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Abstract

If a random variable is passed through a nonlinear system, where multiple input values are
mapped onto the same output value, information is lost. This means that by observing the
output of the system, the input values cannot be reconstructed correctly with certainty. Analytic
results for calculating the information loss in terms of the conditional entropy exist [3] [4], but are
not always computable since logarithms of sums are involved. Similar to Fano’s Inequality [1],
the information loss can be bounded in terms of the probability of making a reconstruction error
when using a Maximum a Posteriori (MAP) estimator. If the analytic result for the information
loss exists, these bounds can be used conversely to bound the error probability of the MAP
estimator.
In this work, two different scenarios are explored: In the first scenario, independent, identically
distributed (i.i.d.) samples of a continuous random variable are passed through the system.
The information loss is bounded by using the error probability of a sample-by-sample estimator,
which attempts to reconstruct every input value xn by just observing its corresponding output
value yn, therefore x̂n = f(yn), where x̂n is the estimated input value.
In a second scenario, the input samples are not independent from each other, but form a Markov
process. Because of this dependency it makes sense to observe more than just one output value,
since also past output values contain information about the current input value. Therefore, the
information loss can be bounded using the error probability of an estimator with memory. In
this work, only estimators using the past two output values are examined (x̂n = f(yn, yn−1)).
Three different examples are presented which illustrate the application of the analytic results.
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1 Introduction

The entropy H of a random variable X over the alphabet 1, ...,M with probability distribution
{p(x)}M

x=1 is measured in bits and defined as

H(X) = −
M
∑

x=1

p(x) log2(p(x)) (1.1)

The logarithm is taken to the base of two throughout this work, therefore the notation log(x)
is used instead of log2(x) in the remainder of this paper. The entropy is a measure for the
complexity of a random variable. The higher the entropy, the harder it is to predict its value.
In this work, the conditional entropy H(X|Y ) between the input random variable X and the
random variable Y at the output of the system is examined. This measure is called equivocation
and describes the uncertainty about the random variable X if the random variable Y is given.
In other words, it describes how much additional information is required to determine the value
at the input of the system if the corresponding value at the output is known, or equivalently,
how much information is lost by passing through the nonlinear system. Similar to the entropy
of a single random variable, the equivocation is defined as [2]

H(X|Y ) = −
∫

y

p(x|y) log(p(x|y)) dP (y). (1.2)

In general, the systems considered in this work are described by nonlinear, deterministic func-
tions Y = g(X). It is possible that not every input value is mapped bijectively, which means that
there can be several different input values which map onto the same output value. Therefore,
information is lost by passing a random variable through the system, since one cannot determine
with certainty which input value was mapped onto the value observed at the output.

The remainder of this paper is structured as follows: In Section 2, the problem is described
in more detail, specifying the properties of both the input process and the system. Furthermore,
an analytic expression derived in [3] for computing the information loss in a system with an i.i.d.
input process is presented. In Section 3, different estimators are presented in detail, which were
derived in previous work [3] [4]. Results exist both for a sample-by-sample estimation with an
i.i.d. input process and a scenario where the input of the system is a Markov process and the
input values are estimated based on more than just the current output value. Section 4 gives a
compact overview over computing bounds of the information loss, which is also carried out in
detail in [3] and [4]. The analytic results are illustrated by using a set of examples in Section 5.
The results obtained in these examples are finally discussed in Section 6.
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2 Information Loss in Static Nonlinearities

2.1 Problem Statement

A continuous random variable is passed through a nonlinear system, which is described by a
surjective function g(x) of the following type:

Definition 1. Let g : X → Y, X ,Y ⊆ R, be a bounded, measurable function which is piecewise
strictly monotone on L disjoint, proper intervals Xl, l = 1, ..., L:

g(x) =



























g1(x) x ∈ X1

g2(x) x ∈ X2

...

gL(x) x ∈ XL

(2.1)

This means, that the surjective function g(x) is divided into L bijective functions gl(x). The
corresponding intervals Xl unite to X :

L
⋃

l=1

Xl = X (2.2)

The intervals Yl also unite to Y, but overlap if the system is non-injective, i.e. if more than one
input value is mapped onto the same output value.

In this work two different scenarios are considered. In the first scenario, the input of the system
is described by a continuous random variable X, where fX(x) is positive on X and zero else-
where. The input samples are independent and identically distributed and have a continuous
cumulative distribution function. According to [3], the marginal probability density function
(PDF) of Y is given as

fY (y) =
∑

i∈I(y)

fX(xi)

|g′(xi)|
(2.3)

where xi are the roots of y and I(y) is the index set pointing to these roots.

In the second scenario, the input samples are not independent from each other, but taken
from an ergodic, discrete-time, continuous process X with Markov property:

f
Xn|Xn−1

0
(xn

0 ) = fXn|Xn−1
(xn−1, xn) (2.4)

Furthermore, this process is time-homogeneous, i.e.:

fXn|Xn−1
(xn−1, xn) = fX1|X0

(x0, x1) = fM (x1|x0) (2.5)

Again, the support of the marginal distribution is identical to X . The joint PDF of the sequence
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2 Information Loss in Static Nonlinearities

xn
0 can then be obtained by

fXn

0
(xn

0 ) = fX(x0)
n
∏

k=1

fM(xn|xn−1). (2.6)

The n-th order joint density fY n

0
(yn

0 ) can be computed by [4]

fY n

0
(yn

0 ) =
∑

in0∈I(yn

0 )

fX(x
(i0)
0 )

|g′(x(i0)
0 )|

n
∏

k=1

fM(x
(ik)
k |x(ik−1)

k−1 )

|g′(x(ik)
k )|

. (2.7)

2.2 Analytical Computation of Information Loss

If a surjective function g(·) is applied to the input samples x, information is lost, since the
mapping is not unique and a single output value y can have more than one root. This loss of
information can be measured in terms of the conditional entropy H(X|Y ), which is the entropy
of the input random variable X given the output Y .

An analytical result for this conditional entropy for the first scenario (input samples are i.i.d.)
was derived in [3]:

H(X|Y ) =

∫

X

fX(x)log









∑

i∈I(g(x))

fX(xi)
|g′(xi)|

fX(x)
|g′(x)|









dx (2.8)

For the second scenario, where the input to the system is taken from a Markov process, only
n-th order bounds on the information loss can be computed, which are presented in Section 4. If
certain conditions are fulfilled, these bounds are tight and therefore equal to the analytic result.
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3 Reconstruction of Input Samples

If information is lost by passing through a nonlinear system, the question arises how the input
samples can be reconstructed with a minimum error probability by just observing the output of
the system.

A maximum a posteriori probability estimator (MAP estimator) minimizes the probability of a
reconstruction error by maximizing the conditional probability of the input given the output:

x̂(y) = argmax
x

{

fX|Y (x, y)
}

(3.1)

As carried out in [3] for the estimation of an input sample xn based on one output sample yn,
the MAP estimator chooses the most likely root of the output sample yn, i.e.,

x̂(y) = g−1
k (y) (3.2)

where

k = argmax
i ∈ I(y)

{

fX(xi)

|g′(xi)|

}

. (3.3)

The probability of a reconstruction error using this MAP estimator can be computed as follows
[3]:

Pe = 1 −
∫

Y

max
i ∈ I(y)

{

fX(xi)

|g′(xi)|

}

dy (3.4)

Since the MAP estimator can be unable or very hard to compute analytically, a less difficult,
but suboptimal estimator was derived in [3], which chooses the root which lies in the interval
with the highest probability mass:

x̂(y) =











g−1(y) if y ∈ Yb

g−1
k (y) if k ∈ I(y), y /∈ Yb

x : x ∈ Xk if k /∈ I(y), y /∈ Yb

(3.5)

where

k = argmax
i

∫

Xi∪Xb

fX(x) dx (3.6)

The error probability for this estimator is given by:

P̂e = 1 − Pb −
∫

Xk\Xb

fX(x) dx (3.7)
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3 Reconstruction of Input Samples

where

Pb =

∫

Xb

fX(x) dx =

∫

Yb

fY (y) dy (3.8)

The value of Pb is the probability mass which is mapped bijectively. If an input value is mapped
bijectively, it can be reconstructed by computing the unique inverse of g(·) for the corresponding
output value. For these input values the probability of a reconstruction error is zero, therefore
the probability mass containing these values has to be subtracted.

The probability of an estimation error of this suboptimal estimator can be bounded as fol-
lows [3]:

P̂e ≤
L − 1

L
(3.9)

If the input samples are not independent from each other, it makes sense to consider also past
output values in order to estimate the current input value. If the input is taken from a Markov
process (Section 2.1), the MAP estimator computes the most probable input value as [4]

x̂n(yn
0 ) = arg max

x
(in)
n :in∈I(yn)







∑

in−1
0 ∈I(yn−1

0 )

fX(x
(i0)
0 )

|g′(x(i0)
0 )|

n
∏

k=1

fM (x
(ik)
k |x(ik−1)

k−1 )

|g′(x(ik)
k )|







. (3.10)

The resulting input value x̂n is estimated based on multiple output values yn
0 . The computational

difficulty of this estimator increases with the number of output values that are taken into account.
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4 Bounding Information Loss

4.1 First Scenario: x̂n = f(yn)

If the input values of the nonlinear system are i.i.d., the information loss can be expressed using
Equation 2.8. Unfortunately, the analytic result is often impossible or very difficult to compute,
since the logarithm of a sum is involved.
Thus, upper and lower bounds for the information loss have been derived in [3]. These bounds
will be shortly presented in this Section.

If the error probability of the MAP estimator can be determined according to Equation 3.4,
the following upper bounds of the information loss can be computed:

H(X|Y ) ≤ min{1 − Pb,H2(Pe)} + Pe log

(

max
y∈Y

{|I(y)|} − 1

)

(4.1)

≤ min{1 − Pb,H2(Pe)} + Pe log(L − 1) (4.2)

Furthermore, a lower bound based on Pe can be computed as follows:

H(X|Y ) ≥ Φ(Pe) (4.3)

where

Φ(x) =

(

x − i − 1

i

)

(i + 1) i log

(

1 +
1

i

)

+ log(i) (4.4)

for
i − 1

i
≤ x ≤ i

i + 1

The Φ-function is a continuous function with a piecewise continuous derivative, composed of
linear segments. More information about this function can be found in [2].

If the suboptimal estimator (Equation 3.5) is used instead of the MAP estimator, the following
upper bounds can be computed:

H(X|Y ) ≤ 1 − Pb + P̂e log(L − 1) (4.5)

H(X|Y ) ≤ P̂e log(L − 1) +
P̂e

L
log

(

L

L − 1

)

+ (1 + P̂e)H2(P̂e) (4.6)

H(X|Y ) ≤ P̂e log(L) + H2(P̂e) (4.7)

In addition, the following upper bounds, which only depend on the probability distributions and
the intervals of g(·), have been derived in [3]:
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4 Bounding Information Loss

H(X|Y ) ≤
∫

Y

fY (y) log(|I(y)|) dy (4.8)

≤ log







L
∑

l=1

∫

Yl

fY (y) dy






(4.9)

≤ log(L) (4.10)

4.2 Second Scenario: x̂n = f(yn
0)

If the input values are taken from a Markov process as described in Section 2, the n-th order
bounds of the information loss can be computed as follows [4]:

H(X|Y) ≥
∫∫∫

Xn+1

fXn

0
(xn

0 ) log

( |g′(xn)|fYn|Y n−1
0

(g(xn
0 ))

fM(xn|xn−1)

)

dxn
0 (4.11)

H(X|Y) ≤
∫∫∫

Xn+1

fXn

0
(xn

0 ) log

( |g′(xn)|f
Yn|Y n−1

1 X0
(x0, g(xn

1 ))

fM(xn|xn−1)

)

dxn
0 (4.12)

For the first order bounds, these expressions simplify to [4]:

H(X|Y) ≥
∫∫

X 2

fM(x1|x0)fX(x0) log











|g′(x1)|
∑

i10∈I(g(x1
0))

fM (x
(i1)
1 |x(i0)

0 )fX(x
(i0)
0 )

|g′(xi1
1 )g′(x

(i0)
0 )|

fM(x1|x0)
∑

i0∈I(g(x0))

fX(x
(i0)
0 )

|g′(x(i0)
0 )|











dx1dx0 (4.13)

H(X|Y) ≤
∫∫

X 2

fM (x1|x0)fX(x0) log











|g′(x1)|
∑

i1∈I(g(x1))

fM (x
(i1)
1 |x0)

|g′(xi1
1 )|

fM(x1|x0)











dx1dx0 (4.14)

If both the input and the output processes are first-order Markov processes, these bounds are
equal and can therefore be used to compute the analytic result of the information loss. The
following conditions have to be fulfilled for a first-order Markov output process [4]:

fX(x
(i0)
0 )

|g′(x(i0)
0 )|

=
fX(x0)

|g′(x0)|
(4.15)

∑

i10∈I(g(x1
0))

fM (x
(i1)
1 |x(i0)

0 )

|g′(x(i1)
1 )|

= |I(g(x0))|
∑

i1∈I(g(x1))

fM (x
(i1)
1 |x0)

|g′(x(i1)
1 )|

(4.16)
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5 Examples

In this Section three examples will be presented, which illustrate the results of the previous Sec-
tions. In the first two examples, the input samples are independent to each other, and therefore
the reconstruction of a single output sample is based only on the according input sample. In the
third example, estimation based on the last two output samples is shown for an autoregressive
(AR(1)) process as input to the system.

All simulations were carried out in MATLAB. In order to calculate the mutual information
between two vectors, a library from Rudy Moddemeijer [6] was used.

5.1 Example 1 - Third Order Polynomial, Normal Distribution

First, consider a Gaussian random variable X ∼ N (0, σ2). Let this random variable be the
input to a nonlinear system described by a surjective function

g(x) = x3 − 100x (5.1)

which is depicted in Figure 5.1.

x

g(x), x̂(y)

− 10√
3

10√
3

20√
3

Figure 5.1: Third-order Polynomial of Example 1 and Reconstruction Domains of the Sub-Optimal Estimator

The calculation of the analytic result for the information loss H(X|Y ) using Equation 2.8 is
prevented by the logarithm of sums. Therefore, one can only bound the information loss using
the results of Section 4.

By computing the extrema of g(x), three piecewise monotone intervals can be defined, which
are X1 = (−∞,− 10√

3
], X2 = (− 10√

3
, 10√

3
), and X3 = [ 10√

3
,∞). Therefore, the parameter L is 3.

Further, the domain which is mapped bijectively is

Xb =

(

−∞,− 20√
3

]

∪
[

20√
3
,∞
)

. (5.2)
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Thus, the probability mass Pb which is mapped bijectively can be computed as

Pb = 2FX

(

− 20√
3

)

= 2Q

(

20√
3σ

)

. (5.3)

Using Equation 4.8 and Equation 3.8 leads to the following upper bound for H(X|Y ):

H(X|Y ) ≤
∫

Y

fY (y) log(|I(y)|) dy (5.4)

=

∫

Y\Yb

fY (y) log(3) dy +

∫

Yb

fY (y) log(1) dy (5.5)

= (1 − Pb) log(3) (5.6)

Since the output values y which lie in the bijectively mapped domain Yb only have one possible
root, |I(y)| is one for these values and the second integral vanishes. For all other values of y,
|I(y)| is 3, since there are three possible roots which map to the output value.

In order to compute some other bounds, first the error probability of the suboptimal estimator
presented in Section 3 is determined. As depicted in Equation 3.5, the suboptimal estimator
decides for the root which lies in the interval containing the highest probability mass.
If y ∈ Yb, only one root exists and therefore the choice is unambiguous. If this is not the case,
each value y has three possible roots, one in each of the intervals (− 20√

3
,− 10√

3
], (− 10√

3
, 10√

3
) and

[ 10√
3
, 20√

3
).

Since the maximum of the zero-mean Gaussian PDF lies in the second interval, and the width of
this interval is double the width of the other intervals, most probability mass lies in the second
interval, independent of the parameter σ. Thus, the suboptimal estimator always decides for the
root which lies in the interval (− 10√

3
, 10√

3
). The estimated input values x̂ are depicted in Figure 5.1.

The error probability of this estimator can be computed according to Equation 3.7, where
Xk = (− 10√

3
, 10√

3
):

P̂e = 1 − Pb −
∫

Xk\Xb

fX(x) dx = 1 − Pb −

10√
3

∫

− 10√
3

fX(x) dx = 2Q

(

10√
3σ

)

− 2Q

(

20√
3σ

)

(5.7)

Using the values of Pb, P̂e and L, the bounds of Equations 4.5, 4.6 and 4.7 can be computed as
follows:

H(X|Y ) ≤ 1 − Pb + P̂e log(L − 1) = 1 − Pb + P̂e (5.8)

H(X|Y ) ≤ P̂e log(L − 1) +
P̂e

L
log

(

L

L − 1

)

+ (1 + P̂e)H2(P̂e) (5.9)

= P̂e +
P̂e

3
log

(

3

2

)

+ (1 + P̂e)H2(P̂e) (5.10)
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H(X|Y ) ≤ P̂e log(L) + H2(P̂e) = P̂e log(3) + H2(P̂e) (5.11)

In order to compute the bounds based on MAP estimation, the error probability of this estima-
tor has to be determined. According to Equation 5.41, the root with the highest value of fx(xi)

|g′(xi)|
is chosen.

For this specific example, the denominator of this term is

|g′(x)| =

{

100 − 3x2 if − 10√
3
≤ x ≤ 10√

3

3x2 − 100 elsewhere
. (5.12)

Since the input PDF is Gaussian with zero mean, fX(xi) is always the highest for the root in the
interval (− 10√

3
, 10√

3
). Since also |g′(x)| grows very fast outside of this interval, one can suspect

that the MAP estimator also always chooses the root which lies in the interval including the
point of origin.
This assumption turns out to be true, as the following proof shows:

Proof. Since the input PDF is Gaussian with zero-mean and arbitrary variance σ2, the assump-
tion has to hold for every value of σ. If the variance of the input PDF is small, more probability
mass lies in the interval around the origin, and the MAP estimator is more likely to choose
the root which lies in this interval. Therefore, a Gaussian PDF with infinitely large variance is
assumed for this proof, which leads to a flat distribution. If the proof holds for this distribution,
it also holds for smaller values of σ2.
If the variance is infinitely large, the criterion for choosing the most probable root becomes

k = argmax
i ∈ I(y)

{

fX(xi)

|g′(xi)|

}

= argmax
i ∈ I(y)

{

1

|g′(xi)|

}

(5.13)

since fX(xi) is constant.

This criterion is equivalent to

k = argmin
i ∈ I(y)

{

|g′(xi)|
}

. (5.14)

Thus, it has to be shown that g(xi) always has the lowest absolute derivative for the root in the
interval (− 10√

3
, 10√

3
).

The roots of a given output value y of the third order polynomial can be determined by us-
ing Cardano’s method [5]. The three resulting roots xi, i = 1, ..., 3 of any output value y ∈ Y\Yb

result to be

xi = 2

√

100

3
cos

(

ϕ + 2πi

3

)

(5.15)

with

ϕ = arccos





y

2
√

106

27



 . (5.16)

There is one root in every interval of X\Xb, i.e. xi ∈ Xi.
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Due to symmetry, it is sufficient to show that

|g′(x3)| ≥ |g′(x2)| ∀ y ∈ Y\Yb. (5.17)

By inspecting the function g(x), it is obvious that then also |g′(x1)| ≥ |g′(x2)| ∀ y ∈ Y\Yb.

Using 5.12 in 5.17 yields

3x2
3 − 100 ≥ 100 − 3x2

2 (5.18)

which simplifies to

x2
3 + x2

2 ≥ 200

3
. (5.19)

Inserting the roots (5.15) into this inequality yields

(

2

√

100

3
cos

(

ϕ + 6π

3

)

)2

+

(

2

√

100

3
cos

(

ϕ + 4π

3

)

)2

≥ 200

3
(5.20)

and simplifying leads to

cos2
(ϕ

3

)

+ cos2

(

ϕ

3
+

4π

3

)

≥ 1

2
. (5.21)

Using the formula

cos2(x) =
1

2
cos(2x) +

1

2
(5.22)

yields

cos

(

2ϕ

3

)

+
1

2
cos

(

2ϕ

3
+

8π

3

)

≥ −1. (5.23)

This can be further simplified by using the formula

cos(α + β) = cos(α) cos(β) − sin(α) sin(β) (5.24)

leading to the inequality

cos
(π

3

)

cos

(

2ϕ

3

)

− sin
(π

3

)

sin

(

2ϕ

3

)

≥ −1. (5.25)

Using

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) (5.26)

yields

cos

(

2ϕ

3
+

π

3

)

≥ −1 (5.27)

which completes the proof.
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This proves that the absolute value of the derivative of the root in the interval (− 10√
3
, 10√

3
) is

always lower that the one at the roots in the other intervals. Thus, the MAP estimater chooses
the same roots as the suboptimal estimator.

As a consequence, the error probability of the MAP estimator is the same as the one of the
suboptimal estimator:

Pe = P̂e = 2Q

(

10√
3σ

)

− 2Q

(

20√
3σ

)

(5.28)

Using Equation 4.1 yields the following upper bound for the information loss:

H(X|Y ) ≤ min{1−Pb,H2(Pe)}+Pe log

(

max
y∈Y

{|I(y)|} − 1

)

= min{1−Pb,H2(Pe)}+Pe (5.29)

A lower bound based on Pe can be computed using Equation 4.3.

Figure 5.2 shows all the computed bounds of H(X|Y ) together with the simulated result in
MATLAB.
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Figure 5.2: Bounds of H(X|Y ) and Simulated Result

Inversely, if the information loss is known, the error probability of the MAP estimator can
be bounded using Equations 4.1 and 4.3. Because these inequalities are difficult to solve for Pe,
a MATLAB script was used, which computes the result iteratively.

Since the analytic result for H(X|Y ) cannot be computed in this example, the simulated value
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was used. Based on these values, an upper and lower bound for the estimation error of the MAP
estimator was computed in order to double-check the results. The MAP estimator was also
simulated in MATLAB and its error probability computed by comparing the real input values
with the estimated ones. The results are shown in Figure 5.3.
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Figure 5.3: Bounds of Pe

5.2 Example 2 - Sinusoidal Function, Shifted Triangular Distribution

Next, consider a sinusoidal function

g(x) = sin(πx) (5.30)

and a triangular PDF with mean m:

fX(x) =











x − m + 1 if −1 + m ≤ x ≤ m

1 − x + m if m ≤ x ≤ m + 1

0 elsewhere

(5.31)

Figure 5.4 illustrates both g(x) and fX(x) for m = −1
4 .

Unlike in the first example, the analytical computation of the information loss using Equa-
tion 2.8 is possible here.

In the following, the calculation of the information loss for a shift of the triangular PDF in
the interval m ∈ [−0.5, 0] is depicted. The integration range has to be split into four intervals,
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Figure 5.4: Sinusoidal Function and Triangular PDF

since the roots can either both lie on the increasing, resp. non-increasing side of the triangular
distribution, or on different sides. The derivative of g(x) disappears, since it is the same for
every root of an output value y.

H(X|Y ) =

∫

X

fX(x)log









∑

i∈I(g(x))

fX(xi)
|g′(xi)|

fX(x)
|g′(x)|









dx (5.32)

=

−m−1
∫

m−1

(x − m + 1) log

(

2x + 3

x − m + 1

)

dx +

m
∫

−m−1

(x − m + 1) log

( −2m + 1

x − m + 1

)

dx

+

−m
∫

m

(1 − x + m) log

( −2x + 1

1 − x + m

)

dx +

m+1
∫

−m

(1 − x + m) log

(

2m + 1

1 − x + m

)

dx

(5.33)

A closed solution for these integrals exists. The terms can be further simplified using basic
algebra, which leads to the final result for m ∈ [−0.5, 0]:

H(X|Y ) =
2(2m + 1) log(e) + (3 − 4m − 4m2) log(1 − 2m) + (1 + 4m + 4m2) log(1 + 2m)

4
(5.34)

For a triangular PDF which is shifted by m ∈ [0, 0.5] the calculations are very similar and yield

H(X|Y ) =
2(1 − 2m) log(e) + (3 + 4m − 4m2) log(1 + 2m) + (1 − 4m + 4m2) log(1 − 2m)

4
.

(5.35)
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These results can be combined leading to a single solution for m ∈ [−0.5, 0.5], which is

H(X|Y ) =
2(1 − 2|m|) log(e) + (3 + 4|m| − 4m2) log(1 + 2|m|)) + (1 − 4|m| + 4m2) log(1 − 2|m|)

4
.

(5.36)

The interval m ∈ [−0.5, 0.5] is the basic interval of the periodic function H(X|Y ) depending
on m. This means, that for higher, resp. lower, values of m the shift can be mapped into this
basic interval in order to compute the information loss. Figure 5.5 shows the information loss
in dependence of the shift m.

As a next step, the suboptimal estimator (Equation 3.5) for this example is derived.
In general, every output value y has two roots. An exception are the extrema at y = 1
and y = −1, which have only one root, and the value y = 0, which can have three roots if
m = 0.5 + k, k ∈ Z. Since the input random variable is continuous, these values can be ne-
glected, because they are met exactly with probability zero.
The domain X can be split into subdomains Xl, in which each input value is mapped bijectively.
These subdomains always lie between a minimum and a maximum of g(x). By inspecting fX(x)
and g(x) it is obvious that for every output value one root always lies in the subdomain Xl that
contains the peak of the input PDF. The following proof will show that this interval always
contains most of the probability mass, and therefore this root is always the one that is chosen
by the suboptimal estimator.

Proof. Because of periodicity, it is sufficient to prove this statement only for any m ∈ [−0.5, 0.5].
For this range of values for m, the interval containing the peak of the PDF is Xz = [−1

2 , 1
2 ]. The

probability mass lying in this interval can be computed as follows:

∫

Xz

fX(x) dx =

(

x2

2
− mx + x

)

∣

∣

∣

∣

∣

m

− 1
2

+

(

−x2

2
+ mx + x

)

∣

∣

∣

∣

∣

1
2

m

(5.37)

=
3

4
− m2 ≥ 1

2
∀ m ∈ [−0.5, 0.5] (5.38)

Thus, the interval containing the maximum of the triangular input PDF always contains at least
half of the probability mass, which completes the proof.

The error probability of the suboptimal estimator is computed as (3.7)

P̂e = 1 − Pb −
∫

Xk\Xb

fX(x) dx = m2 +
1

4
∀ m ∈ [−0.5, 0.5] (5.39)

since Pb = 0, because no probability mass is mapped bijectively.

Using the result for P̂e, the bounds for the information loss can be computed, as done in Exam-
ple 1. The non-zero values of the input PDF are lying in three different intervals Xl, if m is not
exactly at a maximum or minimum of g(x). If that is the case, only two intervals are covered
by the input PDF. Thus,

L =

{

2 if m = 0.5 + k, k ∈ Z

3 else
. (5.40)
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The three upper bounds based on the values of P̂e, Pb and L are depicted in Figure 5.5.

The question arises, if the MAP estimator performs better than the suboptimal estimator in
this example. Recall that the MAP estimator chooses the root

x̂(y) = g−1
k (y) (5.41)

where

k = argmax
i ∈ I(y)

{

fX(xi)

|g′(xi)|

}

. (5.42)

Because of the symmetry and periodicity of the sinusoidal function,

|g′(xi)| = const. ∀ i ∈ I(y). (5.43)

Thus, the MAP estimator decides for the root which maximizes fX(x). The probability is the
highest near the peak of the input PDF and decreases linearly with the distance to it. Therefore,
because there is always exactly one root in the interval containing this peak, the MAP estimator
also always decides for this root. As in Example 1, the MAP estimator is equivalent to the
suboptimal estimator, which means that the error probabilities are the same:

Pe = P̂e = m2 +
1

4
∀ m ∈ [−0.5, 0.5] (5.44)

The bounds of the information loss based on Pe (Equations 4.1 and 4.3) are also included in
Figure 5.5.
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Figure 5.5: Bounds of Information Loss an Analytic Result

An analytic result for the information loss could be derived in this example, which can be
used to bound the error probability of the MAP estimator as done in Example 1. The resulting
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bounds together with the computed and simulated values for the error probability are depicted
in Figure 5.6.
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Figure 5.6: Bounds of Pe

5.3 Example 3 - AR(1) Model

Finally, consider the system depicted in Figure 5.7. The input Z of this system is uniformely
distributed between [−a, a]. Therefore, X is an autoregressive model of first order (AR(1) model)
and satisfies the Markov property. This means that each value of x only depends on the previous
value. The Markov kernel in dependence of the filter coefficient z0 is given as

fM(x1|x0) =

{

1
2a

−a < x1 − z0x0 < a

0 else
. (5.45)

As long as z0 is sufficiently close to 1, X can be approximated by a zero-mean Gaussian random
process with variance

σ2 =
a2

3(1 − z2
0)

. (5.46)

The function g(x) is a magnitude function, which is shifted along the x-axis by the parameter
m:

g(x) = |x − m| =

{

−x + m x ≤ m

x − m x > m
(5.47)
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Figure 5.7: AR(1) Model

The first order upper bound can be computed using Equation 4.14:

H(X|Y) ≤
∫∫

X 2

fM (x1|x0)fX(x0) log











|g′(x1)|
∑

i1∈I(g(x1))

fM (x
(i1)
1 |x0)

|g′(xi1
1 )|

fM(x1|x0)











dx1dx0 (5.48)

=

∫∫

X 2

fM (x1|x0)fX(x0) log









∑

i1∈I(g(x1))

fM (x
(i1)
1 |x0)

fM(x1|x0)









dx1dx0 (5.49)

since |g′(x)| = 1 ∀ x. Next, the limits for x0 and x1 are inserted. While x0 can have any value,
x1 has to be in a neighborhood [z0x0 − a, z0x0 + a] around x0. Using Equation 5.45 yields

=

∞
∫

x0=−∞

z0x0+a
∫

x1=z0x0−a

1

2a
fX(x0) log



2a
∑

i1∈I(g(x1))

fM(x
(i1)
1 |x0)



 dx1dx0 (5.50)

The roots of g(x1) are x1 and 2m − x1, thus the sum can be evaluated as

=
1

2a

∞
∫

x0=−∞

fX(x0)

z0x0+a
∫

x1=z0x0−a

log (2a(fM (x1|x0) + fM(2m − x1|x0))) dx1dx0. (5.51)

Using again Equation 5.45 and the fact that due to symmetry

∞
∫

−∞

fX(x0) dx0 = 2

∞
∫

0

fX(x0) dx0 (5.52)

leads to

=
1

a

∞
∫

x0=0

fX(x0)

z0x0+a
∫

x1=z0x0−a

log (1 + 2a fM (2m − x1|x0)) dx1dx0. (5.53)

The Markov kernel fM(2m−x1|x0) is non-zero only for x1 ∈ [x0z0−a, 2m−x0z0 +a]. Therefore,
the equation simplifies to

=
1

a

m+a

z0
∫

x0=0

fX(x0)

2m−x0z0+a
∫

x1=x0z0−a

dx1dx0 =
2

a

m+a

z0
∫

x0=0

fX(x0)(m − x0z0 + a) dx0. (5.54)
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This integral can be solved using integration by parts:

=
2

a
(m + a)

(

FX

(

m + a

z0

)

− FX(0)

)

− 2z0

a

m+a

z0
∫

0

fX(x0)x0 dx0 (5.55)

=
2

a
(m + a)

(

Q

(

m + a

z0σ

)

− 1

2

)

− 2z0σ

a
√

2π

(

e
− (m+a)2

2σ2z2
0

)

(5.56)

Using Equation 5.46, the final result for the upper bound of the information loss is the following:

H(X|Y) ≤ 2

a
(m+a)Q

(

(m + a)
√

3 − 3z2
0

z0a

)

−m + a

a
−
√

2z2
0

3π(1 − z2
0

(

1 − e
− 3(m+a)2(1−z

2
0

2z2
0

a2

)

(5.57)

This bound is tight only for the case m = 0. In any other case, the conditions for a first-order
Markov output process (Equations 4.15 and 4.16) are not fulfilled.

Since the computation of the first order lower bound of H(X|Y), i.e. Equation 4.13, is much
more difficult, it was not carried out in this work.

Figure 5.8 shows the first order upper bound of H(X|Y) for different values of m.
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Figure 5.8: First Order Upper Bound of H(X|Y)
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The MAP estimator for this example was simulated in MATLAB. Recall that the MAP es-
timator for the reconstruction of a single output value based on all input values is defined as

x̂n(yn
0 ) = arg max

x
(in)
n :in∈I(yn)







∑

in−1
0 ∈I(yn−1

0 )

fX(x
(i0)
0 )

|g′(x(i0)
0 )|

n
∏

k=1

fM (x
(ik)
k |x(ik−1)

k−1 )

|g′(x(ik)
k )|







. (5.58)

Since only the reconstruction based on the last two output values is considered in this work, the
estimator simplifies to

x̂n(yn
n−1) = arg max

x
(in)
n :in∈I(yn)







∑

in−1∈I(yn−1)

fX

(

x
(in−1)
n−1

)

fM

(

x(in)
n |x(in−1)

n−1

)







. (5.59)

Every output value y has two roots, namely

x(0) = m − y (5.60)

x(1) = m + y (5.61)

Inserting these roots into Equation 5.59 yields

Px(0) = fX(m − yn−1)fM(m − yn|m − yn−1) + fX(m + yn−1)fM (m − yn|m + yn−1)

(5.62)

Px(1) = fX(m − yn−1)fM(m + yn|m − yn−1) + fX(m + yn−1)fM (m + yn|m + yn−1)
(5.63)

x̂n(yn
n−1) =

{

x(0) if Px(0) > if Px(1)

x(1) else
(5.64)

The error probability Pe of this estimator can be lower bounded by using the upper bound
for H(X|Y ) in Equation 4.3.
As a lower bound for Pe, the error probability of a sample-by-sample MAP estimator as in the
first two examples is used. Since |g(x)′| = 1 ∀x, this estimator chooses the root with the highest
value of the input PDF. If m is positive, this is always the root on the left, i.e. x(0). The root
x(1) is always chosen if m is negative. The error probability of the sample-by-sample estimator
is

P̃e = 1 −
∫

Y

max
i ∈ I(y)

{

fX(xi)

|g′(xi)|

}

dy. (5.65)

Thus, for this example the error probability is

P̃e = Q

( |m|
σ

)

. (5.66)

Figure 5.9 shows the simulated error probability of the MAP estimator together with the upper
and lower bound for different values of the filter parameter z0 and a mean value of m = a

2 .
The results for m = a

4 are depicted in Figure 5.10.
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Figure 5.9: Bounds of Pe, m = a/2
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Figure 5.10: Bounds of Pe, m = a/4
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The three examples elaborated in this work have shown that it can be difficult to compute the
information loss of a RV passing through a nonlinear system analytically. Fortunately, several
bounds exist, which can be computed in a much easier way. These bounds are sometimes not
very tight, but can often limit the possible range quite well. Also the MAP estimator can be
difficult to compute in some cases, but the examples have shown that similar, easier but subop-
timal estimators can achieve the same error probabilities if certain conditions on the symmetry
of the function are met. In the remainder of this Section the results of each of the examples are
discussed.

In Example 1, it can be seen in Figure 5.2 that the information loss first increases with the
variance of the input PDF, but after reaching its peak it decreases with higher values of σ. If
the variance is very low, the vast majority of the probability mass is located in the interval
around the origin, which means that only very few output values originate from the outer in-
tervals and little information is lost. If the variance rises, more and more probability mass is
located in the other intervals, and the error probability of the estimator grows. After reaching
a certain value of σ, the information loss decreases again, because for very large variances more
and more probability mass is located in the intervals which are mapped bijectively, which means
that many input values can be reconstructed without loss of information.
It is also notable that the bounds based on the reconstruction error are quite good, especially
for large values of σ. Therefore, the information loss can be estimated quite accurately without
knowing its exact value.

The information loss in Example 2, depicted in Figure 5.5, is exactly 1 Bit, if the peak of
the triangular input PDF is located at an extremum of the sinusoidal function. In that case,
one can only guess from which of the two roots the output values origin, due to the symmetry
of both the PDF and the sinusoidal function. The least information is lost if the PDF is shifted
to a zero of the function. In that case, one root is always quite a lot more probable than the
other, since the other one is much further away from the peak of the PDF.
Unfortunately, the bounds of H(X|Y ) are not very tight in this example. An exception is the
case where the input PDF is located at an extremum of g(x). Here, both a tight upper and
lower bound exist, and therefore give an exact result for the information loss. In any other case,
the upper bounds are useless, since all of them only indicate that the information loss is below
1 Bit. Since there are only two roots associated with any output value, this is an obvious result,
since guessing blindly between two values is equivalent to an information loss of 1 Bit.
Since an analytic result for H(X|Y ) is present, it can be used to bound the error probability
of the MAP estimator. The estimator was also simulated in MATLAB in order to evaluate the
bounds. Again, both a tight upper and lower bound exist if the input PDF is located at an
extremum.
Both in Example 1 and Example 2 the suboptimal estimator performed equivalently to the MAP
estimator, but was easier to derive.

Considering Example 3, it is shown that the information loss decreases with the shift parameter
m. This is quite intuitive, since the input PDF is symmetric around the origin. If g(x) is shifted
away from the origin, the probabilities of the roots differ more and more, and estimation is
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easier. The most notable fact in the third example is that the MAP estimator x̂n = f(yn, yn−1)
performes worse with increasing filter parameter z0, even though the information loss decreases
with increasing z0. As a suggestion for future work, it would be interesting if taking into account
more than two output values affects this behavior. Also the derivation of an analytic result for
the error probability of the MAP estimator would be desirable.
Figure 5.9 and 5.10 show that by taking into account more than just one output value, the error
probability of the estimator can be lowered. It could be subject of future work to investigate the
effects of not only estimating one input value by several output values, but also several input
values by several output values, i.e. (x̂n...x̂n−L) = f(yn, ...yn−L), which would probably lead to
improved results.
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