reconstructed quality a, order to respond to the changing characteristics of the

the low rates needed, the speech coders have incorporgipd source and hence be efficient in the utilization of the
source-specific and sink-specific models in the encoder. Theggi|aple bandwidth, there is a trend toward variable-rate
models are based on the assumption that what is present aldfi§ing of speech and video. The challenges here are to sense
source coder input is the source to be encoded, and the SOYEechanges in the source and adapt the source coder to these
alone. When other sounds are present, the source coder fofges,qes "and to make the variable-rate stream interoperate with
these assumptions on the input signal during the encodifig possibly fixed-rate transmission channel. Of course, the use
process with sometimes disastrous results. _of buffering to interface fixed-to-variable length lossless source
More specifically, users of voice communications devicgs,yes to the channel is common; however, rate variations in
are somewhat forgiving of naturally occurring sounds, by.se new lossy schemes can have a wide swing and hence
when the speech coder attempts to use its assumed modelgmB"fy the challenges.
signals that are not speech, the results of coding natural soundg, riaple-rate coders for speech and images have been stud-
may be unnatural sounding ar'tifacts upon recqnstruc':tion.' TR for 25 years [206], [239]-[241], but key rate indicators
usual approaches today are either to filter the incoming signal, i\l gifficult to determine. Rate indicators that have been
or to attempt to cancel unwanted signals at the input. Ullseq range from simple input energy calculations to measuring
der appropriate assumptions, the filtering approach may B&relation or other spectral properties of the source, such as

optimal. estimates of source spectral entropy [210]. It is expected that

Dobrushin and Tsybakov [55], Wolf and Ziv [56], and,4rigple-rate coders will be the rule rather than the exception
Berger [26] have investigated the mean-squared error encoding, 1 re applications and standards.

of a source with additive distortion. The general result is that,
asympotically in blocklength, the optimal encoder/decoder pair
consists of an optimal estimator followed by optimal encoding
of the resulting estimate. An application and extension of this Layered Coding or Scalability

work is reported by Fischer, Gibson, and Koo [188], where To respond to changing network conditions, such as avail-
results are presented for training mode vector quantization agile bit rate or channel congestion, there is another clear trend
speech sources. Gibson, Koo, and Gray [193] develop optin@lvard layered or scalable compression schemes. The princi-
filtering algorithms for additive colored noise with applicati0n§a| Concept in Sca|abi|ity is that an improvement in source
to speech coding. One of their algorithms is the optional noiggproduction, namely, reduced distortion, can be achieved by
canceller in the Japanese half-rate digital cellular standaggnding only an incremental increase in rate over the current
Neither filtering nor cancellation is entirely effective. transmitted rate that is achieving a coarser reproduction of the
source. SNR, spatial, and temporal scalability are all important
in applications. It is evident that a source-compression method
designed to operate at several lower rates cannot outperform
When channel errors cannot be corrected, lossy soutbe compression method designed for the overall total rate,
compression techniques depend on robustness properties ofthéhe question is when do optimal or near-optimal scalable
source decoder to reconstruct an approximation of the souommpression methods exist?
without catastrophic distortions. However, if entire frames or SNR scalability has been addressed from the rate-distortion
packets are lost, special modifications are required. Twentiteory viewpoint by Koshelev [262]-[264] who called it
five years ago, when such modifications were first considerelivisibility, and by Equitz and Cover [133] under the heading
they were labeled with the perhaps misleading term, sofif successive refinement of information. Equitz and Cover
decision demodulation. Today, these modifications are calladdress the problem of starting out with a low rate but optimal
error-concealment techniques. source coder, that is, one that operates exactly on the rate-
Error-concealment methods generally consist of estimatidistortion bound, and then finding those conditions under
or interpolation techniques using decoded signals that hatlich an incremental addition in rate also yields rate-distortion
been received previously. In speech coding for mobile radoptimal encoding. It is shown that successive refinement in the
applications, when a frame is lost, the lost frame is ofteate-distortion optimal sense is not always possible and that
compensated for by repeating the data from the precediagieessary and sufficient condition for successive refinement
frame along with some muting of the reconstructed speechis that the individual encodings be expressible as a Markov
In many image- and video-compression applications, tlohain. Rimoldi [265] generalizes these results and provides an
need for error concealment arises due to the loss of a blaokightful interpretation in terms of typical sequences.
of data, such as the coded coefficients representing a bloclSpatial and temporal scalability is nonstandard in terms of
of pixels as in transform coding. For these situations, errolassical discrete-time rate-distortion theory since both involve
concealment can be performed in the transform domain oréhanges in the underlying sampling rate. To address spatial
the pixel domain, using adjacent blocks. and temporal scalability or layered coding, many researchers
Video applications that have low transmission rates can hgpese the operational rate distortion problem for their particular
the data for an entire frame in one packet. A lost packet aoder and optimize with respect to the convex hull of the
these situations requires temporal interpolation. performance curves.

C. Error Concealment
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Progressive coding has become important in image codingging a spectral selection strategy, this coder uses successive
since in a network environment, different users may hawapproximation to implement a hierarchical image coder.
different access capability, such as different bandwidths, CPUDirectly encoding DCT coefficients by layers can also be
power, etc., and may want to access the source at different lesund in the literature [203]. Bit-plane encoding offers such
els of quality. In such circumstances, a coder that can providasy functionality for progressive coding that it is widely
a coded sequence in a progressive way has an advantageadopted in new applications [254].

In transform coding, progressive coding can be accom-
plished in two basic ways: spectral selection and successkeMultiterminal Source Coding

approximation. For example, in DCT-based image coders, anye have already noted the results on successive refinement
encoder using rislispectral selection strategy can first encef&niormation (or divisibility) by Equitz and Cover [133],
all the dc coefﬁments, then the ac F:oefhuents in the lowzoshelev [262]-[264], and Rimoldi [265] in Section XI-E, and
frequency region, and finally the high-frequency ac COefpgir relationship to SNR scalability. Another multiterminal
ficients. Since for many common images, most activity iSe_distortion theoretic result that is finding applications in
concentrated in the low-frequency area, if only limited codgssy source coding is the multiple descriptions problem
bits can be received, the decoder can still reconstruct igig] [150]. In this problem, the total available bit rate is
image at a lower quality using all the dc coefficients anghji"petween (say) two channels and either channel may be
some low-frequency ac coefficients. This is useful in browsing,iact to failure. It is desired to allocate rate and coded
applications when a user only wants to get a rough pictufgyresentations between the two channels, such that if one
of an image to decide if the selected image is the oRfanne| fails, an adequate reconstruction of the source is
needed. _ possible, but if both channels are available, an improved re-
The prioritized DCT method [197], [198] is & more adgonstruction over the single-channel reception results. Practical
vanced approach based on the same idea. In a prioritizaghrest in this problem stems from packet-switched networks
DCT coder, the transmission order is determined by thghere the two channels can be realized by sequences of
coefficient energy, that is, coefficients with higher energgenarately marked packets, and from diversity implementations

i.e., containing more information, are transmitted first. This ig yjreless applications. For recent results, see [266] and [267].
intuitively quite straightforward, since the idea of transmitting

the dc coefficients first in the above mentioned scheme is
based on the observation that most of the time dc coefficients ] ] ) )
have the highest energy among all the transform coefficients Standards-setting for compression of speech, high-quality
The prioritized DCT method adds some flexibility to théudio, still images, and video has been a dominant force in

same strategy in the sense that the coder can decide wifiefPression research since the mid-1980’s. Although some
coefficients are to be transmitted first based on the actdalght criticize these standards activities as inhibiting research
values of the coefficients, instead of assuming that the g8d Stifling innovation, most would agree that these efforts

coefficients and low-frequency ac coefficients will have highdlave generated an incredible interest in lossy compression
energy. This is also an adaptive-coding scheme. and have lead to extraordinary advances in performance. The

Another powerful progressive coding scheme is successRincipal effect on lossy compression research is to make

approximation. Instead of transmitting the low-frequency coeff?® research problem multifaceted in that not only must
pression rate versus distortion performance be evaluated,

ficients to their highest accuracy, the successive approximatﬁf?{n X ; . )
method first sends only the most significant bits for all dput background impairments, channel errors, implementation

the coefficients, then sends the next most significant bi&qmplexity, and functionality (§u.c?h as scalable codin_g, search-
and so on. In contrast to spectral selection, which generafdd and backwards compatibility) also become important
minimum distortion for selected coefficients but discards dfPnsiderations for many applications.
of the other coefficients, successive approximation produced® challenge for researchers is to define the problem well and
relatively constant distortion for all the coefficients, which i£0 fold as many of these other co_nstr_amts ”_“O the problem
closer to the rate-distortion result. as necessary to address the application of interest. Because
Examples of coders that use successive approximation gféhe tremendous (.emphaS|s. on stfindards, Itis perhaps '.””OSt
the Embedded Zerotree algorithm (EZW) by Shapiro [23 portant for those involved in basic research to avoid being
and the modified version of the EZW algorithm propose ited by current trends and the constraints of the many
by Said and Peariman [226]. In both methods, the Discrettandards in order to generate the new results and directions

Wavelet Transform (DWT) coefficients are encoded. Orﬂeeeded for substgntlal advances in perfo_rmance. )
of the novelties of the two coders is the way the coder FOF more details on lossy compression techniques and

arranges the order of the DWT coefficients that enables t @ndards, the reader is referred to [179], [184], [194], and

coder to efficiently encode the side-information as well as t %54]_[257]'
coefficient values, as already discussed in Section 1X-B2. A

similar approach was also studied by Xioagal. in a DCT-

based image coder [249]. A modified version of the prioritized Rate-distortion theory and the practice of lossy source
DCT scheme is proposed by Efstratiadis and Strintzis [18%jpding have become much more closely connected today than
in which DWT coefficients are considered and instead dfiey were in the past. There is every reason to anticipate that

Xll. STANDARDS

XIll. EPILOGUE
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a much tighter fusion of theory and practice will prevail ir28] A. M. Gerrish, “Estimation of information rates,” Ph.D. dissertation,
2009 when we celebrate the fiftieth anniversary of Shannoq’%

29
1959 paper.
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