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Abstract—Lossy coding of speech, high-quality audio, still
images, and video is commonplace today. However, in 1948, few
lossy compression systems were in service. Shannon introduced
and developed the theory of source coding with a fidelity criterion,
also called rate-distortion theory. For the first 25 years of its
existence, rate-distortion theory had relatively little impact on
the methods and systems actually used to compress real sources.
Today, however, rate-distortion theoretic concepts are an im-
portant component of many lossy compression techniques and
standards. We chronicle the development of rate-distortion theory
and provide an overview of its influence on the practice of lossy
source coding.

Index Terms—Data compression, image coding, speech coding,
rate distortion theory, signal coding, source coding with a fidelity
criterion, video coding.

I. INTRODUCTION AND PROLOGUE

T HE concept of specifying the rate required to repre-
sent a source with some less-than-perfect fidelity was

introduced by Shannon in his landmark 1948 paper. In Part
V thereof, Shannon describes the idea of “continuous infor-
mation” and defines “The Rate for a Source Relative to a
Fidelity Evaluation.” Furthermore, he states the first theorem
concerning such lossy representations (his Theorem 21) and
outlines its proof via an AEP-like argument. Shannon then
writes the expression for the rate for the desired “valuation”
(distortion) and poses the constrained optimization problem
to be solved for the transition probabilities. Then he gives a
general form of the solution to this optimization problem (now
widely called the backward test channel), and specializes it to
the important special case of difference distortion measures.
In Theorem 22 he gives the exact rate for an ideal bandlimited
Gaussian source relative to a mean-squared error (MSE)
fidelity criterion, and in Theorem 23 he bounds the MSE
information rate of a bandlimited non-Gaussian source in terms
of now-classic expressions involving the source power and the
entropy rate power. A most auspicious beginning indeed!

In 1948, although pulse-code modulation (PCM) was being
developed for speech applications [259] and Dudley’s vocoder
had been around for about ten years [260], actual implemen-
tations of lossy digital compression systems were nonexistent.
This testifies to the power of Shannon’s insights but also helps

Manuscript received December 1, 1997; revised July 1, 1998. This work
was supported in part by NSF under Grants ECS-9632266 and NCR-9796255.

T. Berger is with the School of Electrical Engineering, Cornell University,
Ithaca, NY 14853 USA.

J. D. Gibson is with the Department of Electrical Engineering, Southern
Methodist University, Dallas, TX 75275 USA.

Publisher Item Identifier S 0018-9448(98)06886-2.

explain why he would delay further consideration of lossy
compression until 10 years later. By 1959, work in scalar
quantization and PCM was well underway [196] and differen-
tial encoding had received considerable attention [180], [186],
[215].

Shannon coined the term “rate-distortion function” when he
revisited the source-coding problem in 1959 [2]. The insights
and contributions in that paper are stunning. In particular,
rate-distortion terminology is introduced, the rate-distortion
function is carefully defined, positive and negative cod-
ing theorems are proved, properties of are investigated,
the expression for in several important cases is derived,
some numerical examples are presented, the important lower
bound to , now called the Shannon lower bound, is
derived, and the duality between and a capacity cost
function is noted. A lifetime of results in two papers!

We treat Shannon’s seminal contributions in greater detail
below, also emphasizing how they inspired others to begin
making significant contributions both to rate-distortion theory
and to laying the groundwork for advances in the practice
of lossy source coding. Specifically, we survey the history
and significant results of rate-distortion theory and its impact
on the development of lossy source-compression methods. A
historical overview of rate-distortion theory is presented in
the first part of the paper. This is followed by a discussion
of techniques for lossy coding of speech, high-quality audio,
still images, and video. The latter part of the paper is not
intended as a comprehensive survey of compression methods
and standards. Rather, its emphasis is on the influence of
rate-distortion theory on the practice of lossy source coding.

There is both logic and historical precedent for separating
the treatment of lossy source coding into a theory component
and a practice component. Davisson and Gray took this
approach in the Introduction of their 1976 compilation of
papers on Data Compression [183]. Additionally, there is a
continuity in the development of rate-distortion theory and,
similarly but separately, in the development of the practice of
lossy source coding. These continuities deserve preservation,
since appreciation for research and development insights is
enhanced when they are embedded in their proper historical
contexts.

II. I N THE BEGINNING

Shannon’s [1] motivations for writing “Section V: The Rate
for a Continuous Source” likely included the following:

1) It provided the source coding complement to his treat-
ment of the input-power limited AWGN channel.
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2) It provided the means by which to extend information
theory to analog sources. Such an extension was neces-
sary because all analog sources have infinite entropy by
virtue of their amplitude continuity and, therefore, can-
not be preserved error-free when stored in or transmitted
through practical, finite-capacity media.

3) Shannon considered the results to have inherent signifi-
cance independent of their analogies to and connections
with channel theory.

A. A Brief Detour into Channel Theory

Shannon’s most widely known and most widely abused
result is his formula for the capacity of an ideal bandlimited
channel with an average input power constraint and an impair-
ment of additive, zero-mean, white Gaussian noise, namely,

bits/s. (1)

Here, is the prescribed limitation on the average input
power, is the channel bandwidth in positive frequencies
measured in hertz, and is the power of the additive
noise. Since the noise is white with one-sided power spectral
density or two-sided power spectral density , we
have . Of course, the result does not really require
that the noise be truly white, just that its spectral density be
constant over the channel’s passband. Common abuses consist
of applying (1) when

i) The noise is non-Gaussian.
ii) The noise is not independent of the signal and/or is not

additive.
iii) Average power is not the (only) quantity that is con-

strained at the channel input.
iv) The noise is not white across the passband and/or the

channel transfer function is not ideally bandlimited.

Abuse i) is conservative in that it underestimates capacity
because Gaussian noise is the hardest additive noise to combat.
Abuse ii) may lead to grossly underestimating or grossly
overestimating capacity. A common instance of abuse iii)
consists of failing to appreciate that it actually may be peak
input power, or perhaps both peak and average input power,
that are constrained. Abuse iv) leads to an avoidable error
in that the so-called “water pouring” result [3], generalizing
(1), yields the exact answer when the noise is not white,
the channel is not bandlimited, and/or the channel’s transfer
function is not flat across the band. (See also [6] and [7].)

B. Coding for Continuous Amplitude Sources

There is a pervasive analogy between source-coding the-
ory and channel-coding theory. The source-coding result that
corresponds to (1) is

bits/s (2)

It applies to situations in which the data source of interest
is a white Gaussian signal bandlimited to that has
power , where denotes the signal’s one-sided
constant power spectral density for frequencies less than.
The symbol, , although often referred to as a “noise,” is

actually an estimation error. It represents a specified level of
mean-squared error (MSE) between the signal and an
estimate of the signal constructed on the basis of data
about provided at a rate of bits per second. That is,

It was, and remains, popular to express MSE estimation
accuracy as a “signal-to-noise ratio,” , as Shannon did in
(2). It must be appreciated, however, that is not
noise in the sense of being an error process that is independent
of that nature adds to the signal of interest. Rather,
it is a carefully contrived error signal, usually dependent on

, that the information theorist endeavors to create in
order to conform to a requirement that no more thanbits
per second of information may be supplied about . In
modern treatises on information theory, the symbol “,” a
mnemonic for average distortion, usually is used in place of

. This results in an alternative form of (2), namely,

bits/s (3)

which is referred to as the MSE rate-distortion function of the
source.

Formula (3) gets abused less widely than formula (1), but
probably only because it is less widely known. Abuses consist,
analogously, of applying it to situations in which

i) The signal is non-Gaussian.
ii) Distortion does not depend simply on the difference of

and .
iii) Distortion is measured by a function of

other than its square.
iv) The signal’s spectral density is not flat across the band.

Again, abuse i) is conservative in that it results in an overes-
timate of the minimum rate needed to achieve a specified
MSE estimation accuracy because white Gaussian sources are
the most difficult to handle in the sense of bit rate versus
MSE. Abuses ii) and iii), which often stem in practice from
lack of knowledge of a perceptually appropriate distortion
measure, can result in gross underestimates or overestimates
of . Abuse iv) can be avoided by using a water-pouring
generalization of (3) that we shall discuss subsequently. In
anticipation of that discussion, we recast (3) in the form

(4)

This form of the equation explicitly reflects the facts that
i) the signal spectrum has been assumed to be constant
at level across the band of width in which it in
nonzero, and ii) for , because one
can achieve an MSE of without sending any
information simply by guessing that . (If
has a nonzero mean , then of course one guesses
instead of zero. In general, adding a deterministic mean-
value function to the signal process does not change its
rate-distortion function with respect to any fidelity criterion
that measures average distortion as some functional of the
difference process .) The base of the logarithm
in (4) determines the information unit—bits for and
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nats for . When we deal with continuously distributed
quantities, it is more “natural” to employ natural logs. When
no log base appears, assume that a natural log is intended.

C. Deterministic Processes Have Nonzero
Rate-Distortion Functions

It is appropriate at this juncture to comment on the re-
lationship between rate-distortion theory and the theory of
deterministic processes. The Wold decomposition theorem
assures us, among other things, that any bandlimited random
process is deterministic in the following sense: it can be
predicted with zero MSE infinitely far into the future and
infinitely far into the past once one knows the values it has
assumed in an arbitrarily small open interval. This is because
the sample paths of such processes are analytic functions with
probability one, which implies that they have derivatives of
all orders at every instant. Knowledge of the process over
an arbitrarily small open interval allows each such derivative
to be computed with perfect accuracy at any point within
the interval by taking the limit of an appropriate difference
quotient. This, in turn, permits using Taylor series or other
techniques to extrapolate the process with perfect accuracy
into the arbitrarily remote past and future. This suggests that
the ideal bandlimited Gaussian process we have been studying
should have an MSE rate-distortion function that is identically
zero for all because one needs to supply information
about the process only during an arbitrarily short interval,
after which it becomes known perfectly for all time. Yet,
Shannon’s formula says that one must
keep supplying information about it for all time at a rate of

in order to be able to reconstruct it with a MSE
of .

This apparent contradiction is readily resolved. The sticking
point is that it requires an infinite amount of information to
specify even a single continuously distributed random variable
exactly, let alone the uncountable infinity of them indexed
by all the points in an open interval. Accordingly, when
information is provided at a finite rate, which is always the case
in practice, one never learns the values in any interval perfectly
no matter how long one gathers information about them.
Determinism in the above sense thus is seen to be a purely
mathematical concept that is devoid of practical significance.
The operative, physically meaningful measure of the rate at
which a random process, even a so-called deterministic random
process, produces information subject to a fidelity criterion is
prescribed by Shannon’s rate-distortion theory.

D. The Basic Inequality

A basic inequality of information theory is

(5)

sometimes referred to as theinformation transmission inequal-
ity. It says that, if you are trying to transmit data from a source
with rate-distortion function over a channel of capacity

, you can achieve only those average distortions that exceed
the inverse of the rate-distortion function evaluated at. (Not

surprisingly, the inverse rate-distortion function is called the
distortion-rate function.)

Suppose, for example, that we wish to send data about the
aforementioned bandlimited white Gaussian process
over an average-input-power-limited, ideally bandlimited
AWGN channel. Assume our task is to construct on the basis
of what we receive at the channel output an approximation

that has the least possible MSE. The source and
the channel have the same frequency band . Since

, the distortion-rate function is

so (1) and (4) together tell us that

or

(6)

This tells us that the achievable error power per unit of source
power (i.e., the achievable normalized MSE) is bounded from
below by the reciprocal of one plus the channel signal-to-noise
ratio (SNR).

E. An Optimum System via a Double Coincidence

There happens to be a trivial scheme for achieving equality
in (6) when faced with the task of communicating the source
of Section II-B over the channel of Section II-A. It consists
of the following steps:

Step 1: Tranmit scaled to have average power; that
is, put into the channel.

Step 2: Set equal to the minimum mean-square error
(MMSE) estimate of based solely on the
instantaneous channel output
at time .

Since the signal and the channel noise are jointly Gaussian
and zero mean, the optimum estimate in Step 2 is simply a
linear scaling of the received signal, namely,

The optimum is found from the requirement that the error
of the optimum estimator must be orthogonal to the data

This may be written as

Using , , and ,
we obtain The resulting minimized
normalized MSE is easily computed to be

(7)

which means we have achieved equality in (6).
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Fig. 1.

Thus the simple two-step scheme of instantaneously scal-
ing at the input and at the output results in an end-to-end
communication system that is optimum. No amount of source
and/or channel coding could improve upon this in the MSE
sense for the problem at hand. This fortuitous circumstance is
attributable to a double coincidence. The first coincidence is
that the source happens to be the random process that drives
the channel at capacity. This is, the given source, scaled by

, is that process of average power not exceeding
which maximizes the mutual information between the input
and output of the channel. The second coincidence is that
the channel just happens to provide precisely the transition
probabilities that solve the MSE rate-distortion problem for the
given source. That is, when the channel is driven by the scaled
source, its output minimizes mutual information rate with the
source over all processes from which one can calculate an
approximation to the source that achieves a normalized MSE
not in excess of .

We are operating at a saddle point at which the mutual
information rate is simultaneously maximized subject to the
average power constraint and minimized subject to the average
distortion constraint. The slightest perturbation in any aspect
of the problem throws us out this saddle—unequal source
and channel bandwidths, non-Gaussianness of the source or
channel, an error criterion other than MSE, and so on. The
result of any such perturbation is that, in order to recover
optimality, it is in general necessary to code both for the source
and for the channel as depicted in Fig. 1.

The source encoder and channel decoder usually have to
implement complicated many-to-one mappings that depend on
the values their inputs assume over long durations, not just at
one instant. Hence, whereas a surface perusal of Shannon’s
founding treatise [1] might, via the key formulas discussed
above, instill the illusion that all one ever has to do to build
an optimum communication system is simply to insert into the
channel a version of the given source trivially accommodated
to whatever channel input constraints may prevail, nothing
could be further from the truth. The goals of this tutorial paper
include exorcising any such misconception and surveying the

major developments in rate-distortion theory over the fifty
years from 1948 to 1998.

III. T HE FIFTIES

A. The Russian School

From 1949 to 1958 no research was reported on rate-
distortion theory in the United States or Europe. However,
there was a stream of activity during the 1950’s at Moscow
University by members of Academician A. N. Kolmogorov’s
probability seminar. Kolmogorov, a renowned mathematician
who founded axiomatic probability theory and contributed
many of its fundamental limit laws, saw an application for
Shannon’s information theory in the long-standing isomor-
phism problem of ergodic theory. That problem concerns
necessary and sufficient conditions for when two “shifts” can
be placed in a one-to-one, measure-preserving correspondence.
It includes as an important special case the question of
whether or not two given random processes, or sources, can
be viewed as perhaps intricately disguised rearrangements of
the same information stream. Shannon’s theory showed that
each discrete-amplitude information source has an entropy
rate that measures in a fundamental way the rate at
which it produces information, and that any two sources
of the same entropy rate can be “coded” into one another
losslessly. Thus entropy (more exactly, entropy rate) emerged
as a promising candidate to serve as the long-sought invariant
in the isomorphism problem. However, “coding” in Shannon
theory differs from “coding” in ergodic theory. Shannon’s
coding concerns operations on possibly long but always finite
blocks of information, thereby honoring a tie to practice,
whereas the codes of ergodic theory operate on the entirety
of each infinite sequence that constitutes a realization of an
ergodic flow. Thus it was not a trivial matter to establish that
entropy rate could indeed serve as an invariant in the sense of
ergodic theory. Kolmogorov and Sinai [5], [8] succeeded in
showing that equal entropy rates were a necessary condition
for isomorphism. Years later, Ornstein [9] proved sufficiency
within an appropriately defined broad class of random station-
ary processes comprising all finite-order Markov sources and
their closure in a certain metric space that will not concern
us here. With the Moscow probability seminar’s attention thus
turned to information theory, it is not surprising that some of
its members also studied Section V, The Rate for a Continuous
Source. Pinsker, Dobrushin, Iaglom, Tikhomirov, Oseeyevich,
Erokhin, and others made contributions to a subject that has
come to be called -entropy, a branch of mathematics that
subsumes what we today call rate-distortion theory.-entropy
is concerned with the minimal cardinality of covers of certain
spaces by disks of radius. As such, it is a part of topology if
a complete cover is desired. If, however, a probability measure
is placed on the space being covered, then one can consider
covering all but a set of measure, where is also
a value of considerable significance [10], [11], [1, p. 656].
It also becomes interesting to consider the expected distance
from a point in the space to the closest disk center, which is
the approach usually adopted in rate-distortion theory.
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Most of the attention of scholars of-entropy was focused
on the asymptotic case in which . This doubtless
accounts for why the symbolwas selected instead of, say,
for distortion. It was appreciated that-entropy would diverge
as in all continuous-amplitude scenarios. The problem
was to determine the rate of divergence in particular cases
of interest. Thus when invited to address an early information
theory symposium, Kolmogorov [3] emphasized in the portion
of his report dealing with -entropy Iaglom’s expression for
the limiting information rate of Wiener processes as
and extensions thereof to more general diffusions. However, he
also reported the exact answer for the-entropy of a stationary
Gaussian process with respect to the squared-norm for all
, not just (his equations (17) and (18)). That result,

and its counterpart for the capacity of a power-constrained
channel with additive colored Gaussian noise, have come to be
known as the “water-pouring” formulas of information theory.
In this generality the channel formula is attributable to [12]
and the source formula to Pinsker [13], [14]. We shall call
them the Shannon–Kolmogorov–Pinsker (SKP) water-pouring
formulas. They generalize the formulas given by Shannon
in 1948 for the important case in which the spectrum of
the source or of the channel noise is flat across a band and
zero elsewhere. The water-pouring formulas were rediscovered
independently by several investigators throughout the 1950’s
and 1960’s.

B. The Water Table

Here is a simple way of obtaining the SKP water-pouring
formula for the MSE information rate of a Gaussian source
[12]. The spectral representation theorem lets us write any
zero-mean stationary random process for which

in the form

where is a random process with zero mean, uncorrelated
increments. Hence, if and are two disjoint sets of
frequencies, the zero-mean random processes and

defined by

and

satisfy because when
and . That is, processes formed by bandlimiting

a second-order stationary random processes to nonoverlapping
frequency bands are uncorrelated with one another. In the
case of a Gaussian process, this uncorrelatedness implies
independence. Thus we can decompose a Gaussian process

with one-sided spectral density into independent
Gaussian processes with respective
spectral densities given by

if
otherwise

Let us now make sufficiently small that becomes
effectively constant over the frequency interval in which it
is nonzero, .1 Since the
subprocesses are independent of one another, it is best
to approximate each of them independently. Moreover, given
any such set of independent approximants, simply summing
them yields the best MSE approximation of that can
be formed from them, the MSE of said sum being the sum
of the MSE’s of the subprocess approximants. Furthermore,
the source-coding rate will be the sum of the rates used to
approximate the subprocesses.

Subprocess is an ideal bandlimited zero-mean
Gaussian source with bandwidth and spectral density

. It follows from (4) that the minimum
information rate needed to describe it with an MSE of
or less is

Subprocess for any also is a bandlimited
zero-mean Gaussian source with bandwidth in positive
frequencies, its frequency band being instead
of . Consider any coded representation of it with rate
bits per second from which one can produce an approximation
of it that has an MSE of . Observe that we always can
mimic this -performance by by mixing down to base-
band , performing the same coding and reconstruction
operations on the result, and then mixing the approximation
thus produced back into the band . It follows that
the best rate–distortion tradeoff we can achieve for subprocess

is

By additively combining said approximations to all the
subprocesses, we get an approximation to that achieves
an average distortion of

and requires a total coding rate of

In order to determine the MSE rate-distortion function of
, it remains only to select those ’s summing to

which minimize this . Toward that end we set

where is a Lagrange multiplier subsequently selected to
achieve a desired value of or of . Each of course
never exceeds , the value that can be achieved by sending
no information about and then using as the
approximant. If the solution associated with a particular value

1There is some sacrifice of rigor here. Readers desirous of a careful deriva-
tion based on the Kac–Murdock–Szego theory of the asymptotic distribution
of the eigenvalues of Toeplitz forms may consult Berger [26].
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of the Lagrange multiplier is such that , then the
preceding equation requires that , or

The value corresponds to for all (hence,
) and . This expresses that fact that perfect

reconstruction of a continuously distributed source cannot be
achieved without infinite data rate, a result that is mathemat-
ically satisfying but devoid of physical usefulness. For finite
values of , we deduce that

if
if

It follows that the and values associated with parameter
value are

and

We remark that the Lagrange solution tells us that to com-
pute a point on the MSE rate-distortion function
of , we should combine points on the rate-distortion
functions of the subprocesses at points at which the
slope is the same for all . That is, does not
vary with . This is a recurrent theme in rate-distortion theory.
Constant slope means that the same marginal tradeoff is being
drawn between rate and distortion for each of the independent
components. Indeed, intuition suggests that this must be the
case; otherwise it would be possible to lower the overall
for fixed by devoting more bits to subprocesses being
reproduced at points of lower slope and fewer bits to processes
being reproduced at points of slope. In this connection the
reader should observe that the slope of is continuous
everywhere except at , where it jumps from
to . Hence, one can draw a tangent line to at

with any slope between and . For purposes of
combining points in the sense of this paragraph, should
be considered to have all slopes between and at

.
As the above sums constituting our parametric

representation of become integrals over frequency,
namely,

and

Two-sided spectral densities with their attendant negative
frequencies are less forbidding to engineers and scientists
today than they were in the 1940’s. Accordingly, the above
result now usually is cast in terms of the two-sided spectral
density , an even function of frequency satisfying

. Replacing the parameter by , we
find that

(8)

(9)

Some practitioners prefer to use angular frequency
as the argument of ; of course, then gets replaced in
(8) and (9) by .

The parametric representation (8) of the MSE rate-distortion
function of a stationary Gaussian source is the source-coding
analog of the SKP “water-pouring” result for the capacity of an
input-power-limited channel with additive stationary Gaussian
noise. The source-coding result actually is better described in
terms of a “water table,” though people nonetheless usually
refer to it as “water pouring.” Specifically, in Fig. 2, the
source’s spectral density is shown as a heavy “mold” resting
atop a reservoir. In those places where there is air between the
surface of the water and the mold, the surface is at uniform
height ; elsewhere, the mold presses down to a depth lower
than . The water height is the MSE distortion
as a function of frequency. Equivalently, at each frequency
the amount, if any, by which the height of the mold exceeds
the water level, namely , is the portion of
the signal power at that frequency that is preserved by the
minimum-rate data stream based from which the source can
be reconstructed with average distortion.

Equations (8) and (9) also specify the MSE rate-distortion
function of a time-discrete Gaussian sequence provided we
limit the range of integration to or to . In
such cases, is the discrete-time power spectral density,
a periodic function defined by

where is the correlation function of the
source data. Note that when the parameterassumes a value
less than the minimum2 of , which minimum we shall
denote by , (8a) reduces to , which eliminates the
parameter and yields the explicit expression

This may be recast in the form

where

is known in the information theory literature as theentropy rate
powerof . We shall return to this result when discussing
the literature of the 1960’s.

2More precisely, less than the essential infimum.
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Fig. 2.

IV. SHANNON’S 1959 PAPER

In 1959, Shannon delivered a paper at the IRE Convention
in New York City entitled “Coding Theorems for a Discrete
Source with a Fidelity Criterion” [2]. This paper not only
introduced the term “rate-distortion function” but also put
lossy source coding on a firmer mathematical footing. Major
contributions of the paper are as follows.

• Definition and properties of the rate-distortion function.
• Calculating and bounding of .
• Coding theorems.
• Insights into source–channel duality.

A. Definition and Properties of the Rate-Distortion Function

A discrete information sourceis a random sequence .
Each assumes values in a discrete setcalled thesource
alphabet. The elements of are called theletters of the
alphabet. We shall assume, until further notice, that there are
finitely many distinct letters, say of them, and shall write

. Often we let and
hence ; the binary case is
particularly important.

The simplest case, to which we shall restrict attention for
now, is that in which:

1) The are independent and identically distributed
(i.i.d.) with distribution .

2) The distortion that results when the source produces
the -vector of letters and
the communication system delivers the-vector of let-
ters to the destination as its
representation of is

(10)

Here, is called a single-letter
distortion measure. The alphabet —variously called the
reproduction alphabet, the user alphabet and the destination

alphabet—may be but need not be the same as. We shall
write , where

and all are cases of interest. When (10)
applies, we say we have asingle-letter fidelity criterionderived
from .

Shannon defined therate-distortion function as fol-
lows. First, let be a conditional
probability distribution over the letters of the reproduction
alphabet given a letter in the source alphabet.3 Given a
source distribution , we associate with any such two
nonnegative quantities and defined by

and

where

The quantities and are, respectively, the aver-
age distortion and the average Shannon mutual information
associated with .

The rate-distortion function of the i.i.d. source with
letter distribution with respect to the
single-letter fidelity criterion generated by is defined by
the following minimization problem:

(11)

3Such aQ often is referred to as atest channel. However, it is preferable
to call it a test systembecause it functions to describe a probabilistic
transformation from one end of Fig. 1 to the other—from the source all
the way to the user—not just across the channel. Indeed, the rate-distortion
function has nothing to do with any channelper se. It is a descriptor of the
combination of an information source and a user’s way of measuring the
distortion of approximations to that source.
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Since the generally accepted object of communication is to
maximize mutual information, not to minimize it, many people
find the definition of the rate-distortion function counter-
intuitive.4 In this regard it often helps to interchange the
independent and dependent variables, thus ending up with a
distortion-rate functiondefined by

(12)

Everyone considers that minimizing average distortion is
desirable, so no one objects to this definition. Precisely the
same curve results in the -plane, except that now

is the independent variable instead of. Distortion-rate
functions are more convenient for certain purposes, and rate-
distortion functions are more convenient for others. One should
become comfortable with both.

Properties of the rate-distortion function include:

a) is well defined for all , where

The distortion measure can be modified to assure
that . This is done via the replacement

, whereupon the whole
rate-distortion curve simply translates leftward on the

-axis by .
b) for , where

is the maximum value of that is of interest,
since for all larger . It is the value of
associated with the best guess at in the absence
of any information about it other thana priori statistical
knowledge. For example, when

and if and if .
c) is nonincreasing in and is strictly decreasing at

every .
d) is convex downward. It is strictly convex in the

range provided , where
and . In addition to the ever-present straight-
line segment , if then

can possess one or more straight-line segments in
the range .

e) The slope of is continuous in and
tends to as . If there are straight-line

4Indeed, Shannon himself seems to have fallen prey to said information-
maximizing mindset in the abstract of his 1959 paper, where he wrote (or
someone typed):

In this paper a study is made of the problem of coding a discrete
source of information, given afidelity criterion or a measure of the
distortionof the final recovered message at the receiving point relative
to the actual transmitted message. In a particular case there might be a
certain tolerable level of distortion as determined by this measure. It is
desired to so encode the information that the maximum (sic) possible
signaling rate is obtained without exceeding the tolerable distortion
level.

The final sentence of this quote should be replaced by, say, “It is desired to
minimize the signaling rate devoted to the encoded version of the information
subject to the requirement that the tolerable distortion level is not exceeded.”

segments in (see d) above), no two of
them share a common endpoint.

f) , where

is the source entropy. If for each there is a unique
that minimizes , and each minimizes
for at most one , then .

Some of these properties were established by Shannon [2],
including the essential convexity property d). For proofs of the
others see Jelinek [27], Gallager [7], and Berger [26].

B. Calculating and Bounding of

1) Calculating Discrete Rate-Distortion Functions:The do-
main of variation of in the definition of (see (11)) is
contained in the -dimensional probability simplex
defined by the equality constraints

for every

and the inequality constraints

for all

In addition, the variation is confined to those’s that satisfy
the constraint on the average distortion, namely,

Moreover, the objective function is a convex func-
tion of .5 Hence, determining amounts to solving a
convex mathematical programming problem. This justifies the
following statements.

1) There are no local minima in the search region, just a
lone global minimum. Hence, exists despite the
fact that a minimum rather than an infimum appears in
its definition because this minimum always is achieved,
not just closely approached. The minimum need not
necessarily occur at a distinct point; it may be common
to a subset of points that constitute a closed, convex
subset of the domain.

2) Kuhn–Tucker theory provides necessary and sufficient
conditions met by a test system that minimizes
subject to the constraints (i.e., solves the minimization
problem that defines ).

3) The constraint always is satisfied with
equality by the minimizing . Hence, all the constraints
except can be handled by Lagrange
multiplier theory.

5That is,

I(�Q1 + (1� �)Q2) � �I(Q1) + (1� �)I(Q2)

for any � 2 [0; 1] and any two test systemsfQ1(b j a)g andfQ2(b j a)g.
See, for example, [7].
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Because of the last item on this list, much insight can be
gained into the problem of computing by temporarily
ignoring the constraints and equating to zero the
derivative of the Lagrangian functional
with respect to each component of . Following this
approach, Shannon [2] showed that, for a fixed valueof
the Lagrange multiplier, the minimizing , call it

, always is given in terms of a probability distribution
by the prescription

where

This reduces the problem of computing the point on the rate-
distortion function parameterized byto that of determining
the unknown distribution . The hardest part of that
is to determine for which values of, if any, . In
certain problems with sufficient symmetry and/or small enough

, is strictly positive for all (except perhaps at
, the value of that corresponds to .) Shannon

[2] used this circumstance to determine in the special
case of an equiprobable -ary source with if

and if . The result is

(13)

where is Shannon’s binary entropy function

The optimizing is

if
if

which says that the whole system should be constructed in
such a way that its end-to-end probabilistic transition structure
mimics that of an -ary Hamming channel.

In the special case of a binary equiprobable source ,
(13) reduces to

The desired end-to-end system behavior then becomes that of a
binary symmetric channel (BSC) with crossover probability.
It follows that, if one seeks to send a Bernoulli source over
a BSC that is available once per source letter, then optimum
performance with respect to the single-letter fidelity criterion
generated by can be obtained simply by
connecting the source directly to the BSC and using the raw
BSC output as the system output. There is need to do any
source and/or channel coding. The average distortion will be

, where is the crossover probability of the BSC.
This is another instance of a double coincidence like that

of Section II-E. The first coincidence is that a Bernoulli
source drives every BSC at capacity, and the second coinci-
dence is that BSC provides precisely the end-to-end system

transition probabilities that solve the rate-distortion problem
for the Bernoulli source at . Again, this double
coincidence represents a precarious saddle point. If the channel
were not available precisely once per source symbol, if the
Bernoulli source were to have a bias , if the channel
were not perfectly symmetric, or if the distortion measure were
not perfectly symmetric (i.e., if ), it would
become necessary to employ source and channel codes of long
memory and high complexity in order to closely approach per-
formance that is ideal in the sense of achieving equality in the
information transmission inequality (5). Shannon illustrated
how algebraic codes could be “used backwards” to encode the
equiprobable binary source efficiently with respect to the error
frequency criterion for cases in which the medium connecting
the source to the user is anything other than a BSC. This
idea was extended by Goblick [29] who proved that ideally
efficient algebraic codes exist for this problem in the limit of
large blocklength.

To enhance appreciation for the fragility of the double-
coincidence saddle point, let us replace the Bernoulli
source with a Bernoulli source, . Calculations (see
[26, pp. 46–47]) reveal that the rate-distortion function then
becomes

Although the optimumbackward system transition proba-
bilities remain those of BSC , the optimum
forward transition probabilities become those of a binary
asymmetric channel. Hence, it is no longer possible to obtain
an optimum system simply by connecting the source directly
to the BSC and using the raw channel output as the system’s
reconstruction of the source. Not only does the asymmetric
source fail to drive the BSC at capacity, but the BSC fails to
provide the asymmetric system transition probabilities required
in the problem for . For example, suppose

so that bits per letter,
. Further suppose that

so that the channel capacity is
bits per channel use. Direct connection of the source to the
channel yields an error frequency of . However,
evaluating the distortion-rate function at in accordance
with (5) shows that a substantially smaller error frequency of

can be achieved using optimum source
and channel coding.

The formula that Shannon provided for the rate-distortion
function of an -ary equiprobable source with distortion
assessed by the single-letter distortion measure

, namely (13), actually is a special case of a more
general result published the preceding year by Erokhin [31],
a student in Kolmogorov’s seminar. At Kolmogorov’s urging
Erokhin considered a general i.i.d. discrete source with a finite
or countably infinite alphabet and found a formula for what
we would now call its rate-distortion function with respect to
the error frequency criterion. Erokhin’s result is that the rate-
distortion function in question is given parametrically by the
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equations

where is the number of source letters whose probability
exceeds and is the sum of the probabilities of these
letters. The parameter traverses the range
as varies from to , where

for all other .
Moreover, the optimum output probability distribution

corresponding to parameter valueis

This, in turn, shows that said is supported on a subset
of letters assigned high probability by the source. In other
words, more and more letters of low source probability are
dropped out of use as reproduction letters as, and hence ,
increases. Once a letter drops out of use, it never reappears for
larger values of , a property that is by no means common
to all rate-distortion functions. For cases in which ,
the parameter can be eliminated when , where

denotes the smallest of the . This results in
the explicit formula

We shall later interpret this as an instance of tightness
of a discrete version of the Shannon lower bound, with

in the role of the associated critical value of
distortion .

2) The Shannon Lower Bound:Shannon then revisited the
problem of continuous amplitude sources. Skeptics of Shan-
non’s prowess in rigorous mathematics6 should note that the
paragraph introducing his treatment of “cases where the input
and output alphabets are not restricted to finite sets but vary
over arbitrary spaces” contains the phraseology “Further, we
assume a probability measure defined over a Borel field
of subsets of the space. Finally, we require that, for each

belonging to , is a measurable function with
finite expectation.” [2] For the case of a difference distortion
measure and an i.i.d. time-discrete source
producing absolutely continuous random variable (r.v.) with
probability density , Shannon used variational principles
to derive a lower bound to the rate-distortion function
described parametrically as follows:

(14)
6There are none who doubt Shannon’s insight and creativity. However,

there are those who think that Shannon wrote his papers in a mathematically
casual style not to make them more widely accessible but because he was not
conversant with the measure-theoretic approach to probability and random
processes. Those people are mistaken. That the renowned academician A. N.
Kolmogorov referred to Shannon’s conception of information coding in terms
of the asymptotics of overlapping spheres inn-dimensional finite geometries
in the limit asn!1 as “incomparably deep” [4] should in itself have been
enough to silence such skepticism, but alas it persists.

where

is the differential entropy of the instantaneous source density
and is the differential entropy of the “tilted” density

associated with the parameterand the difference distortion
measure . The distortion coordinate is given by

of (14) has been named the Shannon lower bound [26].
In the case of squared error, , the parameter
can be eliminated and the Shannon lower bound can be

expressed in the compact form

where is the entropy power of the source density. That
is, is the variance of a Gaussian r.v. that has the same
differential entropy as does , namely,

If a typical source r.v. can be expressed as the sum
of two independent r.v.’s, one of which is , then

. The largest value of for which this can
be done is called thecritical distortion and is denoted by .
The critical distortion can be as small as, in which case the
Shannon lower bound to the MSE rate-distortion function is
nowhere tight. At the other extreme, if the source variables
are themselves r.v., then
so that the Shannon lower bound is everywhere tight and

(15)

This result is the time-discrete version of (4). It corresponds to
taking samples of the ideal bandlimited Gaussian noise process

times per second and defining . Its presence
is in keeping with one of Shannon’s avowed purposes for
writing his 1959 paper, namely, to provide “an expansion and
detailed elaboration of ideas presented in [1], with particular
reference to the discrete case.” (Interpreting “discrete” here to
mean discrete amplitude and/or discrete time.)

It is noteworthy that, even when treating situations charac-
terized by abstract reproduction alphabets, Shannon nonethe-
less meticulously employed discrete output random variables.
“Consider a finite selection of points
from the space, and a measurable assignment of transition
probabilities ” [2]. Perhaps Shannon did this to
insulate the reader from the theory of abstract spaces, but
this seems unlikely given his accompanying use of the words
“measurable assignment of transition probabilities.” Also, pro-
viding the reader with such insulation was less a matter for
concern in 1959 as it had been in 1948. A better explanation is
that Shannon appreciated that the representation of the source
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would always have to be stored digitally; indeed, his major
motivation for Section V in 1948 had been to overcome the
challenge posed by the fact that continuous-amplitude data
has infinite entropy. But, there is an even better explanation.
It turns out that the output random variablethat results from
solving the rate-distortion problem for a continuous-amplitude
source usually is discrete! The region, if any, in which the
Shannon lower bound is tight for distortions smaller than some
positive turns out to be the exception rather than the rule in
that is indeed continuous for each in the range .
However, for Rose [158] recently has shown that the
optimum is discrete. (See also work of Fix [159] dealing
with cases in which has finite support.) In retrospect, it
seems likely that Shannon knew this all along.

C. Source Coding and Information Transmission Theorems

Shannon did not state or prove any lossy source coding
theorems in his classic 1948 paper. He did, however, state and
sketch the proof of an end-to-end information transmission
theorem for the system of Fig. 1, namely, his Theorem 21.
Since the notation did not exist in 1948, Shannon’s
theorem statement has in place of and in place of

. It reads:

Theorem 21: If a source has a rate for a valuation
it is possible to encode the output of the source and

transmit it over a channel of capacity with fidelity
as near as desired provided . This is not
possible if .

In 1959 Shannon included the word “Theorems” in the title of
his article [2] and was true to his word.

He began by generalizing from a single-letter distortion
measure to alocal distortion measure of span, denoted

, and then defining the distortion for
blocks of length according to the prescription

Local distortion measures represent a significant improvement
over single-letter distortion measures in many situations of
interest. For example, if one is compressing a text that contains
multidigit numbers, such as a company’s annual report, a local
distortion measure allows one to assign greater penalties to
errors made in the more significant digits of such numbers
than to errors in the less significant digits. Generalizing to a
local distortion measure in no way complicates the proof of
source coding theorems, but it significantly complicates the
analytical determination of curves [30].

Next he extended from i.i.d. sources to general ergodic
sources.7 This required generalizing the definition of to

7Ergodic sources need not necessarily be stationary. It appears that Shannon
intended his discussion to apply to stationary ergodic sources.

where is to defined to be the minimum mutual infor-
mation rate between a vector of successive source letters
and any random vector jointly distributed with in such a
way that , where is the operative local
distortion measure of span. He then stated a “Positive Coding
Theorem” and a “Converse Coding Theorem” and sketched
their proofs. Both theorems were phrased in terms of what can
and what cannot be accomplished when faced with the task of
transmitting information about the given source over a given
channel of capacity and then generating a reproduction of
the source based on the information available at the channel
output. As such, they are examples of what we now call
information transmission theorems or joint source–channel
coding theorems. We summarize their content by using the first
and second sentences of Theorem 21 of Shannon’s 1948 paper
quoted above, with the terminology appropriately revised to
fit the current context.

Positive Theorem:If an ergodic source has a rate-distortion
function with respect to a fidelity criterion generated by
a local distortion measure, then it is possible to encode the
output of the source and transmit it over a channel of capacity

with fidelity as near as desired provided .

Converse Theorem:Let and be as in the statement
of the Positive Theorem. If then it is not possible
to transmit an encoded version of the source data over the
channel and then reconstruct the source with fidelityon the
basis of what is received.

It is also possible to state and provesource coding theorems
that depend only on the source and the distortion measure and
have no connection to any channel.

Definition: A block source code of rate and block-
length is a collection of -vectors

, where each belongs to the th-power of
the reproduction alphabet.

Definition: Given a block source code and any
is an imageof in if for all

; certain vectors may have more than one image in.

The reader will appreciate that a block source code is
simply a collection of vector quantizer “centroids,” and that
mapping each source word into an image of itself amounts to
minimum-distortion vector quantization.

Positive Source Coding Theorem:Let denote the
rate-distortion function of an ergodic source with respect to a
local distortion measure. If then for sufficiently
large there exists a block source code of rate and
blocklength for which .

Converse Source Coding Theorem:If then for
all there does not exist a blocklength-source code of rate

for which .

The proof of the Converse Theorem given by Shannon is
adequately rigorous. A corresponding proof of the Converse
Source Coding Theorem can be obtained similarly by invoking
the readily established facts that is monotonic nonin-
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creasing and convex downward for everyat appropriate
places in the argument.

The situation with respect to the Positive Theorem is more
delicate. The nuance is that proving the theorem involves
approximating the source by a sequence of sources theth
of which produces successive-vectors independently of one
another according to the-dimensional marginal of the given
stationary source. As intuition suggests that the ap-
proximating sources will “converge” to the given source in the
sense of mimicking its dependencies ever more closely, except
perhaps in relatively narrow intervals near the boundaries of
successive blocks. However, there are certain ergodic sources
that exhibit extraordinarily long-range statistical dependencies.
Initial efforts to prove the Positive Theorem rigorously in the
generality stated by Shannon encountered obstacles imposed
by the possibility of such long-range dependencies. Over the
decades, a succession of increasingly general theorems were
proved. First, it was proved only for finite-order Markov
sources, then for strongly mixing sources [24], then for block-
ergodic sources [25], then for weakly mixing sources, and
finally for general stationary ergodic sources [7]. The extent
to which Shannon knew, or at least intuited, that the Positive
Theorem is true for general ergodic sources shall remain
forever unresolved. Later, it was shown that even the ergodic
assumption can be removed; stationariness is sufficient [15].
Also, a proof of the source coding theorem via large deviations
theory was developed by Bucklew [16].

In 1993 Kieffer wrote an invited survey paper [17] concern-
ing source coding with a fidelity criterion. This comprehensive
and well-crafted article focused principally on source cod-
ing theorems, recapitulating how they were developed with
increasing generality over time, including relatively recent
emphases on universality, multiterminal models, and coding
for sources modeled as random fields. Kieffer was selected for
this task in considerable measure for his several contributions
that proved source coding theorems with increasingly relaxed
conditions in increasingly general contexts [18], [19], [20],
[21], [22], [23]. Kieffer’s survey article also contains an
invaluable bibliography of 137 items.

It is not our purpose here to enter into the details of
proofs of source coding theorems and information transmission
theorems. Suffice it to say that at the heart of most proofs
of positive theorems lies a random code selection argument,
Shannon’s hallmark. In the case of sources with memory, the
achievability of average distortion at coding rate
is established by choosing long codewords constructed of
concatenations of “super-letters” from . Each super-letter
is chosen independently of all the others in its own codeword
and in the other codewords according to the output marginal

of the joint distribution associated with the
solution of the variational problem that defines .

D. Insights into Source-Channel Duality

Shannon concluded his 1959 paper on rate-distortion theory
with some memorable, provocative remarks on the duality
of source theory and channel theory. He mentions that, if
costs are assigned to the use of its input letters of a channel,

then determining its capacity subject to a bound on expected
transmission cost amounts tomaximizinga mutual information
subject to a linear inequality constraint and results in a capac-
ity–cost function for the channel that isconcavedownward. He
says, “Solving this problem corresponds, in a sense, to finding
a source that is just right for the channel and the desired cost.”
He then recapitulates that finding a source’s rate-distortion
function is tantamount tominimizing a mutual information
subject to a linear inequality constraint and results in a function
that is convexdownward. “Solving this problem,” Shannon
says, “corresponds to finding a channel that is just right for
the source and allowed distortion level.” He concludes this
landmark paper with the following two provocative sentences:

This duality can be pursued further and is related to
a duality between past and future and the notions of
control and knowledge. Thus we may have knowledge
of the past but cannot control it; we may control the
future but have no knowledge of it.

V. THE SIXTIES

With regard to rate distortion, the 1960’s were a decade
characterized principally by doctoral dissertations, conference
presentations, and book sections. Centers of rate-distortion the-
ory research were M.I.T. (to which Shannon had moved from
Bell Labs), Yale, Harvard, Cornell, UC Berkeley, and USC.
Columbia, Brooklyn Poly, Purdue, Stanford, and Caltech/JPL
also were represented.

A. MIT

At M.I.T., Fano and later Gallager supervised doctoral dis-
sertations that addressed aspects of rate distortion. Specifically,
Goblick [29] wrote about algebraic source codes, about rate
distortion for certain situations involving side-information, and
about the rate at which the performance of block source codes
could be made to converge to points on the curve as
blocklength increases. Another dissertation, by Pilc [32], [33]
also bounded the performance of optimum source codes as a
function of their blocklength. Recent research by Yang, Zhang,
and Wei corrects the work of Pilc and extends it to sources
with unknown statistics that possess memory [34], [35], [36];
see also related work by Linder, Lugosi, and Zeger [37], [38].

Pinkston wrote both a masters thesis [39] and a doctoral
dissertation [40] concerning aspects of rate-distortion theory.
The former concentrated on computing and developing
codes for situations in which for certain -
pairs; this theory parallels analogous in some respects to the
theory of the zero-error capacity of discrete channels. The
latter also appeared in part as a journal paper [41].

B. Yale

At Yale, Schultheiss supervised a bevy of doctoral stu-
dents who studied rate distortion. Gerrish [28] dissected the
variational problem defining in considerable detail.
Although he did not use Kuhn–Tucker theory, Gerrish derived
the necessary and sufficient conditions for optimality that
application of that theory would have produced. Specifically,
he showed that , as given above in Section IV-B,
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is optimum for parameter value if and only if the output
distribution that generates it satisfies the condition

if
if

where

Using this result Gerrish considerably expanded the class
of discrete rate-distortion problems for which could
be determined analytically. He also concocted the famous
example

This example has the property that, ifis sufficiently small,
then is positive for a range of small , is zero for slightly
larger distortions, and then becomes nonzero for still larger
distortions; at , regardless of
the value of . This example showed that even in a case with
small alphabets and considerable symmetry, there is no simple
behavior to the set as a function of distortion,
in contrast to what Erokhin had established for the error fre-
quency criterion . McDonald and Schultheiss
[42]–[44] obtained results generalizing the Shannon–Pinsker
water table result for Gaussian processes and MSE distortion
to different sorts of constraints on the error spectrum. Huang,
Spang, and Schultheiss [45], [46] derived enhanced vector
quantization schemes with and without feedback by using
orthogonal transformations inspired by considerations from
rate-distortion theory.

C. Cornell

Research in rate-distortion theory at Cornell was spear-
headed by Jelinek and subsequently by Berger. Jelinek an-
alyzed the behavior of rate-distortion functions for small
distortion [59]. Also, he used the theory of branching processes
to show that performance arbitrarily close to the curve
could be achieved via tree codes [60]. (See also the paper
by Davis and Hellman [58] in which a more precise anal-
ysis was conducted using branching processes with random
environments.) Jelinek and Anderson [61] introduced the-
algorithm, an implementable procedure for encoding tree codes
analogous to sequential decoding and stack decoding of tree
and trellis channel codes, and documented its performance
relative to bounds from rate-distortion theory. Under Berger’s
direction, information rates of sources modeled as dynamic
systems were determined by Toms [64], tree encoding of
Gaussian sources with memory was studied by Dick [65],
and studies of complete decoding algorithms for triple-error-
correcting algebraic source codes were initiated by Vander-
horst [62], [63]. Also, a paper on using Slepian’s permutation
codes as a mechanism for lossy source coding was written by
Berger, Jelinek, and Wolf during a summer visit to Cornell by
Wolf [66]. Solo papers by Berger during this period included
a rate-distortion study of Wiener processes [67], [68] and a

treatment of coding for unknown sources varying over a class
either randomly or under the control of an adversary [69]. It
was shown, among other things, that the discrete-time Wiener
process also exhibits a critical distortion phenomenon, the
value of being , where is the variance of the
increment between samples. Furthermore, it was established
that the rate-distortion function of the Wiener sequence did
indeed specify its MSE information rate despite the process
being nonstationary. The treatment of unknown sources, like
the work of Sakrison on classes of sources cited below, helped
pave the way for subsequent studies of universal lossy source
coding.

D. Harvard

At Harvard, Tufts supervised an active group of com-
munication theorists including Ramamoorthy, Fine, Kellogg,
Trafton, Leiter, Shnidman, and Proakis. Two others of Tufts’s
students, Berger and Gish, explicitly considered rate-distortion
theory as a means for developing absolute performance limits
against which to compare the communication and quantization
schemes they analyzed [70], [71]. Berger’s results showed
that, although optimum PAM systems are quite efficient for
communicating various types of data sources over filtered
channels with additive Gaussian noise when the SNR is low,
the gap between optimum PAM and information-theoretically
optimum systems widens meaningfully as the SNR increases.
This was among the insights that led Price and others to
realize that dramatic gains in signaling rate still remained to be
reaped in the transmission of digital data over clean telephone
channels. Gish’s results led to collaboration with Pierce on a
theory of asymptotically efficient quantizing [72].

Studying the expression for the MSE rate-
distortion function of a Gaussian sequence for (cf.
Section III-B), Gish and Berger [73] noticed that the formula
for the entropy rate power, namely,

is also the formula for the optimum one-step prediction error.
That is, the entropy rate power equals the variance of
the minimum MSE estimate of based on .
This is both intriguing and confounding. A confluence of
fundamental quantities always is intriguing. Here is what is
confounding. The sequence of successive one-step prediction
errors, also called theinnovations process, is stationary, zero-
mean, uncorrelated, and Gaussian. Let us call it . Rate-
distortion theory tells us that can be encoded with an
MSE of using any data rate but no data
rate smaller than this. Hence, in the range ,
the MSE rate-distortion function of is equal to that
of . This suggests that perhaps an optimum encoder
should compute from and then use a code of rate

to convey the memoryless sequence to
the decoder with an MSE of . However, it is unclear how
the receiver could use these lossy one-step prediction errors to
generate a -admissible estimate of . Furthermore, the
rate-distortion problem does not impose a restriction to causal
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estimation procedures the way the one-step prediction problem
does, so the apparent connection between them is enigmatic
indeed.

E. UC Berkeley

Sakrison conducted and supervised research in rate-
distortion at UC Berkeley. His initial papers [74]–[76]
treated source coding in the presence of noisy disturbances,
gave geometric insights into the source coding of Gaussian
data, and treated the effects of frequency weighting in
the distortion measure as part of an effort to deal with
edge effects and other perceptual considerations in image
coding. His paper with Algazi [77] dealt explicitly with two-
dimensional coding techniques for images. In this connection,
basic formulas for the information rates of Gaussian random
fields were being developed contemporaneously at Purdue by
Hayes, Habibi, and Wintz [80]. Sakrison also supervised an
important dissertation in which Haskell [79] developed a new
representation of the rate-distortion variational problem and
used it to compute and bound rate-distortion functions in novel
ways. Probably the most significant of Sakrison’s contributions
was his paper dealing with the information rate of a source
that is known only to belong to a certain class of sources
but is otherwise unspecified [78]. This paper contributed to
setting the foundation for the study of universal lossy coding
that flourished in succeeding decades.

F. USC

At USC, Gray [81] studied rate-distortion theory under the
able tutelage of Scholtz and Welch. His doctoral dissertation
contained many interesting results, perhaps the most star-
tling of which was that the binary-symmetric Markov source
exhibited a critical distortion phenomenon with respect to
the error frequency distortion measure that was similar to
that of MSE rate-distortion functions of stationary Gaussian
sequences alluded to previously. Specifically, if

describes the transition matrix of the binary-
symmetric source, he showed that there exists a positive
such that

What’s more, using intricate methods involving Kronecker
products of matrices and ordinary products ofmatrices
drawn in all possible ways from a certain pair of matrices, he
found the explicit formula for for this problem, namely,

He showed that similar behavior is exhibited by the rate-
distortion functions of many autoregressive processes over real
and finite alphabets, though explicit determination of has
proved elusive for any but the binary-symmetric case cited
above. This work and extensions thereof were reported in a
series of journal papers [82]–[84]. Gray continued research of
his own on rate-distortion throughout succeeding decades and
supervised many Stanford doctoral students in dissertations of

both theoretical and practical importance. Some of these will
be dealt with in the portion of the paper dealing with the early
1970’s.

G. Feedback Studies: Stanford, Columbia, Caltech/JPL

Schalkwijk and Kailath’s celebrated work on capacity-
achieving schemes for channels with feedback gave rise to
studies of analogous problems for source coding. In this
connection, Schalkwijk and Bluestein [48], Omura [49], and
Butman [50] studied problems of efficient lossy coding for
cases in which there is a feedback link from the user back to
the source encoder.

H. The Soviet School

During the 1960’s, Soviet scientists continued to contribute
to the mathematical underpinnings of information theory in
general and rate-distortion theory in particular; see Pinsker
[52], Dobrushin [53], [54], and Tsybakov [51]. Also, Do-
brushin and Tsybakov [55] wrote a paper extending rate-
distortion theory to situations in which the encoder cannot
observe the source directly and/or the user cannot observe
the decoder output directly; see also Wolf and Ziv [56]. Like
Jelinek, Lin’kov [57] provided tight bounds to curves
of memoryless sources for small.

I. The First Textbooks

In 1968, the first treatments of rate-distortion theory in
information theory texts appeared. Jelinek’s [27, ch. 11] and
Gallager’s [7, ch. 9] were devoted exclusively to rate-distortion
theory. Gallager’s proved therein Shannon’s 1959 claim that
ergodicity sufficed for validity of the positive theorem for
source coding with respect to a fidelity criterion. He also
introduced the following dual to the convex mathematical
programming problem that defines : Let denote a
vector with components indexed by the letters of the
source alphabet . Given any real and any let
denote the vector with components defined by

Let

Gallager proved that

Expressing as a maximum rather than a minimum allows
one to generate lower bounds to readily. Just pick
any and any . Then evaluate . If the largest
component of exceeds , form a new by dividing the
original by this largest . The new then belongs to .
It follows that the straight line in the

-plane underbounds . Not only are lower bounds
to produced aplenty this way, but we are assured that
the upper envelope of all these lines actuallyis . This
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dual formulation is inspired by and capitalizes on the fact that
a convex downward curve always equals the upper envelope
of the family of all its tangent lines. It turns out that all known
interesting families of lower bounds to are special cases
of this result. In particular, choosing the components ofsuch
that is constant yields the Shannon lower bound
when the distortion measure is balanced (i.e., every row of
the distortion matrix is a permutation of the first row and
every column is a permutation of the first column) and yields a
generalization of the Shannon lower bound when the distortion
measure is not balanced.

VI. THE EARLY SEVENTIES

The period from 1970 to 1973 rounds out the first 25 years
of rate-distortion theory. Although it may have appeared to
those working in the field at that time that the subject was
reaching maturity, it has turned out otherwise indeed. The
seemingly “mined” area of computation of rate-distortion func-
tions was thoroughly rejuvenated. Furthermore, foundations
were laid that supported dramatic new developments on both
the theoretical and practical fronts that have continued apace
in the 25 years since.

Gallager’s primary interests turned from information theory
to computer science and networks during the 1970’s. How-
ever, rate-distortion theory thrived at Stanford under Gray, at
Cornell under Berger, who wrote a text devoted entirely to the
subject [26], at JPL under Posner, at UCLA under Omura and
Yao, and at Bell Labs under Wyner.8

A. Blahut’s Algorithm

A Cornell seminar on the mathematics of population genet-
ics and epidemiology somehow inspired Blahut to work on
finding a fast numerical algorithm for the computation of rate-
distortion functions. He soon thereafter reported that the point
on an curve parameterized bycould be determined by
the following iterative procedure [85]:9

Step 0: Set . Choose any probability distribution
over the destination alphabet that has only

positive components, e.g., the uniform distribution
.

Step 1: Compute

Step 2: Compute

If , halt.

8Centers of excellence in rate distortion emerged in Budapest under Csiszár,
in Tokyo under Amari, in Osaka under Arimoto, in Israel under Ziv and his
“descendants,” in Illinois under Pursley, and at Princeton under Verd´u, but
those developments belong to the second 25 years of information theory.

9Blahut and, independently, Arimoto [86] found an analogous algorithm
for computing the capacity of channels. Related algorithms have since been
developed for computing other quantities of information-theoretic interest. For
a treatment of the general theory of such max-max and min-min alternating
optimization algorithms, see Csiszár and Tusnady [87].

Step 3: Compute . Return
to Step 1.

Blahut proved the following facts.

1) The algorithm terminates for any rate-distortion problem
for any .

2) At termination, the distance from the point
defined by

and

to the point parameterized by (i.e., the point
on the -curve at which ) goes to zero
as . Moreover, Blahut provided upper and lower
bounds on the terminal value of that vanish
with .

Perhaps the most astonishing thing about Blahut’s algorithm
is that it does not explicitly compute the gradient of
during the iterations, nor does it compute the average distortion
and average mutual information until after termination. In
practice, the iterations proceed rapidly even for large alpha-
bets. Convergence is quick initially but slows for large;
Newton–Raphson methods could be used to close the final
gap faster, but practitioners usually have not found this to be
necessary. The Blahut algorithm can be used to find points
on rate-distortion functions of continuous-amplitude sources,
too; one needs to use fine-grained discrete approximations
to the source and user alphabets. See, however, the so-
called “mapping method” recently introduced by Rose [158],
which offers certain advantages especially in cases involving
continuous alphabets; Rose uses reasoning from statistical
mechanics to capitalize on the fact, alluded to earlier, that
the support of the optimum distribution over the reproduction
alphabet usually is finite even whenis continuous.

B. Under Gray at Stanford

Following his seminal work on autoregressive sources and
certain generalizations thereof, Gray joined the Stanford fac-
ulty. Since rate distortion is a generalization of the concept
of entropy and conditional entropy plays many important
roles, Gray sensed the likely fundamentality of a theory of
conditional rate-distortion functions and proceeded to develop
it [160] in conjunction with his student, Leiner [161], [162].
He defined

where the minimum is over all r.v. jointly distributed with
in such a manner that . This not

only proved of useper sebut also led to new bounding results
for classical rate-distortion functions. However, it did not treat
what later turned out to be the more challenging problem of
how to handle side-information that was available to
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if
straight line from to if

(17)

the decoder only and not to the encoder. That had to await
ground-breaking research by Wyner and Ziv [94].

Gray also began interactions with the mathematicians Orn-
stein and Shields during this period. The fruits of those
collaborations matured some years later, culminating in a
theory of sliding block codes for sources and channels that
finally tied information theory and ergodic theory together in
mutually beneficial and enlightening ways. Other collabora-
tors of Gray in those efforts included Neuhoff, Omura, and
Dobrushin [163]–[165]. The so-calledprocess definitionof
the rate-distortion function was introduced and related to the
performance achievable with sliding block codes with infinite
window width (codes in the sense of ergodic theory). It was
shown that the process definition agreed with Shannon’s 1959
definition of the rate-distortion function
for sources and/or distortion measures with memory. More
importantly, it was proved that one could “back off” the
window width from infinity to a large, finite value with only
a negligible degradation in the tradeoff of coding rate versus
distortion, thereby making the theory of sliding block codes
practically significant.

Seeing that Slepian and Wolf [93] had conducted seminal
research on lossless multiterminal source-coding problems
analogous to the multiple-access channel models of Ahlswede
[90] and Liao [91], Berger and Wyner agreed that research
should be done on a lossy source-coding analog of the novel
Cover–Bergmans [88], [89] theory of broadcast channels. Gray
and Wyner were the first to collaborate successfully on such
an endeavor, authoring what proved to be the first of many
papers in the burgeoning subject of multiterminal lossy source
coding [92].

C. The Wyner–Ziv Rate-Distortion Function

The seminal piece of research in multiterminal lossy source
coding was the paper by Wyner and Ziv [94], who considered
lossy source coding with side-information at the decoder.
Suppose that in addition to the source that we seek
to convey to the user, there is a statistically related source

. If can be observed both by the encoder and the
decoder, then we get conditional rate-distortion theorya la
Gray. The case in which neither the encoder nor the decoder
sees , which perhaps is under the control of an adversary,
corresponds to Berger’s source-coding game [69]. The case in
which the encoder sees but the decoder does not was
long known [29] to be no different from the case in which
there is no . But the case in which the decoder is privy to

but the encoder is not proved to be both challenging and
fascinating. For the case of a single-letter fidelity criterion and

-pairs that are i.i.d. over the index, Wyner and Ziv
showed that the rate-distortion function, now widely denoted
by in their honor, is given by

(16)

where is the set of auxiliary r.v. jointly distributed
with a generic such that:

1) is a Markov chain; i.e.,

2) There exists such that

3) The cardinality of the alphabet may be constrained to
satisfy .

Consider the special case in which and are
Bernoulli and statistically related as if connected by a BSC
of crossover probability and .

for this case is shown in (17) at the top of this
page, where and is such
that the sraight-line segment for is tangent to the
curved segment for . Berger had used Bergmans [89]
theory of “satellites and clouds” to show that (17) was an upper
bound to for this binary-symmetric case. The major
contribution of Wyner and Ziv’s paper resided in proving a
converse to the unlikely effect that this performance cannot
be improved upon, and then generalizing to (17) for arbitrary

and .
The advent of Wyner–Ziv theory gave rise to a spate of

papers on multiterminal lossy source coding, codified and
summarized by Berger in 1977 [95]. Contributions described
therein include works by K¨orner and Marton, [96]–[98], Berger
and Tung [99], [100], Chang [101], Shohara [102], Omura
and Housewright [103], Wolfowitz [104], and Sgarro [105]. In
succeeding decades, further strides have been made on various
side-information lossy coding problems [153], [154], [128],
[155], [129], [130], and [156]. Furthermore, challenging new
multiterminal rate-distortion problems have been tackled with
considerable success, including themultiple descriptions prob-
lem [145], [150], [146]–[149], [151], [152], [157], [132], the
successive refinements problem[133], and theCEO problem
[134]–[136]. Applications of multiple descriptions to image,
voice, audio, and video coding are currently in development,
and practical schemes based on successive refinement theory
are emerging that promise application to progressive transmis-
sion of images and other media.

D. Rate Distortion in Random Fields

In order for rate-distortion theory to be applied to images,
video, and other multidimensional media, it is necessary
to extend it from random processes to random fields (i.e.,
collections of random variables indexed by multidimensional
parameters or, more generally, by the nodes of a graph).
The work of Hayes, Habibi, and Wintz [80] extending the
water-table result for Gaussian sources to Gaussian random
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fields already has been mentioned. A general theory of the
information theory of random fields has been propounded
[131], but we are more interested in results specific to rate
distortion. Most of these have been concerned with extending
the existence of critical distortion to the random field case and
then bounding the critical distortion for specific models. The
paper of Hajek and Berger [121] founded this subfield. Work
inspired thereby included Bassalygo and Dobrushin [122],
Newman [123], Newman and Baker [124] in which the critical
distortion of the classic Ising model is computed exactly, and
several papers by Berger and Ye [125], [126]. For a summary
and expansion of all work in this arena, see [127].

E. Universal Lossy Data Compression

Work by Fitingof, Lynch, Davisson, and Ziv in the early
1970’s showed that lossless coding could be done efficiently
without prior knowledge of the statistics of the source being
compressed, so-calleduniversal lossless coding. This was
followed by development of Lempel–Ziv coding [106], [107],
arithmetic coding [108]–[110], and context-tree weighted en-
coding [111], [112], which have made universal lossless
coding practical and, indeed, of great commercial value.

Universal lossy codinghas proven more elusive as regards
both theory and practice. General theories of universal lossy
coding based on ensembles of block codes and tree codes were
developed [138]–[144], but these lack sufficient structure and
hence require encoder complexity too demanding to be con-
sidered as solving the problem in any practical sense. Recent
developments are more attractive algorithmically [113]–[120].
The paper by Yang and Kieffer [117] is particularly intriguing;
they show that a lossy source code exists that is universal not
only with respect to the source statistics but also with respect to
the distortion measure. Though Yang–Kieffer codes code can
be selecteda priori in the absence of any knowledge about the
fidelity criterion, the way one actually does the encoding does,
of course, depend on which fidelity criterion is appropriate to
the situation at hand. All universal lossy coding schemes found
to date lack the relative simplicity that imbues Lempel–Ziv
coders and arithmetic coders with economic viability. Perhaps
as a consequence of the fact that approximate matches abound
whereas exact matches are unique, it is inherently much faster
to look for an exact match than it is to search a plethora of
approximate matches looking for the best, or even nearly the
best, among them. The right way to trade off search effort in
a poorly understood environment against the degree to which
the product of the search possesses desired criteria has long
been a human enigma. This suggests it is unlikely that the
“holy grail” of implementable universal lossy source coding
will be discovered soon.

VII. A N IMPACT ON APPLICATIONS

After 25 years, in 1974, the theory of source coding with a
fidelity criterion was well-developed, and extensive treatments
were available in the literature, including a chapter in the book
by Gallager [7] and the comprehensive text by Berger [26].
However, the impact of rate-distortion theory on the practice of
lossy source coding, or data compression, was slight. Indeed,

Pierce in his 1973 paper states [221], “In general, I am content
with the wisdom that information theory has given us, but
sometimes I wish that the mathematical machine could provide
a few more details.”

To assess further the impact of Information Theory on lossy
source coding 25 years after Shannon’s original paper, we
examine textbooks [222] and paper compendia [201], [183]
from around that time. It is clearly evident that except for
scalar quantization combined with entropy coding, and scalar
quantization combined with transform coding for images, there
was little in terms of concrete contributions.

Part of the reason for this elegant theory not influencing the
practice of data compression can be traced to the observation
that the practitioners of information theory and the designers
of data compression systems formed mutually exclusive sets.
A 1967 special issue of the PROCEEDINGS OF THEIEEE on
Redundancy Removal, generally supports this conclusion, al-
though the papers by Pearson [218] and O’Neal [216] directly
incorporate some of Shannon’s ideas and results. Perhaps a
quote from Pearson’s paper implies the gulf that existed:
“The concept of a rate-distortion function, once grasped, is
conceptually a very satisfying one;” the implication being that
rate-distortion theory is not simple to comprehend, at least not
at first reading.

However, even information theorists were not optimistic
concerning the impact of rate-distortion theory on the prac-
tice of lossy source coding, but perhaps for much different
reasons—they had a full grasp of the theory, its assumptions,
and its implementation requirements, and the picture they saw
was challenging. For example, rate-distortion theory requires
an accurate source model, and such models for important
sources were just being explored and were not well-known
[7]. Second, fidelity criteria for important sources such as
speech and images were not well-developed, although work
was in progress [218]. Third, the AEP and random coding ar-
guments used in proving information-theoretic results implied
exponential growth in the codebook, and since, as stated by
Wozencraft and Jacobs in their classic text, “One cannot trifle
with exponential growth” [248, p. 387]; many outstanding
researchers felt that implementation complexity might be the
dominating issue [227], [228].

Happily, information theory has had a dramatic impact on
lossy source coding, or data compression, in the last 25 years,
although the three issues, source models, fidelity criteria, and
complexity, remain major considerations.

In addition to the results, insights, and tools provided by
Shannon’s two original papers [1], [2], the legacy of the first
25 years included the results by Huang and Schultheiss [45]
and Wintz and Kurtenbach [246] on bit allocation for scalar
quantizers, the rate-distortion function for autoregressive (AR)
processes and the MSE fidelity criterion as obtained by Gray
[82] and Berger [26], and the tree coding theorem for Gaussian
AR processes and the MSE fidelity criterion given by Berger
[26]. These results served as a springboard to developing lossy
coding techniques for sources with memory that explicitly
exhibit information-theoretic concepts.

We start with a discussion of memoryless sources and then
proceed to examine results for sources with memory. This
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is followed by developments of the several approaches to
compression that have been useful for important sources such
as speech, still images, high-quality audio, and video. The goal
is to describe the contributions of information-theoretic results
on the practice of lossy source coding without producing a
voluminous survey of lossy source compression methods for
the several sources.

VIII. M EMORYLESS SOURCES

Uniform and nonuniform scalar quantization was the pri-
mary technique for coding memoryless sources in 1974. These
quantizers were usually implemented with an adaptive step
size or scaling factor to allow the quantizer dynamic range to
respond to rapid variations in source variance, and hence, to
reduce the number of levels needed to cover this range with the
allowable distortion. The adaptation was based upon tracking
the input signal variance and was not motivated by any
results from rate-distortion theory. The only real connection
to information theory was through the idea of entropy coding
the quantizer output alphabet. Subsequent work by Farvardin
and Modestino [187] investigated the performance of entropy-
constrained scalar quantizers for a variety of source input
distributions. At the same time, information theorists were
studying the encoding of memoryless sources using rate-
distortion theory and began specifically drawing upon random
coding arguments.

Random coding arguments are a staple in proving positive
coding theorems, and hence, the existence of good source
codes. However, many researchers and engineers, especially
those interested in applications, find rate-distortion theory
wanting in that only the existence of good codes is demon-
strated and that no method for finding a good code is given.
This view is somewhat myopic, though, because each random
coding proof of the existence of a good code actually outlines a
code construction. For example, the proof of the achievability
of the rate-distortion function given in Cover and Thomas
[252] begins by generating a codebook of reproduction
sequences and assigning each of them a codeword index. Then,
each input sequence of length is encoded by finding that
sequence in the reproduction codebook that falls within the
distortion typical set.

If we actually desire to encode i.i.d. Gaussian sequences of
length with average distortion , we can then mimic this
proof and generate a codebook consisting of reproduction
sequences of length , where the individual components
of each sequence are i.i.d. Gaussian random variables with
zero mean and a variance of . For a given input
sequence of length , the encoding procedure is to find that
sequence in the codebook with the smallest distortion. Thus
we see that exactly following the proof of achievability yields
an explicit encoding procedure. Unfortunately, to accomplish
this encoding step requires an exhaustive comparison of the
current input sequence of length with all sequences in
the codebook, and subsequently repeating this comparison for
all input sequences of length to be encoded. Since there
are sequences in the codebook and must be large
to approach optimality, the encoding with such codebooks is
arbitrarily complex.

An approach to combatting complexity in random codes
is to add structure, and researchers did just this by proving
coding theorems for tree and trellis codes that approach the
rate-distortion bound arbitrarily closely. Results were obtained
for tree coding of binary sources and the Hamming distortion
measure by Jelinek and Anderson [61] and for tree coding of
i.i.d. Gaussian sources and the MSE fidelity criterion by Dick,
Berger, and Jelinek [65]. Viterbi and Omura [242] proved a
trellis source coding theorem and Davis and Hellman [58]
proved a tree coding theorem for source coding with a fidelity
criterion, extending the work of Jelinek [60] and Gallager
[190]. While this work did not directly impact applications,
it did lay the groundwork for later research on coding sources
with memory that has found widespread applications.

Likely, the most important lossy source-coding technique
that has sprung directly from information theory is vector
quantization. Only those who have a grasp of information
theory can appreciate the motivation for studying vector quan-
tizers (VQ’s) for memoryless sources; additionally, there were
many reasons for not pursuing VQ designs, even from an
information theorist’s viewpoint. Since performance grows
asymptotically with vector length and the number of input
points grows proportionally to , the exponential growth
in encoding complexity seemed too daunting to overcome.
Furthermore, there was the indication from rate-distortion
theory that for Gaussian sources and the MSE distortion
measure, only a 0.255-bit/sample reduction in rate, or a
1.53-dB reduction in distortion, with respect to entropy-coded
scalar quantization, was available with vector quantization.
Some of the best information theorists found this daunting
[228]. However, in the late 1970’s and the early 1980’s, infor-
mation theorists did turn their attention to vector quantization.

There were three main thrusts at that time. One centered on
developing algorithms for the design of nonuniform VQ’s, a
second thrust examined uniform VQ performance and design,
and a third studied the asymptotic performance (in block-
length) of VQ’s. Uniform VQ’s were based upon lattices
in -dimensional space and this work drew upon algebraic
structures and space-filling polytopes. Of course, the attraction
to lattice (uniform) VQ’s was that the regular structure should
allow fast encoding methods to be developed and thus avoid
the exponential growth in encoding complexity with vector
length . The study of VQ performance included the lattice
VQ structures and extended to higher dimensions some of the
approaches from scalar quantization. Algorithm development
for nonuniform VQ design began with the algorithm by Linde,
Buzo, and Gray [204], now called the LBG algorithm. This
algorithm was built upon the-means algorithm from pattern
recognition and the scalar quantizer design methods developed
by Lloyd [205]. Although it only guaranteed local optimality
and the encoding stage was still exponentially complex in the

product, the possibility of actually using a VQ and testing
its performance became possible.

We leave further broad discussion of scalar and vector
quantization to the excellent paper in this issue by Gray and
Neuhoff [196]. However, later when discussing particular lossy
source compression techniques, we will identify the role of
vector quantization and the type of VQ employed.
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In many applications, it was (and is) necessary to encode
several independent memoryless sources subject to an overall
rate or distortion constraint. Thus in those applications with a
constraint on total rate, it becomes necessary to minimize total
distortion by allocating rate across several scalar quantizers.
Clearly evident in each of these contributions is the rate-
distortion function for independent and identically distributed
Gaussian sources and the MSE fidelity criterion as derived by
Shannon [1], [2], or the distortion rate version .

In particular, the bit-allocation methods for scalar quantizers
used the distortion rate version of Shannon’s result with
only a multiplicative scale factor on the variance, viz, as
a criterion to be minimized by appropriate allocations of
bits (rate). By adjusting this multiplicative factor, the rate
distortion relationship could be made to approximate that of a
distribution other than Gaussian, such as a Laplacian source.

Thus for independent sources with respective vari-
ances , the individual distortions as a function of rate are

and the total distortion to be minimized is
subject to the overall rate constraint

. The multiplier accounts for differences in distributions
and for different encoding methods. We append the rate
constraint using a Lagrange multiplier, so that the functional
to be minimized is

Letting be a constant, the resulting rate allocation is

Although this approach often produces noninteger bit al-
locations for scalar quantizers, andad hocmodifications are
required to produce integer allocations and to achieve the
desired total bit rate exactly, the coupling of coding indepen-
dent sources with different scalar quantizers and “optimal”
bit allocation was introduced and served as a framework for
numerous future lossy coding techniques for both speech and
images. Several other approaches to this bit-allocation problem
that allow integer bit allocations and other constraints are now
common. See Gersho and Gray [191] for a summary.

IX. SOURCES WITH MEMORY

An obvious approach to coding sources with memory when
one already has numerous techniques for coding independent
sources is to determine a transformation that models the
source memory and then use this transformation to decompose
the source with memory into several independent (or nearly
independent) memoryless sources. Perhaps the most explicit
delineation of this approach and the role of rate-distortion the-
ory in coding sources with memory, in general, and transform
image compression in particular, is given by Davisson [182].
Davisson decomposes a source with memory into an expansion
of orthogonal components and allocates rate to each of these
components according to their variance, an approach that was
used previously by Gallager in proving a coding theorem for
such Gaussian random process sources [7].

More specifically, Davisson [182] shows that the-block
rate-distortion function for a source with covariance matrix

and eigenvalues is given by

where the distortion is assumed to be small, .
These results amplify the work of Kolmogorov [3] and

McDonald and Schultheiss [43]. Davisson also evaluates the
rate-distortion function for a first-order Gauss–Markov source,
a model often used for images, and expresses the result as a
difference between the -block rate-distortion function and
the rate-distortion function asymptotic in

Thus for , the -block encoding requires
more bits per sample than the best possible.

Tree and trellis coding theorems for structures involving
transform decompositions are proved in [208], [217], and
[209].

The rate-distortion function for AR sources, derived by Gray
[82] and Berger [26], was a welcome addition since it came at
a time when AR processes were finding their initial application
to speech coding [170]–[172]. The elucidation of a tree-coding
method for Gaussian AR sources and the proof of a tree-coding
theorem for these sources, [26], gave impetus to the application
of tree-coding techniques in speech-coding applications.

A. Predictive Coding

Predictive coding was a well-known technique for source
compression based upon time-domain waveform-following by
the time the second 25 years rolled around. In fact, there
had been substantive contributions by the early 1950’s [180],
[186], [215], with the paper by Elias being significantly
motivated by information theory ideas—primarily entropy.
However, by 1976, predictive coding was an important prac-
tical approach to speech coding and also had applications
to image coding [201]. The principal motivation behind this
work, as well as its success, was the reduction in the dynamic
range of the quantizer input and the decorrelation of the
quantizer input by the predictor. Rate-distortion theory was
just beginning to have an impact on predictive coders in
1976, and doubtless, Jayant [201] is correct in stating that, “...
simple DPCM is still one of the classic triumphs of intuitional
waveform coding.” However, predictive coding was to become
extraordinarily important in applications, and rate-distortion
theory motivated coders were to play a major role.

1) Speech Compression:Interestingly, multipath-searched
versions of differential encoders, such as delta modulation and
DPCM, predated or paralleled the development of the tree-
coding theorem by Berger, and were motivated by intuition
and estimation theory. In particular, Irwin and O’Neal [199]
studied multipath searching of a fixed DPCM system to depth
, but found only modest increases in SNR. Cutler [181]

investigated delayed encoding in a delta modulator with the
goal of incorporating a more responsive (over-responsive)
encoder to track the sudden onset of pitch pulses.
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Anderson and Bodie [168] drawing directly on the theoret-
ical results of Berger [26], and previous work on tree/trellis
coding of i.i.d. sources, developed tree coders at 2 bits/sample
for speech built around fixed DPCM code generators and the
MSE distortion measure. Significant increases in SNR were
obtained, but the reconstructed speech had a substantial “hiss-
ing” sound superimposed on the highly intelligible speech.
Becker and Viterbi [175] considered bit rates of 1 bit/sample
and took an approach that included a long-term predictor and
a finite-state approximation to the AR model. Both the long-
and short-term predictors were adaptive. They also reported
work on an alternative excitation based upon a trellis. Stewart
[236], [237] pursued trellis codes coupled with AR models
and pushed the rates down below 1 bit/sample.

The primary result of these studies was an increase in output
SNR, but the output speech quality still suffered from audible
noise. To improve this speech quality and make tree coding
a viable candidate for speech coding required adaptive code
generators and perceptually based fidelity criteria. Wilson and
Husain [245] examined 1-bit/sample tree coding of speech
using a fixed-noise shaping motivated by the classical
noise weighting from telephony. Later work, using innovative
adaptive code generators, perceptually weighted distortion
measures, and new tree codes, achieved good-quality speech
with tree coding at 8 kbits/s [261].

However, the major impetus for code-excited schemes in
speech coding came from the paper by Atal and Schroeder
[174] that demonstrated that high-quality speech could be
generated by a predictive coder with a Gaussian populated
codebook with 1024 entries, each of length 40 samples. The
rate was estimated at 4 kbits/s, but the predictor coefficients
were not quantized and the analysis-by-synthesis codebook
search was accomplished by the use of a Cray computer!
Thus this was very much a “proof-of-concept” paper, but a
principal difference between this work and previous research
by information-theoretic researchers on speech coding was that
the authors used a perceptually weighted MSE to select the
best codebook excitation sequence.

Atal and Schroeder [174] were aware of the earlier work on
tree coding, but they were also motivated by the analysis-
by-synthesis speech-coding method called multipulse linear
predictive coding [173], where the codebook consisted of
several impulses (say, 8 per frame of 40 samples or so) with
arbitrary location and arbitrary magnitude. Multipulse linear
predictive coding (multipulse LPC) produced good-quality
highly intelligent speech, but the complexity of searching
a relatively unstructured adaptive codebook was prohibitive.
From this initial work, the tremendous effort on codebook-
excited speech coders was spawned. The keys to producing
high-quality highly intelligent speech with these coders are
that the code generators, or predictors, are adaptive and the
fidelity criterion includes perceptual weighting. The perceptual
weighting attempts to keep the noise spectrum below that of
the source spectrum at all frequencies of interest.

Complexity is always an issue in tree coding and codebook-
excited approaches. In tree coding, complexity is addressed
by nonexhaustive searching of the trees using depth-first,
breadth-first, or metric-first techniques [169]. Nontree code-

books typically contain many more samples per codeword than
tree codes, so the search complexity for these codebooks is
related to codebook structure and sparsity. A breakthrough
in codebook excited techniques for speech has been the
interleaved single pulse permutation (ISPP) codebook that
consists of a few sparse impulse sequences that are phase-
shifted versions of each other, where all of the pulses have
the same magnitude [230]. Prior to this technique, codebooks
were often designed off-line by using training mode vector
quantization.

The impact of codebook-based approaches on speech coding
standards has been dramatic. As shown in [179] and [194],
many of the current standards for speech coding are code-
excited predictive coding and the quality obtained by these
techniques is much higher than might have been expected.
For example, G.729 has a Mean Opinion Score (MOS) rating
of 4.1, and G.728, a low-delay standard, has a quality rating of
4.0–4.1 [179]. G.728 employs a five-dimensional gain-shape
vector quantizer (VQ) for its excitation vectors. Vector quan-
tization for side-information is also commonly used and plays
an important role in achieving the lowest possible transmitted
data rate. The VQ’s used for the coefficient representation are
typically split VQ’s so that the dimension of the VQ’s can
be kept as small as possible. These VQ’s are designed using
the training mode method and training the VQ’s provides a
substantial improvement in performance over any other VQ
design technique.

2) Image Compression:Tree coding was also studied for
image compression and some interesting results were obtained
[211], [212]. The success of this approach for images has been
much less than that for speech since a good image model is
difficult to find and time-domain methods have not been able
to keep pace with the much lower bit rates achievable in the
transform domains.

B. Source Decompositions

Predictive coding is model-based and it works extremely
well when the linear prediction, or autoregressive, model can
adequately represent a source. Early on, however, speech
and image compression researchers were drawn to frequency-
domain decompositions to account for source memory. Of
course, this is very much an electrical engineering way of
thinking, namely, breaking a signal down into its constituent
frequency components, and then coding these components
separately. Two prominent examples of this approach are
subband coding and transform coding.

In subband coding, the source to be compressed is passed
through parallel filter banks that consist of bandpass filters,
and the outputs of these filters are decimated and lowpass
translated. Each of the resulting time-domain signals is coded
using PCM (i.e., scalar quantization), DPCM, or some other
time-domain compression technique. At the receiver, each
signal is decoded and those signals that were not originally
baseband are translated back to their appropriate filter band, all
signals are interpolated (upsampled), and then all components
are summed to yield the overall reconstructed source repre-
sentation. One of the original challenges in subband coding
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was designing subband filters that provided good coverage of
the desired frequency band without producing aliasing upon
the reconstruction step due to the intermediate subsampling.
The key advance was the development of quadrature mirror
filters that, although they allow aliasing in the downsampling
step at the encoder, these filters cancel the aliasing during
the reconstruction at the receiver. These ideas continue to be
generalized and extended. Allocating bits across the subbands
is a critical step as well, and the approach differs depending
upon the source and the application.

Transform coders take an -block of input source samples
and perform an -point discrete transform on them. The
principal idea is that a good transform will yield decorrelated
or even independent components and will concentrate the
signal energy into fewer significant components. Bit-allocation
methods then discard unimportant frequency content and code
each of the remaining components according to differing ac-
curacies. The source can then be approximately reconstructed
from the coded components via an inverse transform. Most
transforms that are popular in compression are unitary and
separable.

It can be shown that transform methods are a special
case of subband techniques where the subband synthesis
filters have impulse responses equal to the transform ba-
sis functions, the analysis filter impulse responses are the
time-reversed basis functions, and the decimation factor in
each band is the transform blocklength. Furthermore, wavelet
methods allow for nonuniform tiling of the time–frequency
plane, and therefore wavelet expansions generalize subband
methods. In fact, any wavelet expansion has a corresponding
perfect reconstruction filter bank interpretation. However, the
differences between subband techniques and transform-domain
techniques for coding are the frequency and time resolution,
which leads to a preferred quantization approach.

In the following sections, we discuss subband, transform,
and wavelet-based compression methods for speech, still
images, video, and high-quality audio, with emphasis on
information-theoretic influences.

1) Speech Compression:Interestingly, subband coding
found its first applications to speech compression and then
later to image compression, while transform coding had its
first applications to image coding and later to speech/audio
compression. The primary motivation for subband coding in
speech compression was the ability to code the subbands
with differing numbers of bits in order to isolate distortions
to their individual bands and to achieve better perceptual
coding performance. This turned out to be solid reasoning
and subband coding of speech at 12 to 24 kbits/s is
very competitive in performance and complexity. The bit
allocations across the subbands can use the rate-distortion
theory-motivated constrained optimization approach, but
the existing subband speech coders employ experimentally
determined allocations.

Most of the transform coders for speech have utilized the
discrete cosine transform (DCT), although sinusoidal trans-
forms and wavelets are also popular today. Transform-based
coders can easily achieve high-quality speech at 16 kbits/s,
and with perceptual coding and analysis-by-synthesis methods,

they generate good quality speech down to 4.8 kbits/s. Infor-
mation theory has not had a major impact on these designs and
further discussion of these techniques is left to the references
[194], [202], [235].

The application of wavelets to speech coding is relatively
new and has yet to produce speech coders that are competitive
in rate, quality, and complexity with the predictive coding
methods.

2) Image and Video Compression:Transform-based meth-
ods have been a dominant force in image compression at rates
below 2 bits/pixel for over 30 years. The first rate distortion
theoretic result to have an impact on image compression was
the distortion rate expression for an i.i.d. Gaussian source
subject to an MSE fidelity criterion that was used for bit-
allocation calculations in transform coding. Typically, the
transform coefficients were assumed to be independent and bits
were allocated in proportion to the variances of the coefficients
subject to an overall constraint on total bit rate. The solution
to the resulting constrained optimization problem yields the
bit allocation to achieve the minimum average total distortion.

The optimal transform in terms of energy compaction is
the Karhunen-Loeve transform [166] which produces uncor-
related transform coefficients but requires the knowledge of
the statistics of sources and often involves highly complicated
computations. Among many practical transforms, the Discrete
Cosine Transform (DCT) [223] is the one used the most,
especially for two-dimensional signals. With good energy
compactness and the existence of fast algorithms [176], [244],
DCT-based transform coders are used in many applications
and coding standards, such as H.320, JPEG [219], [243], and
MPEG [178], [189].

Whatever transform is used, the transform itself does not
compress the source, and the coding step comes after the
transform, when transform coefficients are first quantized then
entropy-coded under a certain bit budget. Therefore, how to
design good quantizers and entropy coders for transform coef-
ficients are a principal focus in transform coder design today.

Wavelets are becoming the decomposition of choice for
most applications and new standards for still image and video
coding today. Wavelets provide excellent energy compaction
and the variable time scales allow the various features of an
image to be well-reproduced [258]. Other advantages include
easy adaptive coding, as described in the following sections.

3) Bit Allocation: In practical transform-coding schemes,
different approaches have been used to achieve the coding
limits. Using optimal bit allocation, the number of quantization
bits devoted to a component is determined based on the
average energy of the component. A simple yet effective way
to allocate the available code bits to different components is
described in [232], where code bits are assigned to transform
components bit by bit in a recursive way. At each stage, one
bit is assigned to the component with the highest energy, then
this highest energy is reduced by half before going on to the
next stage. The procedure ends when all the available code
bits are assigned to the components.

A more sophisticated bit-allocation scheme was proposed
by Shoham and Gersho in [234]. Based on the reverse water-
filling results, all the components should have the same
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quantization error except for those with energy lower than
the quantization error. For an individual component, the slope
of its rate-distortion function is just the reciprocal of the quan-
tization level [26]. Therefore, this allocation scheme tries to
find the slope that minimizes the total distortion for the rate-
distortion functions of all the components. However, to find
this minimum distortion, this scheme becomes computationally
intensive since it has to estimate the rate-distortion function for
every transform component so that the best slope can be found.
This approach sometimes can achieve optimal performance for
a given set of coefficients and a fixed set of quantizers. More
discussions on bit allocation can be found in [191].

Using fixed bit allocation, the number of bits used for each
component is fixed for all sample functions of the source, so
the encoder only needs to send out the allocation information
once and all other code bits are used to encode the coefficient
values. When such schemes are used for two-dimensional
signals, they are also called zonal coding schemes [201], [232]
because the coded coefficients are in fixed region(s) in the
two-dimensional data plane.

Optimal bit allocation is totally dependent on the statistical
characteristics of the source; specifically, the variances of
transform components are needed and in general, the source
has to be stationary. There are drawbacks to such coding
schemes. To get accurate estimates of the variances, a reason-
ably large number of sample functions have to be processed
before actual coding starts, which introduces encoding delay.
Further, in real-world applications, random sources are rarely
truly stationary—the statistics of transform coefficients change
either spatially or temporally, whereas estimation over a large
number of sample functions can reflect only the average
behavior of the source. While producing constant-rate code
sequences, coders using fixed bit allocation cannot adapt to
the spatial or temporal changes of the source, and thus coding
distortion may vary from sample function to sample function
due to changes of the source.

To deal with the random changes of a source, adaptive
schemes are used, and one very old, yet useful, scheme is
the threshold method [177], [222], which is actually the basis
of today’s JPEG standard. Using a threshold, the coder can
determine if a coefficient needs to be coded by comparing
its energy with a threshold. If the energy of the coefficient
is higher than the threshold, the coefficient will be encoded,
otherwise, it will be treated as zero and discarded. As op-
posed to zonal coding which has to determine the optimal
quantization level under a fixed code rate, threshold coding
is actually easier to approach: once a threshold is determined,
there is no need to do bit allocation. Since a large number of
transform coefficients will be quantized to zero, this method
can greatly reduce the number of coefficients to be coded and
has the ability to adapt itself to changes of the source, since
which coefficients are coded can change from sample function
to sample function. The drawback is that there is no control
over the code rate, since whether a coefficient is coded or not
depends only on its own local energy. Such coders usually
produce variable rate code sequences.

From sample function to sample function, which coefficients
are coded can change due to nonstationarity of the source;

therefore, information on which coefficients are coded for each
sample function also must be provided to the decoder. Coding
thus consists of two steps: one for the location of the coded
coefficients, the other for their values.

We refer to the coefficient location information as side-
information. For image coding, Ramchandran and Vetterli
[224] proposed a thresholding method optimized in an op-
erational rate-distortion sense that can be very effective in
reducing the number of coefficients to be coded without
sacrificing coding quality. In this method, whether a coefficient
is coded or not depends not only on its local coefficient
value with respect to a threshold, but also on the total cost
of encoding a new coefficient. For each coefficient, the cost
of coding is the total bits used for both the coefficient value
and the coefficient location, and a decision strategy based on
optimizing rate distortion performance for each data block is
designed so that the coder can decide if a coefficient higher
than the threshold is worth being coded. Therefore, this method
is still a threshold-based coding scheme, but the focus is
on how to reduce the number of coded coefficients without
introducing significant error.

Although this method makes decisions in a rate-distortion
sense, the statistical meaning of the rate-distortion function
is lost. To calculate the coding cost, all data blocks are
treated independently and the rate-distortion function of each
data block is obtained as if each data block represented a
different source [225]. The problem becomes how to merge
all the different sources with rate-distortion optimality, and the
basic idea is the same as in the optimal bit-allocation scheme
described by Shoham and Gersho in [234], but in [234] the
goal is to merge different transform components optimally,
while here the goal is to merge different sample functions.

4) Side-Information and the Significance Map:In two-step
coding schemes such as threshold coding, after determin-
ing which coefficients are to be coded, the encoder has to
determine how to encode this information in addition to
encoding the values of the chosen coefficients. A significance
map is a representation of those transform coefficients with
sufficient energy that they must be coded to achieve acceptable
reconstructed signal quality. For transform coefficients of a
sample function, and a fixed threshold, a binary bitmap can
be built to indicate which coefficients need to be coded. If a
coefficient , then it is significant and will be encoded,
so in the significance map, , otherwise, ,
indicating that the coefficient is not encoded. If a source can
be decomposed into components, then there are a total
different patterns for the bitmap.

To encode the significance map, some practical coders
make certain assumptions on the distribution of the significant
coefficients. In threshold coding methods such as JPEG, to
encode the significance map, a predetermined Huffman coder
is used to encode the distance between two consecutive
significant coefficients. The Huffman coder is designed based
on the distributions of those distances obtained in experiments,
such as was done in [177]. Since they are only experimental
results, the coder may work very well for some images, but
it is also possible that it may perform poorly for images with
different statistical characteristics.
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Another approach to coding both the significance map
and the coefficient values is Shapiro’s Embedded Zerotree
coding method [233] based on the self-similarity assumption
on wavelet transform coefficients. Shapiro’s method is also
called the EZW algorithm, since the embedded zerotree is used
on the coefficients of a Discrete Wavelet Transform (DWT).
The self-similarity assumption says that if a coefficient at a
coarse scale (i.e., low frequency) is insignificant, then all the
coefficients at the same location at finer scales (i.e., higher
frequencies) are likely to be insignificant too. This means the
significance of higher frequency coefficients can be predicted
by the significance of a lower frequency coefficient at the
same location. Since DWT coefficients have a natural tree
structure, this makes it possible to use a quadtree to encode the
significance map and achieve impressive coding performance.

Several related coding schemes have also been used based
on analogous ideas, such as Said and Pearlman’s set partition-
ing algorithm [226] which is basically similar to the EZW
algorithm, in that they are all based on the self-similarity
assumption, thus making these methods limited to certain types
of transformations, such as the DWT.

In their three-dimensional (3-D) subband coding scheme,
Taubman and Zakhor [238] used a more general approach
to encoding the positions of coefficients, or the significance
map. They tried to exploit the spatial correlation between
coefficients to improve coding efficiency. Other approaches
to encoding the significance map have also been attempted
[214]. Although no statistical assumption is necessary, like all
VQ schemes, this approach needs a training phase before it
starts coding.

For image and video compression standards set in the last
10 years, the two-dimensional DCT is almost ubiquitous,
appearing in the JPEG, H.261, MPEG1, MPEG2, H.263,
and MPEG4 standards [184], [194]. Although bit-allocation
methods drawing upon rate distortion theoretic results have
been suggestive, many of the bit-allocation methods in the
standards are based upon off-line perceptual experiments. The
results are striking in that simple, uniform scalar quantizers can
generate excellent perceptual results at rates of 0.5 bit/pixel
and above. Lossless coding techniques, including Huffman
coding and arithmetic coding, are important components of
these standards as well.

Evolving standards, such as JPEG-2000 and MPEG4, have
wavelet-based decompositions in place of or in addition to the
DCT [184], [254].

C. High-Quality Audio Compression

Compression for high-quality audio is most often for play-
back applications that do not need real-time encoding; hence,
relatively complicated techniques can be used for the en-
coding step. The basic approach has been to separate the
input source material into blocks of time-domain samples
and then decompose these samples into frequency-domain
components for encoding. The importance of this approach
is that results from auditory masking experiments in terms of
the frequency-domain characteristics of the ear are available
and can be incorporated in the distortion measure during the

encoding process. Thus this method exhibits the concept of
decomposing the source into several independent sources that
are to be encoded subject to an overall limitation on rate.
The distortion measure to be minimized in this case is very
much a perceptual one and the achievement of the desired rate
with the smallest audible distortion is done by iterative bit
allocations until certain masking criteria are satisfied. Lossless
coding techniques are also routinely employed.

Note that the approach for compression of high-quality
audio is to devise a structure such that transparent perceptual
quality is obtained, and whatever bit rate is necessary to
achieve that goal is accepted (up to a point). Thus this com-
pression problem is very much a rate-distortion problem—that
is, minimize the rate for a specified distortion (perceptually
transparent)—as opposed to a distortion-rate problem, as in
many speech-coding applications [194], [255].

X. RECURRING THEMES

The influence of rate-distortion theory on lossy source cod-
ing can be seen in a few recurring themes for the optimization
of specific source coders. The most common is to develop
the operational rate distortion or distortion rate function for
a particular source, source coder, and distortion measure, and
then consider the constrained optimization problem that results
by appending the appropriate rate or distortion constraint. The
basis for this approach lies in consideringth-order rate-
distortion theory.

A. th-Order Rate Distortion Theory and
Constrained Optimization

Let denote the input source vector
and let its reconstruction be denoted by . The distortion
between and is so that the average
distortion over all source vectors and reproductions is given
by

The th-order distortion rate function can then be written as

and asymptotically in blocklength

To find , we append the rate constraint with a
Lagrange multiplier and minimize the functional

Let us define the length of the codeword that represents
to be and so the average rate in bits per source

symbol is
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Then, for a given source encoder , and decoder
that yields rate and reconstruction , we can

write the operational distortion rate function as

lower-bounds and the bound becomes tight
as . We can pose a constrained optimization problem
using the operational distortion rate function as

(18)

Since the operational distortion rate function is not neces-
sarily convex or continuous, Lagrangian methods will not find

, however, we can use the Lagrangian formulation to
find the convex hull.

Thus the approach is to iteratively minimize the functional
in (18) using an algorithm similar to the generalized Lloyd
method used for VQ design [191], [196].

B. Duality

An underutilized concept in obtaining lossy source com-
pression methods is that of duality. Error-control coding and
source coding are dual problems in the following sense:
Decoding error-control codes consists of finding the best
match to a received sequence given certain assumptions, a
distortion criterion, and models. Alternatively, encoding for
source compression entails the same steps. Further, decod-
ing in source compression consists of receiving a particular
transmitted sequence and mapping it into a unique output.
Similarly, encoding for error-control coding maps a presented
input directly into a particular transmitted sequence.

The development of trellis-coded quantization (TCQ) was
spurred by this duality observation based upon results on
trellis-coded modulation. In addition to providing good perfor-
mance for speech coding at 16 kbits/s [253], TCQ is part of the
vertification model of JPEG-2000 at the time of this writing. In
fact, TCQ combined with wavelets was the top-ranked coder
in both objective and subjective performance at 0.125 and 0.25
bit/pixel (bpp) during the JPEG-2000 evaluations [254].

XI. RESEARCH CHALLENGES

A. Joint Source/Channel Coding

A fundamental result of information theory is that, assuming
stationarity, optimal source coding and channel coding can be
considered separately without loss of optimality. There are
two caveats to this statement: First, separating source and
channel coding may be more complex than a combined design
[167], [207]; and second, both source and channel coding must
be performing optimally, because if one is suboptimal, the
other may be aided by incorporating the knowledge of this
suboptimality.

Practitioners of lossy source coding for communications
applications have always implemented coders that are robust
to channel errors to some degree, with some attributable loss in
source compression performance in the error-free case. This

robustness is often obtained in waveform coding of speech
by simply fading the memory of the encoder and decoder to
“forget” channel errors and thus resynchronize the encoder and
decoder adaptation. Another common approach to resychro-
nizing the source encoder and decoder in video-compression
applications is to transmit an intracoded frame (no motion
compensation) at some specified interval. For example, this
happens every 132nd frame in the H.320 video conferencing
standard and is accomplished in the MPEG1 and MPEG2
standards with I-frames. However, the I-frames in MPEG were
inserted primarily for search-motivated applications more than
error resilence.

Another way to achieve error robustness without implement-
ing error-correction codes is to use natural source redundancy
and/or models of the channel to detect and correct errors.
For example, Sayoodet al. [231] exploits known Markov
properties of the source in an MAP search for the best match
to a received sequence. Phamdo and Farvardin [220] take a
similar approach.

For a given transmitted bit rate, splitting bits between source
coding and channel coding has the expected result—namely,
if bits are allocated to channel coding and the channel is
ideal, there is a loss in performance compared to source
coding alone. Similarly, if there are no bits allocated to
channel coding and the channel is very noisy, there will
be a loss in performance compared to using some error-
protection coding. Numerous studies for speech, image, and
video coding have investigated joint source–channel coding.
These solutions specify the allocation of transmitted rate
between source coding and channel coding for chosen sources,
source compression methods, and channel models to achieve
the best source reconstruction.

For many applications today, of which wireless communica-
tions is a prime example, channels are far from ideal and it is
best to combine source and channel coding. The most common
way this is evident in standards is by the use of unequal error
protection (UEP). That is, some compressed source bits can
have a much more profound effect on reconstructed source
quality than others, so these bits must be error-protected. Thus
the source and channel coding is joint in the sense that the
channel coding uses knowledge of the source bit sensitivity as
well as the channel, and that the source compression frees up
a portion of the bit rate for the error protection function.

It is a recent trend in wireline and wireless applications
to sense the quality of the channel or the channel SNR versus
frequency by sending known sequences or tones and then using
the channel quality information at the transmitter to optimize
digital communications system performance. Examples of this
method are precoding in V.34 modems, DMT-based ADSL
modems, and SNR estimation in the IS-127 mobile standard.
This same technique can be extended to joint source/channel
coding where we could use channel quality measurements to
determine how to partition the available transmitted bit rate
between source and channel coding.

B. Background Impairments

One of the principal challenges to mobile speech com-
pression today is the presence of unwanted sounds or other
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speakers at the handset or microphone input. In order for the
speech coders to achieve the desired reconstructed quality at
the low rates needed, the speech coders have incorporated
source-specific and sink-specific models in the encoder. These
models are based on the assumption that what is present at the
source coder input is the source to be encoded, and the source
alone. When other sounds are present, the source coder forces
these assumptions on the input signal during the encoding
process with sometimes disastrous results.

More specifically, users of voice communications devices
are somewhat forgiving of naturally occurring sounds, but
when the speech coder attempts to use its assumed models on
signals that are not speech, the results of coding natural sounds
may be unnatural sounding artifacts upon reconstruction. The
usual approaches today are either to filter the incoming signal
or to attempt to cancel unwanted signals at the input. Un-
der appropriate assumptions, the filtering approach may be
optimal.

Dobrushin and Tsybakov [55], Wolf and Ziv [56], and
Berger [26] have investigated the mean-squared error encoding
of a source with additive distortion. The general result is that,
asympotically in blocklength, the optimal encoder/decoder pair
consists of an optimal estimator followed by optimal encoding
of the resulting estimate. An application and extension of this
work is reported by Fischer, Gibson, and Koo [188], where
results are presented for training mode vector quantization and
speech sources. Gibson, Koo, and Gray [193] develop optimal
filtering algorithms for additive colored noise with applications
to speech coding. One of their algorithms is the optional noise
canceller in the Japanese half-rate digital cellular standard.
Neither filtering nor cancellation is entirely effective.

C. Error Concealment

When channel errors cannot be corrected, lossy source
compression techniques depend on robustness properties of the
source decoder to reconstruct an approximation of the source
without catastrophic distortions. However, if entire frames or
packets are lost, special modifications are required. Twenty-
five years ago, when such modifications were first considered,
they were labeled with the perhaps misleading term, soft-
decision demodulation. Today, these modifications are called
error-concealment techniques.

Error-concealment methods generally consist of estimation
or interpolation techniques using decoded signals that had
been received previously. In speech coding for mobile radio
applications, when a frame is lost, the lost frame is often
compensated for by repeating the data from the preceding
frame along with some muting of the reconstructed speech.

In many image- and video-compression applications, the
need for error concealment arises due to the loss of a block
of data, such as the coded coefficients representing a block
of pixels as in transform coding. For these situations, error
concealment can be performed in the transform domain or in
the pixel domain, using adjacent blocks.

Video applications that have low transmission rates can have
the data for an entire frame in one packet. A lost packet in
these situations requires temporal interpolation.

D. Variable-Rate Coding

In order to respond to the changing characteristics of the
input source and hence be efficient in the utilization of the
available bandwidth, there is a trend toward variable-rate
coding of speech and video. The challenges here are to sense
the changes in the source and adapt the source coder to these
changes, and to make the variable-rate stream interoperate with
the possibly fixed-rate transmission channel. Of course, the use
of buffering to interface fixed-to-variable length lossless source
codes to the channel is common; however, rate variations in
these new lossy schemes can have a wide swing and hence
amplify the challenges.

Variable-rate coders for speech and images have been stud-
ied for 25 years [206], [239]–[241], but key rate indicators
are still difficult to determine. Rate indicators that have been
used range from simple input energy calculations to measuring
correlation or other spectral properties of the source, such as
estimates of source spectral entropy [210]. It is expected that
variable-rate coders will be the rule rather than the exception
in future applications and standards.

E. Layered Coding or Scalability

To respond to changing network conditions, such as avail-
able bit rate or channel congestion, there is another clear trend
toward layered or scalable compression schemes. The princi-
pal concept in scalability is that an improvement in source
reproduction, namely, reduced distortion, can be achieved by
sending only an incremental increase in rate over the current
transmitted rate that is achieving a coarser reproduction of the
source. SNR, spatial, and temporal scalability are all important
in applications. It is evident that a source-compression method
designed to operate at several lower rates cannot outperform
the compression method designed for the overall total rate,
so the question is when do optimal or near-optimal scalable
compression methods exist?

SNR scalability has been addressed from the rate-distortion
theory viewpoint by Koshelev [262]–[264] who called it
divisibility, and by Equitz and Cover [133] under the heading
of successive refinement of information. Equitz and Cover
address the problem of starting out with a low rate but optimal
source coder, that is, one that operates exactly on the rate-
distortion bound, and then finding those conditions under
which an incremental addition in rate also yields rate-distortion
optimal encoding. It is shown that successive refinement in the
rate-distortion optimal sense is not always possible and that
a neessary and sufficient condition for successive refinement
is that the individual encodings be expressible as a Markov
chain. Rimoldi [265] generalizes these results and provides an
insightful interpretation in terms of typical sequences.

Spatial and temporal scalability is nonstandard in terms of
classical discrete-time rate-distortion theory since both involve
changes in the underlying sampling rate. To address spatial
and temporal scalability or layered coding, many researchers
pose the operational rate distortion problem for their particular
coder and optimize with respect to the convex hull of the
performance curves.
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Progressive coding has become important in image coding,
since in a network environment, different users may have
different access capability, such as different bandwidths, CPU
power, etc., and may want to access the source at different lev-
els of quality. In such circumstances, a coder that can provide
a coded sequence in a progressive way has an advantage.

In transform coding, progressive coding can be accom-
plished in two basic ways: spectral selection and successive
approximation. For example, in DCT-based image coders, an
encoder using a spectral selection strategy can first encode
all the dc coefficients, then the ac coefficients in the low-
frequency region, and finally the high-frequency ac coef-
ficients. Since for many common images, most activity is
concentrated in the low-frequency area, if only limited code
bits can be received, the decoder can still reconstruct the
image at a lower quality using all the dc coefficients and
some low-frequency ac coefficients. This is useful in browsing
applications when a user only wants to get a rough picture
of an image to decide if the selected image is the one
needed.

The prioritized DCT method [197], [198] is a more ad-
vanced approach based on the same idea. In a prioritized
DCT coder, the transmission order is determined by the
coefficient energy, that is, coefficients with higher energy,
i.e., containing more information, are transmitted first. This is
intuitively quite straightforward, since the idea of transmitting
the dc coefficients first in the above mentioned scheme is
based on the observation that most of the time dc coefficients
have the highest energy among all the transform coefficients.
The prioritized DCT method adds some flexibility to the
same strategy in the sense that the coder can decide which
coefficients are to be transmitted first based on the actual
values of the coefficients, instead of assuming that the dc
coefficients and low-frequency ac coefficients will have higher
energy. This is also an adaptive-coding scheme.

Another powerful progressive coding scheme is successive
approximation. Instead of transmitting the low-frequency coef-
ficients to their highest accuracy, the successive approximation
method first sends only the most significant bits for all of
the coefficients, then sends the next most significant bits,
and so on. In contrast to spectral selection, which generates
minimum distortion for selected coefficients but discards all
of the other coefficients, successive approximation produces
relatively constant distortion for all the coefficients, which is
closer to the rate-distortion result.

Examples of coders that use successive approximation are
the Embedded Zerotree algorithm (EZW) by Shapiro [233],
and the modified version of the EZW algorithm proposed
by Said and Pearlman [226]. In both methods, the Discrete
Wavelet Transform (DWT) coefficients are encoded. One
of the novelties of the two coders is the way the coder
arranges the order of the DWT coefficients that enables the
coder to efficiently encode the side-information as well as the
coefficient values, as already discussed in Section IX-B2. A
similar approach was also studied by Xionget al. in a DCT-
based image coder [249]. A modified version of the prioritized
DCT scheme is proposed by Efstratiadis and Strintzis [185],
in which DWT coefficients are considered and instead of

using a spectral selection strategy, this coder uses successive
approximation to implement a hierarchical image coder.

Directly encoding DCT coefficients by layers can also be
found in the literature [203]. Bit-plane encoding offers such
easy functionality for progressive coding that it is widely
adopted in new applications [254].

F. Multiterminal Source Coding

We have already noted the results on successive refinement
of information (or divisibility) by Equitz and Cover [133],
Koshelev [262]–[264], and Rimoldi [265] in Section XI-E, and
their relationship to SNR scalability. Another multiterminal
rate-distortion theoretic result that is finding applications in
lossy source coding is the multiple descriptions problem
[148], [150]. In this problem, the total available bit rate is
split between (say) two channels and either channel may be
subject to failure. It is desired to allocate rate and coded
representations between the two channels, such that if one
channel fails, an adequate reconstruction of the source is
possible, but if both channels are available, an improved re-
construction over the single-channel reception results. Practical
interest in this problem stems from packet-switched networks
where the two channels can be realized by sequences of
separately marked packets, and from diversity implementations
in wireless applications. For recent results, see [266] and [267].

XII. STANDARDS

Standards-setting for compression of speech, high-quality
audio, still images, and video has been a dominant force in
compression research since the mid-1980’s. Although some
might criticize these standards activities as inhibiting research
and stifling innovation, most would agree that these efforts
have generated an incredible interest in lossy compression
and have lead to extraordinary advances in performance. The
principal effect on lossy compression research is to make
the research problem multifaceted in that not only must
compression rate versus distortion performance be evaluated,
but background impairments, channel errors, implementation
complexity, and functionality (such as scalable coding, search-
ing, and backwards compatibility) also become important
considerations for many applications.

A challenge for researchers is to define the problem well and
to fold as many of these other constraints into the problem
as necessary to address the application of interest. Because
of the tremendous emphasis on standards, it is perhaps most
important for those involved in basic research to avoid being
limited by current trends and the constraints of the many
standards in order to generate the new results and directions
needed for substantial advances in performance.

For more details on lossy compression techniques and
standards, the reader is referred to [179], [184], [194], and
[254]–[257].

XIII. E PILOGUE

Rate-distortion theory and the practice of lossy source
coding have become much more closely connected today than
they were in the past. There is every reason to anticipate that



BERGER AND GIBSON: LOSSY SOURCE CODING 2719

a much tighter fusion of theory and practice will prevail in
2009 when we celebrate the fiftieth anniversary of Shannon’s
1959 paper.
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