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Abstract. We present a discriminative learning framework for Gaussian
mixture models (GMMs) used for classification based on the extended
Baum-Welch (EBW) algorithm [1]. We suggest two criteria for discrim-
inative optimization, namely the class conditional likelihood (CL) and
the maximization of the margin (MM). In the experiments, we present
results for synthetic data, broad phonetic classification, and a remote
sensing application. The experiments show that CL-optimized GMMs
(CL-GMMs) achieve a lower performance compared to MM-optimized
GMMs (MM-GMMs), whereas both discriminative GMMs (DGMMs)
perform significantly better than generatively learned GMMs. We also
show that the generative discriminatively parameterized GMM classifiers
still allow to marginalize over missing features, a case where generative
classifiers have an advantage over purely discriminative classifiers such
as support vector machines or neural networks.

1 Introduction

In statistical learning theory [2], the PAC bound on the expected risk for un-
seen data depends on the empirical risk on training data and a measure for
the generalization ability of the empirical model which is directly related to the
Vapnik-Chervonenkis (VC) dimension. One of the most successful discrimina-
tive classifiers, namely the support vector machine (SVM) [3], finds a decision
boundary which maximizes the margin between samples of distinct classes result-
ing in good generalization properties of the classifier. In contrast, conventional
discriminative training methods relying on the conditional likelihood (CL) opti-
mize only the empirical risk which is suboptimal. Taskar et al. [4] observed that
undirected graphical models can be efficiently trained to maximize the mar-
gin. More recently, Guo et al. [5] introduced the maximization of the margin to
Bayesian networks. Unlike in undirected graphical models, the main difficulty
for Bayesian networks is the normalization constraint of the local conditional
probabilities. In [5], this constraint is relaxed to obtain a convex optimization
problem, whereby conditions on the graph structure are given where the relaxed
problem matches the normalized network [6]. In [7], margin optimization has
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been applied to GMMs, but similar as above, the normalization constraint has
been neglected leading to a convex optimization problem. Since then, different
margin-based training algorithms have been proposed for HMMs in [8, 9] and
references therein.

Compared to [5, 8], we aim to follow a quite different approach in this pa-
per to maximize the margin in GMM-based classifiers. We keep the sum-to-one
constraint which maintains the probabilistic interpretation of the network, e.g.
marginalization over missing variables is still possible (as we show in this paper).
However, we no longer have a convex optimization problem in general. Convex
optimization requires convex loss function, whereas we can also use differen-
tiable non-convex loss functions. Collobert et al. [10] show that the optimization
of non-convex loss functions in SVMs can lead to sparse solutions (lower number
of support vectors) and accelerated training performance. They conclude that
the sacrosanct popularity of convex approaches should not anticipate the explo-
ration of alternative techniques, since they may offer computational advantages.
Similar observations are reported in [9].

In this paper, we derive a discriminative training method for GMM-based
Bayesian classifiers. The algorithm is based on the EBW parameter re-estimation
method [1]. In [11] it is shown that the EBW algorithm resembles the gradient
descent algorithm for discriminative GMM optimization using a particular choice
of step size in the gradient descent method. Nevertheless, EBW offers an EM-

like parameter update, whereas the gradient descent method requires additional
prudence, e.g. line search or learning rate. We suggest to either optimize the
conditional likelihood (CL) or to maximize the margin (MM).1 The CL criterion
is related to the maximum mutual information (MMI) criterion which is popular
in speech processing [12, 13]. In [14], EBW has been applied to optimize Gaussian
mixture models with respect to CL. However, they neglect to optimize the class
prior. In the experiments, we depict the differences of the decision boundary for
generatively and discriminatively learned GMMs for classification using synthetic
data. Furthermore, we show results for broad phonetic classification [15] and
compare discriminative GMM classifiers to SVMs and neural networks (NNs).
Moreover, one of the key advantages of generative models over discriminative
ones (such as SVMs or NNs) is that it is still possible to marginalize over missing
features. We provide empirical results showing that the performance advantage
of discriminatively learned GMMs for classification can be maintained for a low
number of missing values. This is also shown for a remote sensing application
on hyperspectral data.

The paper is organized as follows: In Section 2, we shortly review the Bayesian
classifier and generative learning of GMMs, respectively. Additionally, notation
is introduced. In Section 3, we derive a discriminative learning method for CL-
GMMs based on the EBW algorithm used for classification. Margin-based GMM
learning is presented in Section 4. We report experimental results on synthetic
and real-world data in Section 5. Finally, Section 6 concludes the paper.

1 Both algorithms are implemented in Matlab and can be downloaded at:
http://www.spsc.tugraz.at/people/franz pernkopf/



2 Bayesian Classifier

The Bayesian classifier [16] relies on the Bayes rule to determine the class pos-
terior probability according to

p (c|xn) =
p (xn|c) p (c)

PC

c′=1 p (xn|c′) p (c′)
, (1)

where c ∈ {1, . . . , C}, and C is the number of classes. The posterior probability
p (c|xn) models the probability of c given the feature vector of the nth sample
xn. We predict the class label using the MAP (maximum posterior) estimate,
i.e. the most likely class label c∗ is determined using the class posteriors as

c
∗ = arg max

c∈{1,...,C}
p (c|xn) = arg max

c∈{1,...,C}
p (xn|c) p (c) , (2)

where the denominator of Eq. (1) can be neglected since it only scales p (c|xn)
and does not alter the decision in Eq. (2). This equation is a solution of the
Bayesian risk minimization problem with the 0/1-loss function. The term p (c)
is known as class prior distribution. We use GMMs to model the term p (xn|c),
i.e. for each class c we have a GMM p (xn|Θc). A Gaussian mixture model
p (xn|Θc) is the weighted sum of M > 1 Gaussian components N (xn|θm

c ) in

R
d, p (xn|Θc) =

M
∑

m=1
αm

c N (xn|θm
c ), where αm

c corresponds to the weight of

each component m ∈ {1, . . . ,M}. These weights are constrained to be positive

αm
c ≥ 0 and

∑M
m=1 αm

c = 1. The GMM is specified by the set of parameters
Θc =

{

α1
c , α

2
c , . . . , α

M
c ,θ1

c ,θ2
c , . . . ,θM

c

}

, where the Gaussians are specified by the
mean vector µm

c and the covariance matrix Σm
c , i.e. θm

c = {µm
c ,Σm

c }. The EM
algorithm [16, 17] commonly used for learning GMMs consists of an expectation

step (E-step) and a maximization step (M-step) which are alternately used until

the log p (Xc|Θc) = log
∏Nc

n=1 p (xn|Θc) converges to a local optimum, where
Xc =

{

x1,x2, . . . ,xNc
}

c
are Nc i.i.d. samples belonging to class c. X contains

samples of all classes X = {X1, . . . ,XC} where N denotes the size of X , i.e.

N = |X | =
∑C

c=1 Nc. The performance of the EM algorithm depends strongly
on the choice of the initial parameters.

3 Discriminative CL-based Learning of GMMs in

Bayesian Classifiers

Optimizing CL is tightly connected to good classification performance. Hence,
we want to learn parameters of the GMM-based Bayesian classifier so that CL
is maximized. Unfortunately, CL does not decompose. The objective function of
the conditional log likelihood (CLL) using GMMs in Eq. (1) is

CLL (X|Θ) = log
N
Y

n=1

p (cn|xn) =
N
X

n=1

log
p (xn|Θcn) ρcn

C
P

c′=1

p (xn|Θc′) ρc′

=

N
X

n=1

"

log

" 

M
X
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α
m
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cn)

!

ρcn

#

− log

C
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c′=1

" 

M
X
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α
m
c′N (xn|θm

c′ )

!

ρc′

##

,

(3)



where, cn is the class of xn, ρcn = p (cn) is the class prior of the nth sample,

0 < ρcn < 1, and
∑C

c=1 ρcn = 1. The set of parameters Θ is composed of
Θ = {Θ1, . . . ,ΘC , ρ1, . . . , ρC}.
The EBW algorithm (more details are given in Appendix A) is an iterative
procedure which can be used to optimize rational functions [1]. Clearly, the CL
criterion in Eq. (3) is a rational function over the discrete model parameters ρc

and αm
c and the parameter re-estimation equation of the form

θ
j
i ←

θ
j
i

„

∂CLL(X|Θ)

∂θ
j
i

+ D

«

P

l

θ
j
l

„

∂CLL(X|Θ)

∂θ
j
l

+ D

« , (4)

is used, where θ
j
i ≥ 0,

∑

i θ
j
i = 1, and j indicates a particular discrete variable.

EBW requires the partial derivative ∂CLL(X|Θ)

∂θ
j
i

and D. Both terms are provided

in the sequel. Specifically,

∂CLL (X|Θ)

∂ρc

=
N
X

n=1

"

11{c=cn}

ρc

−
p (xn|Θc) ρc

PC

c′=1 p (xn|Θc′) ρc′

1

ρc

#

=
1

ρc

N
X

n=1

`

11{c=cn} − w
n
c

´

,

(5)

where wn
c = p (c|xn) (same as Eq. (1)) and 11{i=j} is the indicator function (i.e.

equals 1 if i = j and 0 if i 6= j).

Further, the derivative for the parameters αm
c is

∂CLL (X|Θ)

∂αm
c

=
N
X

n=1

»

γn,m
c

αm
c

`

11{c=cn} − w
n
c

´

–

, (6)

where

γ
n,m
c =

αm
c N (xn|θm

c )
PM

m′=1 αm′
c N (xn|θm′

c )
. (7)

Considering the derivative in Eq. (6) (similar for Eq. (5)) in the re-estimation
Eq. (4) we obtain

α
m
c ←

PN

n=1

ˆ

γn,m
c

`

11{c=cn} − wn
c

´˜

+ αm
c D

PM

m′=1

PN

n=1

h

γ
n,m′

c

`

11{c=cn} − wn
c

´

i

+ D
.

The derivatives (Eq. (5) and (6)) are sensitive to small parameter values. Meri-
aldo [18] observed that low-valued parameters ρc and αm

c in Eq. (5) and (6)
may cause a large magnitude of the gradient. Hence, the optimization concen-
trates on those parameters which are usually unreliably estimates due to lack of
data. Therefore, he suggests to focus on modifying better estimated high-valued
parameters by using an approximation for the derivative in Eq. (6) (similar for
Eq. (5))

∂CLL (X|Θ)

∂αm
c

≈

PN

n=1 γn,m
c 11{c=cn}

PM

m′=1

PN

n=1 γ
n,m′

c 11{c=cn}

−

PN

n=1 γn,m
c wn

c
PM

m′=1

PN

n=1 γ
n,m′

c wn
c

. (8)



EBW has been formulated for discrete probability distributions. Normandin
and Morgera [19] introduced a discrete approximation of the Gaussian distri-
bution assuming diagonal covariance matrices. This leads to the re-estimation
equation for µ̄m

c and Σ̄m
c given as

µ̄
m
c ←

PN

n=1

ˆ

γn,m
c

`

11{c=cn} − wn
c

´

xn
˜

+ Dµm
c

PN

n=1

ˆ

γ
n,m
c

`

11{c=cn} − wn
c

´˜

+ D

and

Σ̄
m
c ←

PN

n=1

ˆ

γn,m
c

`

11{c=cn} − wn
c

´

(xn)2
˜

+ D
`

Σm
c + (µm

c )2
´

PN

n=1

ˆ

γ
n,m
c

`

11{c=cn} − wn
c

´˜

+ D
− (µ̄m

c )2 , (9)

where the squares of the vectors xn and µm
c are element-wise.

The EBW algorithm converges to a local optimum of CLL (X|Θ) providing
a sufficiently large value for D. Setting the constant D is not trivial. If it is
chosen too large then training is slow and if it is too small the update may fail
to increase the objective function. In practical implementations heuristics have
been suggested [13, 14]. We initialize D = 1 and double D until all variances in
Eq. (9) are positive in the re-estimation step. Next, we multiply the obtained
D with a global factor F (In Section 5.1, we empirically show the dependency
of F on the convergence of EBW.). Value D is adapted in each iteration of the
algorithm. The parameters Θc for discriminative learning are initialized to the
ML estimates of the GMM determined by the EM algorithm (see Section 2).
The class prior is set to the normalized class frequency in X , i.e. ρc = Nc

N
.

4 Discriminative Margin-based Learning of GMMs in

Bayesian Classifiers

The multi-class margin [5] of sample n is

d
n
Θ = min

c6=cn

p (cn|xn,Θ)

p (c|xn,Θ)
= min

c6=cn

p (cn,xn|Θ)

p (c,xn|Θ)
=

p (cn,xn|Θ)

maxc6=cn p (c,xn|Θ)
. (10)

If dn
Θ > 1, then sample n is correctly classified and vice versa. We replace the

max operator by the differentiable approximation maxx f(x) ≈ [
∑

x (f(x))
η
]
1
η ,

where η ≥ 1 and f (x) is non-negative. In the limit of η → ∞ the approximation
converges to the max operation. Replacing the max with its approximation, we
obtain

d
n
Θ =

p (cn,xn|Θ)
h

P

c6=cn (p (c,xn|Θ))η
i

1
η

.

Usually, the max margin approach maximizes the margin of the sample with the
smallest margin, i.e. minn=1,...,N dn

Θ for a separable classification problem [3].
We aim to relax this by introducing a soft margin, i.e. we focus on samples with
a dn

Θ close to one. Therefore, we consider the hinge loss function according to

D̃ (X|Θ) =

N
Y

n=1

min
h

2, (dn
Θ)λ

i



using the margin. Maximizing this function with respect to the parameters Θ

implicitly means to increase the margin dn
Θ whereas the emphasis is on samples

with a margin (dn
Θ)

λ
< 2, i.e. samples with a large positive margin have no

impact on the optimization. The parameter λ > 0 scales the margin and is
set by cross-validation. Maximizing D̃ (X|Θ) via EBW or gradient descent is

not straight forward due to the discontinuity in the derivative at (dn
Θ)

λ
= 2.

Therefore, we propose to use for the hinge function h(y) = min [2, y] a smooth

hinge function which enables a smooth transition of the derivative and has a
similar shape as h(y). We propose the following smooth hinge function

h(y) =

8

<

:

y + 1
2
, if y ≤ 1

2− 1
2
(y − 2)2, if 1 < y < 2
2, if y ≥ 2

which requires to divide the data X into three partitions depending on y =
(dn

Θ)
λ
, i.e. X 1 contains samples where (dn

Θ)
λ ≤ 1, X 2 consists of samples with

a margin in the range 1 < (dn
Θ)

λ
< 2, and X 3 = X \

{

X 1 ∪ X 2
}

. Hence, our
objective function for margin maximization is

D (X|Θ) =
N
Y

n=1

h((dn
Θ)λ) =

8

<

:

Y

n∈X1

„

(dn
Θ)λ +

1

2

«

9

=

;

8

<

:

Y

n∈X2

»

2−
1

2

“

(dn
Θ)λ − 2

”2
–

9

=

;

2|X3|

using the smooth hinge function. The λ for scaling the margin is usually selected
as fraction number leading to fractional polynomials in the numerator and de-
nominator of dn

Θ. The growth transform of the EBW algorithm (see [1]) extends
to fractional polynomials and we can use the EBW algorithm for maximizing

D (X|Θ). Therefore, the derivative ∂ log D(X|Θ)
∂Θ

for the re-estimation equation
(see Eqn. 4) of the EBW algorithm is

∂ log D (X|Θ)

∂Θ
=

N
X

n=1

s
n ∂ log dn

Θ

∂Θ

where sn denotes a sample dependent weight given as follows:

s
n =

8

>

>

>

>

<

>

>

>

>

:

λ(dn
Θ)λ

(dn
Θ)λ

+ 1
2

, if n ∈ X 1

λ
“

2−(dn
Θ)λ

”

2− 1
2 (dn

Θ)λ , if n ∈ X 2

0, if n ∈ X 3

.

Introducing GMMs in Eq. 10 and using the log gives

log d
n
Θ = log

" 

M
X

m=1

α
m
cnN (xn|θm

cn)

!

ρcn

#

−
1

η
log

X

c′ 6=cn

" 

M
X

m=1

α
m
c′N (xn|θm

c′ )

!

ρc′

#η

.

Similar as in Eq. 5 (Section 3), the partial derivative of log dn
Θ for the parameters

ρc is

∂ log dn
Θ

∂ρc

=
11{c=cn}

ρc

−11{c6=cn}
[p (xn|Θc) ρc]

η

h

P

c′ 6=cn p (xn|Θc′) ρc′

iη

1

ρc

=
1

ρc

`

11{c=cn} − 11{c6=cn}r
n,η
c

´

,

where we introduced



r
n,η
c =

[p (xn|Θc) ρc]
η

h

P

c′ 6=cn p (xn|Θc′) ρc′

iη .

Furthermore, the derivative for the parameters αm
c is

∂ log dn
Θ

∂αm
c

=
N (xn|θm

c )
PM

m′=1 αm′
c N (xn|θm′

c )

`

11{c=cn} − 11{c6=cn}r
n,η
c

´

=
γn,m

c

αm
c

`

11{c=cn} − 11{c6=cn}r
n,η
c

´

,

where γn,m
c is given in Eq. 7. For the Gaussian distributions we use again the

discrete approximation proposed in [19] assuming diagonal covariance matrices.
This leads to the re-estimation equation for µ̄m

c and Σ̄m
c given as

µ̄
m
c ←

PN

n=1

ˆ

snγn,m
c

`

11{c=cn} − 11{c6=cn}r
n,η
c

´

xn
˜

+ Dµm
c

PN

n=1

ˆ

snγ
n,m
c

`

11{c=cn} − 11{c6=cn}r
n,η
c

´˜

+ D

and

Σ̄
m
c ←

PN

n=1

ˆ

snγn,m
c

`

11{c=cn} − 11{c6=cn}r
n,η
c

´

(xn)2
˜

+ D
`

Σm
c + (µm

c )2
´

PN

n=1

ˆ

snγ
n,m
c

`

11{c=cn} − 11{c6=cn}r
n,η
c

´˜

+ D
− (µ̄m

c )2 ,

where the squares of the vectors are element-wise. Furthermore, the value D is
determined in a similar manner as in Section 3. The EBW algorithm to dis-
criminatively optimize the margin of GMM-based classifiers is summarized in
Algorithm 1. Again, we use a more robust approximation for the derivatives of
ρc and αm

c as suggested in Section 3.

5 Experimental Results

First we show the differences in the decision boundaries of generatively and
discriminatively trained GMM-based Bayesian classifiers using synthetic data.
Then, we provide classification results for a remote sensing and broad phonetic
classification task.

5.1 Synthetic Data

We have two classes where each class is represented by a spiral. For class 1, sam-
ple x ∈ R

2 is determined according to x = [t cos (4πt) + ǫ1 t sin (4πt) + ǫ2]
T
,

where ǫ1 and ǫ2 are independent samples from a zero-mean Gaussian noise pro-
cess with σ = 1, and t is sampled from an uniform distribution. Likewise, samples
for class 2 are obtained by using x = [−t cos (4πt) + ǫ1 − t sin (4πt) + ǫ2]

T
. For

each class we draw Nc = 5000 and Nc = 1000 samples for training and testing,
respectively. Figure 1 shows various cases of generatively and discriminatively
learned GMM-based Bayesian classifiers using M = 12 components per class, i.e.
(a) decision boundary of generative GMM, (b) decision boundary of CL-GMM,
(c) decision boundary of MM-GMM, and (d) shows the decision boundary of all
learning approaches. The decision boundary of the DGMM classifiers is smoother
and better approximates the original spiral data. Discriminative learning is able
to change the decision boundary to improve the classification rate (see Table 1).
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αm
c ← ᾱm

c ∀m ∈ {1, ..., M}
end

ρc ← ρ̄c ∀c ∈ {1, ..., C}
end

Algorithm 1: Discriminative Margin-based training of GMMs (MM-GMM
Algorithm).

Furthermore, we show the evolution of both the conditional log likelihood
CLL (X|Θ) and the margin log D (X|Θ) depending on F over the iterations
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Fig. 1. Synthetic data: (a) generative GMM, (b) CL-GMM, (c) MM-GMM, and (d)
decision boundary of all learning approaches.
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Fig. 2. Convergence of CL-GMM and MM-GMM depending on F . The x-axis denotes
the number of iterations. (a) CLL (X|Θ), (b) log D (X|Θ).

of the algorithms (see Figure 2(a) and (b)). As mentioned above, the rate of
convergence of EBW strongly depends on the value of F . Additionally, the per-
formances do not increase at each iteration. One reason is the approximation
of the derivative in Eq. (8) as suggested in [18]. In [20], they experimentally
observed that this approximation substantially improves convergence, although
it is not guaranteed at each iteration.

5.2 Broad Phonetic classification

We use the TIMIT speech corpus [21] for broad phonetic classification. Therefore,
we employ the standard NIST sets of 462 speakers and 168 speakers for training
and testing, respectively. We perform frame-by-frame phone classification. We
conduct experiments with only four classes and six classes using 1691462 and
1886792 samples, respectively. Moreover, we perform classification experiments



GMM CL-GMM MM-GMM
Train Data 79.48 ± 0.40 86.47 ± 0.34 86.58 ± 0.34
Test Data 80.05 ± 0.89 85.80 ± 0.78 86.05 ± 0.77

Table 1. Classification results in [%] on the synthetic training and test data.

on data of male speakers (Ma), female speakers (Fe), and both genders (Ma+Fe).
More details about the experimental setup and the features can be found in [15].
We use the following classifiers:

– GMM: Generatively trained GMM with M = 100 components.
– CL-GMM: Discriminative CL-based trained GMM classifier using M = 100

components.
– MM-GMM: Discriminative margin-based trained GMM classifier using M =

100 components.
– NN-100: Neural network (multi-layered perceptron) with one hidden layer.

The number of units in the input and output layer is set to the number of
features and the number of classes, respectively. In the hidden layer we use
100 neurons with a hyperbolic tangent sigmoid transfer function. Levenberg-
Marquardt backpropagation is used for training and the transfer functions
in the output layer are linear.

– SVM-1-0.1: The support vector machine with the radial basis function (RBF)
kernel uses two parameters, namely C∗ and σ, where C∗ is the penalty
parameter for the errors of the non-separable case and σ is the parameter
for the RBF kernel. We set the values for these parameters to C∗ = 1 and
σ = 0.1.

The optimal choice of the parameters (i.e., C∗, σ), number of neurons in
the hidden layer, and transfer functions of the above mentioned classifiers was
obtained in each case by cross-validation. The parameters for learning CL-GMM
and MM-GMM are initialized to the ML estimates.

The experimental results in Figure 3(a) show that CL-GMMs achieve about
the same performance compared to MM-GMMs, whereas both DGMMs perform
significantly better than generatively learned GMMs. The classification results
of the MM-GMM are ≈ 0.75% lower compared to NNs and SVMs. The number
of parameters for the DGMM is 16404 compared to 202425 and 400442 support
vectors of the SVM for the Ma-Fe-4Class and Ma-Fe-6Class data, respectively.
Hence, SVMs have roughly 4·106 and 8·106 parameters using the dimensionality
of d = 20 for each support vector. This means that DGMM has almost 500
times fewer parameters than the SVM for the Ma-Fe-6Class data. Although,
the classification results are slightly worse DGMMs offer advantages compared
to the SVM. DGMMs can be directly applied to problems with more than two
classes, whereas SVMs are usually limited to binary problems – the multiclass
problem is decomposed into binary problems. However, multiclass SVMs have
been proposed [22]. For SVMs we have to select C∗ and σ. For MM-GMMs the
number of components M and λ have to be determined. A substantial difference
is that the SVMs determine the number of support vectors automatically while
in the case of DGMMs the number of components M is prescribed. Hence, in



Classifier
Data set Class GMM GMM GMM NN SVM

CL MM 100 1-0.1

Ma+Fe 4 90.17 92.54 92.30 92.58 92.78
± 0.06 ± 0.06 ± 0.06 ± 0.06 ± 0.06

Ma 4 90.17 92.50 92.31 92.73 92.69
± 0.08 ± 0.07 ± 0.07 ± 0.07 ± 0.07

Fe 4 90.56 92.55 92.63 92.91 92.97
± 0.11 ± 0.10 ± 0.10 ± 0.10 ± 0.10

Ma+Fe 6 82.42 85.81 85.14 86.05 86.26
± 0.08 ± 0.07 ± 0.07 ± 0.07 ± 0.07

Ma 6 82.49 85.66 85.19 86.04 86.16
± 0.10 ± 0.09 ± 0.09 ± 0.09 ± 0.09

Fe 6 82.84 85.74 85.69 86.37 86.65
± 0.14 ± 0.13 ± 0.13 ± 0.12 ± 0.12
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Fig. 3. Broad phonetic classification: (a) Classification accuracy in [%] for 4 and 6
classes with standard deviation. (b) Number of samples in X 1, X 2, and X 3 over the
iterations of MM-GMM.

DGMMs the complexity is controlled manually. DGMMs are an excellent choice
when a probabilistic model is required, e.g. marginalizing over the unknown
variables is supported. The training time for each iteration of the DGMM scales
with O (MN), whereas for the SVM we have O

(

N2
)

. Hence, DGMMs have a
lower training complexity.

In Figure 3(b), we provide an in-depth analysis of the multi-class margin

(dn
Θ)

λ
for Ma-Fe-4 (M = 100). The cyan and green colored lines denote the

number of correctly classified samples with a margin of (dn
Θ)

λ
> 2 (i.e. |X 3|)

and 1 ≤ (dn
Θ)

λ ≤ 2 (i.e. |X 2|) over the iterations, respectively. The samples
with margin between one and two are still considered during optimization and
the algorithm tries to increase the margin above two, i.e the number of those
samples decreases over the iterations while the number of samples with (dn

Θ)
λ

> 2

increases. Additionally, the number of wrongly classified samples (i.e. (dn
Θ)

λ
< 1)

decreases (red line).

In the following, we verify that a discriminatively parameterized generative
GMM p (x|Θc) still offers its advantages in the missing feature case. In par-
ticular, the ability to go from p (x|Θc) to p (x′|Θc) is maintained where x′ is
a subset of the features in x and x′′ is the set of missing features, i.e. x \ x′.
This amounts to performing the marginalization p (x′|Θc) =

∫

p (x|Θc) dx′′. A
discriminative model, however, is inherently conditional and it is not possible in
general to simply marginalize away any missing features. This problem is also
true for SVMs, logistic regression, and neural networks.

We are particularly interested in a testing context which has arbitrary sets
of missing features for each classification sample, unanticipated at training time.
In such a case, it is not possible to re-train the model for each potential set
of missing features without also memorizing the training set. In Figure 4, we
present the classification performance of GMM, CL-GMM, and MM-GMM as-
suming missing features using the data of TIMIT-4/6. The x-axis denotes the



number of missing features. The curves are the average over 100 classifications
of the test data with uniformly at random selected missing features. Standard
deviation bars indicate that the resulting differences are significant for a low
number of missing features. We use exactly the same missing features for each
classifier. We observe that discriminatively parameterized GMM classifiers out-
perform classical GMMs in the case of a low number of missing features. In case
of many missing features classical GMMs seem to be more robust. The rising
performance of the generative GMM classifier in case of missing features can
be attributed to the phenomenon observed in the feature selection community.
There, the reduction of the feature set size may even improve the classification
rate by reducing estimation errors associated with finite sample size effects [23].
Generally, this demonstrates, at least empirically, that discriminatively param-
eterized generative GMMs do not lose their ability to impute missing features.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Classification performance of GMM, CL-GMM, and MM-GMM assuming miss-
ing features using data of TIMIT-4/6. The x-axis denotes the number of missing fea-
tures and the shaded region corresponds to the standard deviation over 100 classifica-
tions. (a) Ma+Fe-4, (b) Ma-4, (c) Fe-4, (d) Ma+Fe-6, (e) Ma-6, (f) Fe-6.

5.3 Remote Sensing

We use a hyperspectral remote sensing image of the Washington, D.C., Mall area
containing 191 spectral bands having a spectral width of 5-10 nm.2 As ground
reference a classification performed at Purdue University was used containing 7
classes, namely, roofs, road, grass, trees, trail, water, and shadow.3 The aerial

2 http://cobweb.ecn.purdue.edu/˜biehl/MultiSpec/hyperspectral.html
3 http://cobweb.ecn.purdue.edu/˜landgreb/Hyperspectral.Ex.html



image using bands 63, 52, and 36 for red, green, and blue colors, respectively,
and the reference image are shown in Figure 5(a) and (b). The image contains
1280× 307 hyperspectral pixels, i.e. 392960 samples. We arbitrarily choose 5000
samples of each class to learn the classifier. This remote sensing application is in
particular interesting for our classifiers since spectral bands might be missing or
should be neglected due to atmospheric effects, i.e. radiation within the visible
range should be neglected in case of clouds or darkness. We use generative GMM
as well as discriminatively optimized GMM classifiers, whereas the parameters
for discriminative training are initialized to ML estimates. The classification
performances for M ∈ {1, 3, 5, 10} components are shown in Table 5(c). CL-
GMM and MM-GMM significantly outperforms the generative GMM classifier
whereas best performances are obtained with MM-GMM classifiers. Remarkably,
MM-GMMs and SVMs achieve a highly similar performance. The number of
parameters for the GMM if roughly 85 times lower than for SVMs (26817 versus
2279394 (i.e. 11934 support vectors, N=191)).

(a) (b)

M GMM CL-GMM MM-GMM SVM
1 81.94±0.06 83.59±0.06 85.59±0.06
3 81.00±0.07 84.69±0.06 85.94±0.06 88.98 ±0.05
5 82.67±0.06 87.18±0.06 88.28±0.05 (C∗ = 1)
10 84.36±0.06 88.38±0.06 88.88±0.05 (σ = 0.05)

(c)
(d)

Fig. 5. Washington, D.C., Mall: (a) Spectral bands 63, 52, and 36 are used for pseudo
color image. (b) Reference image. (c) Classification results in [%]. (d) Classification
results of GMM, CL-GMM, and MM-GMM assuming missing features.

In Figure 5(d), we report classification results for GMM, CL-GMM, and MM-
GMM using M = 10 components assuming missing features. The x-axis denotes
the number of missing features. We average the performances over 100 classi-
fications of the test data with randomly missing features. Standard deviation
bars indicate that the resulting differences are significant for a low number of
missing features. Discriminatively parameterized GMM classifiers significantly
outperform classical GMMs in the case of few missing features.



6 Conclusions

We derive two discriminative training methods for GMM-based Bayesian classi-
fiers maximizing either the conditional likelihood or the margin. Both algorithms
are based on the extended Baum-Welch (EBW) algorithm. In the experiments
we depict the differences of the decision boundary for generatively and discrimi-
natively learned GMMs for classification using synthetic data. Furthermore, we
show results for broad phonetic classification and compare discriminatively op-
timized GMM classifiers to SVMs and NNs. DGMMs perform slightly worse
compared to SVMs in terms of classification rate, however the GMM model
uses almost 500 times fewer parameters than the SVM. Additionally, we show
that discriminatively optimized GMM classifiers are superior even in the case of
missing features. Finally, we compare our classifiers on a hyperspectral remote
sensing application which is in particular interesting concerning the missing fea-
ture aspect. Margin-based GMMs outperform CL-based GMMs, whereas both
significantly outperform generatively optimized GMMs.

Appendix A: EBW Algorithm

In its original form [24], the Baum-Eagon inequality has been formulated for
domains of discrete probabilities. Consider a domain E of discrete probability
values Φ = {ϕj

i}, with ϕ
j
i ≥ 0,

∑

i ϕ
j
i = 1, and j = 1, ..., J . Given a homogeneous

polynomial Q(Φ) with nonnegative coefficients over the domain E, the Baum-
Eagon inequality offers an iterative method to find local maxima in Q. It provides
a transformation, T : E → E, such that Q (T (Φ)) > Q (Φ)), unless T (Φ) = Φ.
This transformation, called growth transform, maps from Φ̂ ∈ E to T (Φ̂) = Φ̄ ∈
E, where

ϕ̄
j
i =

ϕ̂
j
i

∂Q(Φ̂)

∂ϕ
j
i

P

i′ ϕ̂
j

i′
∂Q(Φ̂)

∂ϕ
j

i′

. (11)

For brevity, ∂Q(Φ̂)

∂ϕ
j
i

denotes the partial derivative ∂Q

∂ϕ
j
i

evaluated at point Φ̂.

In [1], the growth transform is extended4 to rational functions R(Φ) over E:

R (Φ) =
Num(Φ)

Den(Φ)
.

This is done by converting R (Φ) into a polynomial Q
Φ̂

(Φ) for a given Φ̂ such

that if Q
Φ̂

(

T
(

Φ̂
))

> Q
Φ̂

(Φ̂), then R
(

T
(

Φ̂
))

> R
(

Φ̂
)

, except T
(

Φ̂
)

= Φ̂.

The polynomial Q
Φ̂

(Φ) that fulfills this condition is given in [1] as

Q
Φ̂

(Φ) = Num(Φ)−R(Φ̂)Den(Φ).

To see this, first note that Q
Φ̂

(Φ̂) = 0. Thus, if Q
Φ̂

(Φ̄) > Q
Φ̂

(Φ̂), then Num(Φ̄) >

R(Φ̂)Den(Φ̄), and hence R(Φ̄) > R(Φ̂).

4 Additionally, they show that the growth transform in Eq. (11) can be applied to
nonhomogeneous polynomials.



Unfortunately, the growth transform can not be applied directly to Q
Φ̂

(Φ),
as it might have negative coefficients. To ensure nonnegativity, the growth trans-
form is instead applied to

S
Φ̂

(Φ) = Q
Φ̂

(Φ) + C(Φ),

where

C(Φ) = κ

 

X

j,i

ϕ
j
i + 1

!r

has constant value over E, since
∑

i ϕ
j
i = 1, and r denotes the maximal order of

Q
Φ̂

(Φ). Hence, C(Φ) adds a constant κ to every monomial in Q
Φ̂

(Φ). This con-
stant κ must be chosen such that S

Φ̂
(Φ) has nonnegative coefficients for every

Φ̂. Thus, S
Φ̂

(Φ) has positive coefficients and still has the same important prop-
erty as Q

Φ̂
(Φ). This polynomial with positive coefficients can now be considered

for the growth transform in Eq. (11).
As easily can be verified, the partial derivative of S

Φ̂
(Φ) can be expressed in

terms of ∂ log R(Φ̂)

∂ϕ
j
i

, according to

∂S
Φ̂

(Φ̂)

∂ϕ
j
i

= Num(Φ̂)
∂ log R(Φ̂)

∂ϕ
j
i

+ D,

where D = κr(J + 1)r−1 is the derivative of C(Φ). Plugging this result into
Eq. (11), we finally obtain the extended Baum-Welch re-estimation equation for
discrete probability distributions of the form

ϕ̄
j
i =

ϕ̂
j
i

„

∂ log R(Φ̂)
∂ϕ

j
i

+ D

«

P

i′
ϕ̂

j

i′

„

∂ log R(Φ̂)
∂ϕ

j

i′

+ D

« , (12)

where the ϕ̄
j
i denotes the updated parameters, and constant D must be chosen

to be sufficiently large.

References

1. Gopalakrishnan, O., Kanevsky, D., Nàdas, A., Nahamoo, D.: An inequality for
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