A New Difficulty Metric For Sudoku

Klemens Kranawette and Bernhard Geigerﬂ
Institute for Signal Processing and Speech Communication,
Graz University of Technology, Graz, AT - Austria
(Dated: June 3, 2013)

Abstract. Sudoku games are usually classified with - rather vague - difficulty levels such as
7‘easy”’, ”‘challenging”’, ”‘devilish”’, etc. But what is the underlying metric behind such a classifi-
cation? The most common way to determine the difficulty of a puzzle was and still is to estimate or
count the number of calculations a more or less randomly chosen solving algorithm needs to actually
solve the puzzle. Our idea is to link the analysis of Sudoku with information theory, especially with
what is called partial information decomposition (PID). The main idea behind our work is to look
at the initially given numbers, also called clues, as information sources that provide information
about a target variable - the solution of the puzzle. If the puzzle is set properly, the sources provide
enough information to determine the solution. The connection to the new difficulty metric is as
follows: Any properly set puzzle can obviously be made easier if one just adds clues. From the
information theory point of view the adding of clues does not increase the information about the
solution or target variable, as the solution is fully specified with less clues and still is fully specified
with the additional ones. What has changed is the redundant part of the information about the
solution that is provided by the set of clues. With that in mind we intend to define a single-letter
number which does not depend on any parameters that measures the redundancy and maps it onto

a difficulty scale.

Keywords: Sudoku, Information Theory, Partial Information Decomposition

I. INTRODUCTION

This article can be seen as a summary of the ideas
that were developed during a student project at the In-
stitute for Signal Processing and Speech Communication
(SPSC) at Graz University of Technology. Projects of
this kind are offered for master students in electrical en-
gineering or computer science.

Supervisor DI Bernhard Geiger and student Klemens
Kranawetter collaborated on the issue in the winter term
of 2012.

The goal of the project was to develop a new difficulty
metric for the number game Sudoku. According to [4]
"Sudoku is a puzzle in which N = n? different symbols
(usually digits 1 through N) are to be arranged in an
N x N array such that the arrangement agrees with given
clues and meets the puzzle constraints’. The constraints
or rules can be formulated as in [I]: Fill in the array so
that every row, every column, and every n X n subsquare
contains the digits exactly once’.

It seems as if there were two reasons why Sudoku ap-
pears in the interest of researchers from various disci-
plines: On the one hand the puzzle can be modeled math-
ematically in many different ways. This variability makes
the problem accessible from vastly different directions,
such as optimization, chaos theory, etc. Our approach
can be seen as a connection with the field of information
theory. On the other hand it is clear that the puzzle itself

*Electronic address: klemens.kranawetter@student.tugraz.at
TElectronic address: |geigerQtugraz.at; URL: http://www.spsc.
tugraz.at

is rich of interesting aspects and facets. One example be-
sides the quest for a difficulty metric is the enumeration
of possible grids, as it is demonstrated in [2].

What attracted us to the problem was the instinctive
assumption that the difficulty of a puzzle could in one
or the other way be related to the redundancy in the
set of statements that comes with the set of clues, which
we wanted to investigate more deeply. The statements
made by a single clue, say C, would be: 'No other C in
my subsquare!’,’No other C in my row!’, 'No other C in
my column!’; 'No other digit in my celll’

Enough statements of this kind specify the solution of
the puzzle, and it is common knowledge that the state-
ments of 17 clues in a 9 x 9 Sudoku can suffice. The
reason why redundancy appears to be naturally linked
to the difficulty of a puzzle is the fact that any puzzle
can be made easier if one just adds clues to those that
are already given. Through the adding of clues the in-
formation about the solution does not increase at all - if
the initial puzzle is set properly, the solution is specified
completely and uniquely and still is specified completely
and uniquely with the additional clues. The number of
statements though has risen, which makes it obvious that
the redundant part must have grown in one way or the
other. In other words one could say that if the initial
amount of clues already makes it possible to figure out
the solution, additional clues simply reduce the number
of steps one needs to take to get to there, but do not
increase any kind of information about the solution.

From a theoretical perspective it was our goal to tell
the redundant part of the information about the solution
from the rest. Separating the different parts in infor-
mation that is brought by a multivariable system is an
ongoing research topic in information theory, hence we

mailto:klemens.kranawetter@student.tugraz.at
mailto:geiger@tugraz.at
http://www.spsc.tugraz.at
http://www.spsc.tugraz.at

took a look at some papers that deal with this issue.

At this point one might ask what properties there are
that distuinguish our approach from already existing con-
cepts. On the one hand it is the connection to informa-
tion theory that is rather new. On the other hand is the
clear concept. Older metrics in literature vastly suggest
counting the number of steps or time it takes a solving
algorithm to actually solve the puzzle. Since algorithms
depend on a variety of parameters, the estimated diffi-
culty is often almost as arbitrary as if a human player
would have guessed it.

II. A NEW METRIC FOR SUDOKU

We already pointed out that the central idea behind
our concept can be described as ’'the assumption that
the difficulty of a puzzle could somehow be related to
the redundancy among the set of statements that is
associated with the puzzle’. The term ’set of statements’
describes the entirety of expressions that arise when we
ask for an exhaustive descritption of the constraints that
a possible solution to a given puzzle has to fulfill. Since
these constraints evolve from the interplay between
rules and clues the elements of the set of statements
are all of one of these forms (C stands for one single clue):

No other C in my subsquare!
No other C in my row!

No other C in my column!
No other digit in my cell!

Further on we will denote the ’set of statements’ as B.
As every single clue contributes four elements to B, we
get |B| = 4L¢ for every imaginable N x N Sudoku with
L¢ givens.

One possible motivation for this idea is the simple fact
that any Sudoku puzzle can be made easier through the
adding of clues. If we consider a properly set puzzle with
L clues represented by Sy, that has one unique solution,
we can be sure that any child Sg1x, k € N that is derived
from Sy through the adding of k consistent clues has
the same unique solution. On the other hand it is clear
that |Bs, ., | = |Bs,| + 4k, which means that the set of
statements has grown but no new information about the
solution is provided through the additional clues. In such
a situation we could say that we have at least 4k redun-
dant statements. Put in other words the more difficult
parent and the easier child differ through 4k redundant
statements.

At this point it is important to state that puzzles with
L clues are not automatically more difficult than others
with L + k clues! There are certainly examples where
the opposite is the case, but children that are related to
their parents through a set of additional clues definitely
are easier to solve than their ancestors. If we had a pro-
cedure, say D, that would calculate the 'correct’ degree
of difficulty for a given Sy, we could be sure that

D(S1) = D(SL1k) (1)

would hold for every imaginable child Sy .

That being said we can try to figure out a way to mea-
sure this sinister quantity called redundancy. Our first
idea at this point is to introduce a graphical represen-
tation for B. Therefor we construct a 3D object that
contains N layers for an N x N Sudoku. These layers
are used to represent the initially given clues and the
area their statements act on, e.g. in a 4 x 4 Sudoku a
’1’ in the right lower corner would act on the right lower
subsquare, the first row and the fourth column as it bans
other ’1s’ from settling down in one of these cells. The
layers themselves are N x N grids, where the i*" is used
to represent those clues whose associated digit is 2’. The
cells in the influenced areas get highlighted with a tag.
With that it also becomes possible to respect the fourth
statement 'No other digit in my cell’ by tagging the
cells above or below the cell of the clue in the other lay-
ers. Below we give an example for a 4 x 4 puzzle. Due to
the fact that we use tensors in Matlab to implement this
graphical representation, we gave the resulting object the

name 'Sudoku Tensor’.

.4

FIG. 1: Sudoku Tensor for two Clues in a 4x4 Sudoku.

The second idea shifts the focus of our considerations
to those squares in the Sudoku Tensor that are covered
by more than one statement and refines the notion of
redundant statement’. Instead of trying to figure out
how many redundant statements as a whole there are,
we will develop three routines that are based on those
cells that are affected by more than one statment. We
are going to refer to these cells as 'redundant cells’. With
this change it becomes possible to resolve the information
that is given by a set of clues a lot finer. It turns out that
the analysis of the structure of the redundant cells opens
a big variety of possibilities.

.4
.3

FIG. 2: Sudoku Tensor with redundant (cyan) statements
from a 4x4 Sudoku.

With that in mind we can proceed to some definitions
that will be helpful for the actual formualtion of the
redundancy metrics:

e Whole set of clues: C
e Single Clue: ¢

e Sudoku Tensor: T

o Single Cell: ;1

e Number of statements on a cell
given a single clue ¢; or a set X
of clues: V¢, (tiji) or Va(tiji)

o The cardinality of a set X: |X|

RAverage

IC]
l; [{tije| Ve, (ijr) > 1A Ve, (Bijk) > 1}

HtijelVe(tijr) > 1}

RAverage =
(2)

Our first metric Rayerage takes a look at one clue ¢
after the other and compares it to the rest C\¢;. With
comparing we mean counting the amount of cells that
are covered by the statements of a single clue ¢; and
the statements of the rest of the clues C\¢;. The single
results are summed up and then divided through the
number of cells that have more than one statement on
them considering the whole set C: |[{t;;x|Ve(tijx) > 1}
The last step is performed to get a result between 0 and
1. The idea behind Rayerage can be described as the

attempt to calculate the average amount of redundancy
provided by a single clue.

RBipart

To be able to formulate our next metric mathemati-
cally, we have to make clear what we understand under
a 'bipartition of a set’. A bipartition is a seperation of
a given set X into two subsets A and B that cover the
whole X, but do not have any elements in common, i.e.
ANB =0. For Rppart we take a look at the whole set
of bipartitions P = {{4;, B;}|4; U B; = C}, figure out
which combination {A4;, B;} provides the largest number
of cells that are covered by both A; and B; and norm the
result through |{tz‘jk|VC(tijk) > 1}|

max(|{tix|Va, (tijr) > 1 A Va, (tijr) > 1}])
Htiji|Ve(tije) > 1}

RBipart =

3)

where {A;, B;} € P (4)

There are a couple of ideas that lay beneath this ap-
proach. First we thought about the redundancy lattice
from [3]. We wanted to set up an analysis structure com-
parable to this lattice, but soon found out that on the one
hand the lattice grows incredibly fast with the number
of clues |C|, so that it gets impossible to calculate all the
values for the nodes of the lattice, and on the other hand
we always intended to get a single letter number that
represents the metric. To get the single letter number we
thought about taking the maximum from all the values
inside the lattice. As it is clear that this maximum lays
somewhere in the subset of bipartitions we soon decided
to reduce our analysis to P.

Secondly we wanted to know the following: If we had
to choose one subset X C C such that - if we dismissed
this subset C and made the remaining clues Co = C\ X
the new set of clues - the difference between the number
of cells that are assigned to X, {t;;x|Vx(tijx) > 1}, and
the number of cells that are covered by X but not by Cs
gets maximal:

Wil Va (tije) > 1} — HtijelVa (tigr) > 1A Ve, (tije) = 0}
— max
RZQ

R>5 answers how many redundant cells there when we
take into account the whole set of clues C:

tiik|Ve(tie) > 2
R, = [l Vetin) > 2)] o)
= {taelVeltije) = 1}

Again the result is mapped into [0,1] by a division
through the number of cells that are covered by at least
one statement.

III. RESULTS

Implementation

We already pointed out that the graphical object we
call Sudoku Tensor is handled as a tensor in Matlab.
For an N x N puzzle we get an N x N x N tensor, where
the i*" layer stands for for the i*" digit. The layers them-
selves are N x N matrices, that contain ones and zeros.
Ones denote that a digit ¢ would not be in contradiction
with any of the represented statements and could be filled
in, zeros denote the opposite: at least one statement for-
bids that a symbol equal to the very digit gets filled in.
Since every given also ’shines’ on the other layers through
the statement 'No other digit in my cell’, we also assign
zeros to these kind of cells.

o | 1] 1|1
o] 1 | 1|1 1
o] 1] 1|1 1 '
11|11 1 i
1 ool o] |, 1] 3
oo | 1] 1|y |12

FIG. 3: Matrix Representation of the Sudoku Tensor for a
4 x 4 puzzle with just one clue, a 1 in the upper left corner.

For R Average We create two tensors, one for the device
under test ¢;, the current clue, and one for the rest C \ ¢
and check how many elements with entry equal to zero
in both tensors there are. Based on that the final result
is achieved by a repetition of this procedure for all clues
and the calculation of the average as it described in the
previous section.

Ri>2 is even easier than that, since we only need to
count the amount of cells with more than one statement
covering them. Therefor we set up a second tensor which
we use to count how often a zero is assigned to a cell.
With this additional information the whole procedure

-
collapses to a simple > 2 question.

RBipart is definitely the trickiest one. Our first at-
tempt that worked well for 4 x 4 Sudokus was to prim-
itively go from one bipartition {A;, B;} to the next
and check what the ’value of the cost function’ J =
Htijr|Va, (tije) > 1AV, (tijr) > 1} was. Unfortunately,
this strategy fails when it is applied to 9 x 9 Sudokus,

4

because the amount of bipartitions grows with O(2¢~1).
It turns out though that the result for 4 x 4 Sudokus,
where we were able to carry out the calculations, always
lays in those subsets of P, where |A;| = |B;| = |g—‘ This
fact is not at all surprising since bipartitons with sub-
sets that contain a small amount of clues will never pro-
vide the maximum. As soon as we discovered that, we
thought about solving our problem through an optimiza-
tion algorithm that seeks through those bipartitions that
contain subsets with cardinality |X'| = ceil($) + 8, where
§ €1]0,1,2,3] turned out to be a good choice. The actual
computation of J = |{tijk|VA,~ (tijk) >1AVp, (tijk’) > 1}|
is executed with two tensors for the two partitions, ex-
actly the way we did it for Raverage-

To loose some words on the optimization algorithm:
We start with a pre-optimization, that chooses 1000 bi-
partitions {A;, B;} randomly and takes the best combi-
nation as a starting point for the actual optimization.
The actual optimization steps from the current {4;, B;}
to the next {A; 11, Bi+1} by exchanging the first clue c4;
from A; with the clue ¢p; from B; that improves J the
most if there is a clue that improves J at all, then from
{A;+1,Bit1} to {Aj+a, Bito} by exchanging the second
clue and so on. If the algorithm has reached the last clue
in A;, it starts again from the beginning. Above all that
there is a loop that changes the sizes |A4;| and | B;| via ¢.

1: procedure BIPARTMAX(C)
2 for 6 €[0,1,2,3] do
3 J1=0
4: for i=1:1000 do
5: create random {A;, B;} with
6 |A;] = ceil($) — 6 and |B;| = ceil($) — §
7 if J({As, B;}) > J1 then
8: save J1 = J({A;, Bi})
9: end if
10: end for
11: Jo=0
12: i=0
13: while J;+1 > J; do > As long as we improve
14: Ji = Jix1
15: for j = 1:|A4;] do
16: for k = 1|Bz| do Aq(]) <= Bz(k)
17: if J({AZ,BZ}) > J; then
18: save Jit1 = J({AZ,BZ})
19: Remember the best k*!
20: end lfAz(]) <= Bl(k)
22: end if
23: end for
24: end for
25: end while
26: Js = Jit1

27: end for
28: end procedure

Experiments

The implementations were tested with 3000 9 x 9 puz-
zles that were created with Wangs puzzle generation code
(see [A]). In this generator it is possible to vary the diffi-

culty of the created puzzle through a parameter n € [0, 1],
where n = 0 indicates a puzzle of the easiest level and
n = 1 the hardest level possible. This dependency might
be a bit confusing, since our metrics measur the redun-
dancy of the puzzles and also return a single letter num-
ber R € [0,1]. The interpretation is different though,
R = 1 indicates maximum redundancy and hence the
easieast possible level, R = 0, corresponds to a minimum
of redundancy and a high difficulty.

1 % |
ff %%
0.8 - 1
Iu
g 0.6 |- m
<
~
0.4 1
02 | | | | |

0.2 0.3 0.4 0.5 0.6
Difficulty Parameter n

FIG. 4: Results for Raverage

| | |
0.2 0.3 0.4 0.5 0.6
Difficulty Parameter n

FIG. 5: Results for R>2

1
0.8 y
+ E —_—
§ 0.6 |- B n
m P
0-2 0‘.2 0.‘3 O.‘4 O‘.5 EG
Difficulty Parameter n
FIG. 6: Difficulty Metric Rpipart
1 ,‘ — RB‘ipart S
—— Raverage
Di Wi‘ l|“|\ l w” | o ARZQQ
S os NN by umu. f B
=] i
: L ‘“ "“'mm.u I
T 06 | W IH
Z 04 |
o | |
02 7\ | ! | ! | ! | ! | ! | ! | T

0 500 1,000 1,500 2,000 2,500 3,000

Puzzle Index

IV. DISCUSSION

Three difficulty metrics for the number game Sudoku
were formulated. They are all based on the idea that re-
dundancy within the set of statements that is produced
by the initially given clues is somehow related to the diffi-
culty of the puzzle. Each of the metrics shows that easier
puzzles are related to a high redundancy, whereas diffi-
cult examples are characterized by a smaller amount of
redundant statements. It is nice to see that the theoreti-
cal ideas seem to be confirmed through the large number
of tests we ran through. One property of many other con-
cepts that attempt to measure the difficulty of Sudoku
puzzles is that they depend on the behavior of a solving
algorithm that is applied to the puzzle. Our approach is
independent from any kind of solving algorithm, it sim-
ply analysis the structure of the puzzle. Considering the
obtained results one could get the impression that our
metrics deliver the same results as Wangs generator; it

also has to check the difficulty of the puzzle in one way
or the other. A closer look though reveals that our re-
sults seem to correct the promised difficulty levels from

time to time - puzzles that are labeled difficult have high
redundancies, while puzzle labeled easy have low redun-
dancies.

[1] BARTLETT, Andrew ; LANGVILLE, Amy: An Integer
Programming Model for the Sudoku Problem. College of
Charleston, 2006

[2] FELGENHAUER, Bertram ; JARvis, Frazer: FEnumerat-
ing possible Sudoku grids. TU Dresden - University of
Sheffield, 2005

[3] GrIFFITH, Virgil ; KocH, Christof: Quantifiying synergis-
tic mutual information. Caltech, 2012

[4] GUNTHER, Jake ; MOON, Todd: Entropy Minimization for
Solving Sudoku. IEEE, 2012

[5] WANG, Hongtao: Solve and Create SUDOKU
Puzzles for Different Levels. [Online] available at
http://www.mathworks.com/matlabcentral /fileexchange/
authors/27052, 2007

	Introduction
	A new Metric for Sudoku
	Results
	Discussion
	References

