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Abstract

Hidden Markov Model (HMM)-based text-to-speech synthesis systems have grown in popu-
larity over the last years, as they are very flexible in generating speech with various speaker
characteristics, emotions and speaking styles. HMM-based text-to-speech synthesis is also
often referred to as statistical parametric speech synthesis. To create a voice, statistical
parametric models are built from a speech corpus. Using these models, an arbitrary text can
be converted into a speech parameter sequence that fulfills a maximum likelihood criterion.

Due to the statistical processing, certain characteristics of a parameter sequence get lost.
To recover these characteristics, variance based features in the parameter generation process
are investigated in this thesis, and a new roughness based feature is proposed that describes
the presence of fast variations of a cepstral time sequence. The values of both the variance
and roughness based features are significantly smaller in standard HMM-based synthetic
speech than in natural speech. A method to increase the roughness of a parameter sequence
is described and was tested in a listening test. It was found that the roughness criterion
reduces temporal over-smoothing, but also introduces audible discontinuities.

All the algorithms have been developed and tested using the HMM-based Speech Synthesis
System (HTS) released by the Nagoya Institute of Technology.
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Kurzfassung

Hidden Markov Model (HMM)-basierte Sprachsynthesesysteme haben in den letzten Jahren
an Beliebtheit gewonnen, da sie eine einfache Methode bieten, Sprache mit verschiedensten
Sprechercharakteristiken, emotionalen Färbungen oder Sprechstilen zu erzeugen. HMM-
basierte Sprachsynthesesysteme werden oft auch als statistische parametrische Sprachsyn-
thesesysteme bezeichnet. Um eine Stimme zu generieren, werden statistische parametrische
Modelle aus einem Sprachkorpus gebildet. Mithilfe dieser trainierten Modelle können mittels
einer Maximum Likelihood Schätzung Sprachparametersequenzen aus einem beliebigen Text
gewonnen werden.

Bei der statistischen Modellierung des Trainingskorpus gehen bestimmte Eigenschaften
der Sprachparametersequenzen verloren, was zu einer Verschlechterung der Sprachqualität
führt. In dieser Diplomarbeit soll der Einfluss von Varianz-basierten Merkmalen auf die
Sprachqualität untersucht werden, als auch ein neues Rauheits-Merkmal eingeführt werden,
das schnelle Variationen einer Parameterkurve beschreibt. Sowohl die Varianz- als auch die
Rauheitswerte von Sprache, die mit einem Standard-HMM System generiert wurde, sind sig-
nifikant geringer als bei natürlicher Sprache. Eine Methode zur Erhöhung der Rauheit wird
vorgestellt und in einem Hörtest getestet. Es stellte sich heraus, dass das eingeführte Rauheit-
skriterium zwar das Problem einer übermäßigen Glättung der Parameterkurven behebt, aber
zusätzlich hörbare Artefakte erzeugt, die die Sprachqualität beeinträchtigen.

Alle Versuche und Tests in dieser Diplomarbeit wurden mit dem HMM-based Speech
Synthesis System (HTS) durchgeführt, das vom Nagoya Institute of Technology entwickelt
wurde.
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Chapter 1

Introduction

Speech is one of the most important and complex interaction forms between humans. Since
the 2nd half of the 18th century people have been trying to create synthetic speech. The
first attempts were made in 1773 by Ch. G. Kratzenstein and Wolfgang von Kempelen, who
generated voice-like sounds with a mechanical model using resonance tubes. In the 1950ies
an electrical model was introduced to produce speech by passing an electric source signal
through a filter. Since 1970 the development of speech synthesis has been closely associated
with the raise of the computer technology. Computers have made it possible to concatenate
stored words or shorter segments, and the first systems were developed to convert text to
speech.

Today’s speech synthesis systems can be categorized into rule based and data based
synthesis:

Rule based synthesis relies on rules developed by linguists to generate speech parameter
without using samples of human speech. This permits great flexibility on one hand but - as
the generation of speech is a very complex procedure - it is very difficult to find optimal rules
to make speech sound natural on the other hand.

Data based synthesis systems concatenate acoustical units to generate speech. With the
increasing memory and processing power of computers in the last decades, they have more
and more outperformed rule-based approaches.

Furthermore, the data based synthesis systems can be divided into unit-selection and
statistical parametric speech synthesis systems:

In 1992, the ATR ν-talk system [SKIM92] was published and was the first to show the
effectiveness of automatic selection of appropriate units [BZT07]. This so-called unit-selection
approach is still dominant in speech synthesis. The quality of the generated speech is directly
related to the quality and amount of the recordings of the speech database. This facilitates
very natural-sounding speech, but also limits the output speech to the speaking style and
voice of the original recordings. To obtain different speakers and speaking styles, recordings
of huge databases are required, which is very time and money consuming. IBM’s stylistic
synthesis [EAB+04] is one good example for such a system. One of the probably best known
unit selection systems is the Festival Speech Synthesis System [TBC98] developed at the
University of Edinburgh.

Regarding the flexibility in generating speech variations, statistical parametric speech syn-
thesis produces promising results and has grown in popularity over the last few years. In
direct contrast to the selection of actual instances of speech from a database, statistical para-
metric speech synthesis might be most simply described as generating the average of some
sets of similar-sounding speech segments [BZT07]. Statistics are obtained from a database
and fed into generative statistical models. According to these statistics, new speech param-
eter can be generated. Compared to unit-selection systems, parametric statistical systems
still lack naturalness of the generated speech. Important details of the speech waveform get
lost due to the averaging in the training step, and the models have to be very complex to
represent natural-sounding speech.

The term parametric means that a parametric representation of the speech waveform is

13



14 CHAPTER 1. INTRODUCTION

used, not the waveform itself. The speech signal is split into a filter signal, which represents
the resonances of the vocal tract, and a source signal, which represents the excitation signal
produced by the glottis. Using a parametric representation facilitates the modification of the
voice characteristics, the speaking style or the emotional expression of the generated speech.
The synthesis system can be applied to various languages with little modification and has a
relatively small footprint [BZT07].

Of course, there have also been proposed hybrid speech synthesis systems that unify
the advantages of both unit-selection and statistical parametric systems [ZTB09]. E.g., in
[YZTW07], the authors take speech spectrum vectors from a codebook to resolve the over-
smoothing problem of the statistical modeling.

In the Blizzard Challenge of the recent years, where a common database is provided for
participants to build a synthetic voice, Hidden Markov Model (HMM)-based synthesis systems
have proved to be the most preferred (MOS score) and most understandable (WER score)
systems among statistical parametric speech synthesis systems, even though its naturalness is
still far from natural speech [BZT07,ZTB09]. The success of the HMMs can be explained by
the following reasons [TT07]: 1) the HMM is capable of modeling a time sequence of speech
parameters as it has been widely used in speech synthesis, 2) many techniques, that have
originally been developed for HMM-based speech recognition, can be applied, 3) the HMM
is mathematically tractable and hence facilitates modifications of the speech parameters in
order to change the voice characteristics.

1.1 Motivation

As I am working as a sound engineer in the film business, I very often encounter the problem
of recording voices in noisy environments. It happens regularly that the recorded sound
cannot be used and has to be exchanged in the post-production, using a very time-consuming
procedure called automatic dialog replacement (ADR). This implies finding the right speaker
and recording new samples of the speech that synchronize with the image. If clean speech
could be generated to exchange the noise-polluted parts, a lot of time and money could be
saved. This very complex task requires high quality speech synthesis that allows mimicking
the actor’s speaking style, emotion and voice characteristics. At the current state of the art,
we are still far from realizing such a system. In this thesis, I want to find out where the
problems in current systems are and to contribute a small step in the direction of the holy
grail of speech synthesis, which is to produce speech that is indistinguishable from natural
speech.

1.2 Goal

In the case where only few training data is available and the objective is to generate speech
with a great variety of emotions, styles and speakers, a parametric statistical speech system
performs best. The HMM-based speech synthesis system (HTS) [YMKK99] is an open source
framework for HMM training and synthesis, which is widely used among researchers. Within
the limited time of this thesis I want to achieve the following aims:

• Understand and document the speaker dependent demo scripts provided with HTS 2.1.1

• Analyze the weaknesses of the system and review different solutions that have been
proposed so far.

• Develop a new approach, implement and evaluate it
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1.3 Organization of the thesis

This thesis describes different algorithms to enhance the generation of natural-sounding
speech using the Hidden Markov Model-based Speech Synthesis System (HTS).

Chapter 2 reviews some theoretical aspects that are important to understand this thesis.
The source-filter model of speech production is introduced and two methods are described
to extract the spectral envelope of a speech signal: linear prediction coding (LPC) and
the cepstral analysis. In the previous versions of the HTS, a Mel Logarithmic Spectrum
Approximation (MLSA) filter converted the cepstrum back to the speech spectrum and is
shortly described. In the current version, the authors propose the integration of STRAIGHT
(Speech Transformation and Representation using Adaptive Interpolation of weiGHTed spec-
trum [Kaw97]) as a synthesis filter. An overview of different vocoding techniques is given
with a focus on STRAIGHT.

Chapter 3 describes the system architecture of a typical HMM-based Speech Synthesis
system. The parameter generation algorithm is derived and known drawbacks are discussed.

Chapter 4 describes the HTS 2.1.1 system. Drawbacks of the system are identified and
described.

In chapter 5, variance characteristics of a speech signal, which have been removed during
the modeling process, are investigated. A roughness based feature is proposed to describe
the presence of high frequencies in a parameter trajectory.

A listening test was conducted to evaluate the different approaches. The test design and
the results are presented in chapter 6.



16 CHAPTER 1. INTRODUCTION



Chapter 2

Theoretical Background

2.1 Parametric models of speech

It is very difficult to find a mathematically tractable parametric model of speech that describes
exactly the real anatomy and physiology of the human speech production system. What
we need to find is a simple mathematical representation that describes well the essential
properties of the speech signal.

2.1.1 Source-filter model vs. Harmonic+Noise

The source-filter model

In the source-filter model (Fig. 2.1), the speech signal is split into two parts: the excitation
source and the vocal tract filter, see also [VHH98].

Excitation
Time-varying

vocal tract
f i l ter

source
parameters

fi l ter 
parameters

v(k) x(k)

Figure 2.1: digital source-filter model

The excitation source The source parameters of the speech model represent the excitation
of the lungs and the vocal chords. Four different excitation patterns can be described:

• Impulse trains (for voiced sounds, e.g., vowels) are produced by periodically opening
and closing the glottis while exhaling, leading to a quasi-periodic oscillation determining
the fundamental frequency F0.

• Noise (for unvoiced sounds, e.g., fricatives) is produced by air turbulences in the larynx
and pharynx, while exhaling through the open glottis.

• Single impulses (for unvoiced sounds, e.g., plosives) are produced by exhaling with
open glottis. The lips are closed to increase the pressure in the vocal tract and then
suddenly opened.

• Silence between other excitation patterns is important to create certain sounds (e.g.,
plosives).

17
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+

C(z)

v(k)

-

+ x(k)
White
noise

Impulse
generator

H(z)

Figure 2.2: All-pole vocal tract model

The filter The human vocal tract is the cavity where the excitation that is produced at the
larynx is filtered and includes the pharynx, the oral and the nasal cavities. It can be simplified
by a set of tubes, that has open ends (the lips and the nasals) and a closed end (the glottis),
forming a body where resonances can occur due to reflections at both ends. These resonances
correspond to standing waves inside the tube and therefore depend on the extension of the
vocal tract. The resonances appear at certain frequencies called formants. The average length
of the vocal tract of an adult man is about 17 cm, which corresponds to a standing wave with
a fundamental frequency of about 500 Hz. While talking, we continuously change the volumes
of our vocal tract (with the tongue or the lips), which means the corresponding resonance
filter is time-varying. Nevertheless, the filter can be assumed to be quasi-stationary, when
restricting our analysis to periods of about 5-10 ms, leading to a minimum sampling rate of
100 Hz for the filter coefficients. In the system described in the later sections (see chapter 4)
a sampling rate of 200 Hz is used.

Describing a model structure that perfectly models the vocal tract, leads to very complex
filters with a lot of zeros and poles [VHH98]. As we want to encode and decode with our para-
metric model, a filter has to be found, that can be inverted without any stability problems.
A minimum-phase system exactly has this property, as by definition all its zeros are located
inside the unit circle. Any system can be split into a minimum-phase system and an allpass,
and as the minimum-phase part includes all the relevant information about the formants,
the allpass can be neglected in this case. The remaining zeros of the minimum-phase system
can be approximated by a series of poles, such that an all-pole filter can be designed that
sufficiently models the formant structure of speech as seen in 2.2. The vocal tract filter H(z)
is represented by a feedback-loop with the filter coefficients (poles) given in C(z) [VHH98].

The harmonic plus noise model (HNM)

The harmonic plus noise model was originally developed in 1987 by Daniel W. Griffin at the
MIT [Gri87] as an approach to reduce the “buzziness” of a vocoder.

The HNM assumes the speech signal to be a sum of two parts:

• The harmonic part, represented by a sum of sinusoids of multiples of the fundamental
frequency (deterministic part)

• The noise part, using an all-pole filter excited by random white Gaussian noise
(stochastic part)

When synthesizing voiced sounds, frequencies beyond a maximum voiced frequency are gen-
erated by the fundamental frequency sinusoid and its harmonics, while frequencies above the
threshhold are represented by noise modulated by the envelope. This makes the synthesis of
voiced segments sound more natural. The HNM has been integrated into the HTS system
in [Hem06] and reported to improve the naturalness of the synthesized speech.
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2.1.2 Autoregressive model - linear prediction coding (LPC)

The vocal tract can be interpreted as an ensemble of various acoustic resonators, that produce
decaying exponentials after being excited. These decaying exponentials are predictable when
no new excitation signal occurs and can be modeled by a linear filter with the coefficients
ak. The fact that neighboring samples in speech are correlated, can be exploited for speech
coding.

An autoregressive filter (Fig. 2.3) can be designed with an equivalent structure as the
source-filter model of the speech production model in Fig. 2.2. When the filter coefficients
ak are chosen to match the vocal tract filter coefficients ck, the prediction error signal d(k)
represents the excitation v(k) of the vocal tract. The LPC filter coefficients ak can be found
by minimizing the error between the predicted speech signal and the actual speech signal.

The speech signal x(k) at time frame k can finally be described by the LPC coefficients
ak and the residual d(k), where

d(k) = x(k)−
n∑
i=1

aix(k − i)

with n denoting the number of past samples used for prediction.
The number of coefficients n determines the accuracy of the model, and hence the size of

the residual.

+

A(z)

x(k)

-

+ d(k)

Figure 2.3: Digital AR filter

2.1.3 Exponential model - cepstral analysis

Another way of splitting the speech signal into its source and filter component is the use
of the cepstrum. This idea arises from the fact that, when looking at the spectrum of a
speech signal, two parts can be distinguished: a fast varying part representing the excitation
source, and a slow varying part representing the envelope of the curve. The envelope can
be interpreted as a filter shaping the excitation signal, therefore separating the source signal
from the filter signal is equivalent of separating the high frequency components from the low
frequency components (envelope) of the spectrum.

The cepstrum of a speech signal is computed as follows (Fig. 2.4) [Zoe02]):

Figure 2.4: Spectral envelope computation by cepstrum analysis [Zoe02]
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First, the discrete Fourier transform X(k) of the time signal x(n) is calculated to yield
the spectrum of the signal:

X(k) =
N−1∑
n=0

x(n)W kn
N = |X(k)|ejϕx(k) (2.1)

Next, the complex natural logarithm is taken:

X̂(k) = logX(k) = log|X(k)|+ jϕx(k) (2.2)

In many applications it is sufficient to use the real cepstrum [VHH98], so only the real part
X̂R of X̂(k) is used.

X̂R(k) = log|X(k)| (2.3)

The advantage of taking the logarithm of the spectrum lies in the fact that all the multi-
plications are converted into additions. Assuming the spectral magnitude of a speech signal
X(ejω) to be a product of the magnitude of the excitation signal V (ejω) and the filter fre-
quency response H(ejω) in the frequency domain

|X(ejω)| = |V (ejω)| × |H(ejω)|, (2.4)

then applying the logarithm yields

log|X(ejω)| = log|V (ejω)|+ log|H(ejω)| (2.5)

This sum is mathematically easier to handle than a product because the signal stays linear; a
sum of two linear systems is always linear, which is not true for the product. In linear signals,
additive terms can be separated, each term can be modified by a function separately, and
the results can be summed up again (principle of superposition). Furthermore, the log has
the nice property of attaching more importance to lower frequencies, which goes well with
our hearing system. To evaluate the rate of fluctuations of the spectrum, another Fourier
transformation is used to yield the cepstral coefficients cx(m) of the signal x. Normally, the
inverse Fourier transform (IFFT) is used that differs from the FFT only by a sign change
and the factor 1

N :

cx(m) =
1
N

N−1∑
k=0

X̂R(k)W−kmN (2.6)

As the slow variations of log |X(ejω)| are assigned to the filter component |H(ejω)| and
the rapid ones to the source |V (ejω)|, one can simply separate them by using a ”highpass
window“ and a ”lowpass window” respectively. This is called “liftering“ in analogy to the
filtering operation in the frequency domain . To define the cut-off “quefrency” (from cepstral
frequency) between source and filter, the periodicity of the cepstrum can be analyzed. Due
to the fact that the quefrency is a time variable, the cepstrum shows periodicities whenever
the excitation is periodic. Everything below the minimal periodic quefrency can be assigned
to the spectral envelope [Zoe02].

In speech synthesis we want to reconstruct the spectral envelope given the cepstral coef-
ficients c(m). This is done by reverting the steps explained in Fig. 2.4. It has to be stated
that the real cepstrum is not invertible, i.e. x[n] cannot be recovered from cx[n], because the
real cepstrum is calculated only from the magnitude |X(k)| of the Fourier transform. Only
assuming a zero-phase, x[n] can be calculated from cx[n]. Taking the FFT, the exponential
and the IFFT of Eq. 2.6 yields

x(n) = IFFT [exp{FFT [cx(m)]}] (2.7)
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To describe the frequency response of the spectral envelope H(ejω) in terms of the cepstral
representation ch(m) we calculate

H(ejω) = exp
M∑
m=0

ch(m)W km
N (2.8)

This representation of the spectral envelope’s filter response H(ejω) is referred to as “the
exponential model” [TZ09a]. It cannot be directly modeled by a filter, as it is not a rational
function, and hence has to be approximated (see 2.2.1).

2.2 Vocoding approaches

The vocoder synthesizes speech by filtering an excitation signal with a vocal tract filter
impulse response as shown in figure 2.2. The most simple approach uses white noise for the
excitation of unvoiced segments and a periodic pulse train for voiced segments. In reality,
voiced segments also consist of a noisy part that is not modeled in the simple approach.
Replacing noise-like energy in the original spectrum with periodic energy in the synthetic
spectrum leads to a perception of “buzziness“, which is the main vocoding problem.

2.2.1 Cepstral vocoding using the LMA/MLSA filter

The spectrum of a speech signal is calculated from the cepstral coefficients by solving Eq. 2.8.
Nevertheless, it is difficult to implement an ideal filter having this exact transfer function,
because it is not rational. The log magnitude approximation (LMA) filter approximates Eq.
2.8 using an infinite impulse response (IIR) filter design [TKI95a]. However, the spectrum
is not reconstructed perfectly and there is hearable degradation in speech quality because of
this approximation.

A Mel log spectral approximation (MLSA) filter was proposed 1983 by Imai et al. [Ima83]
and has been frequently applied in speech synthesis, when using a Mel scale frequency warped
spectrum.

2.2.2 STRAIGHT vocoding

The STRAIGHT (Speech Transformation and Representation using Adaptive Interpolation
of weiGHTed spectrum) is a tool for manipulating, analyzing and synthesizing voices, based
on the source-filter model [Kaw97,KEF01,Kaw06]. It is very popular along speech synthesis
research groups and has gained a lot of awards. E.g., a STRAIGHT based TTS system won
the first place in the Blizzard challenge reported at INTERSPEECH 2005 [ZT05]. Basically,
STRAIGHT is a channel vocoder, that represents the signal as a source signal and a frequency
band dependent filter. Three parameters are used to represent the speech signal:

• the fundamental frequency (F0) with voicing information f0(t):

• STRAIGHT spectrogram P (ω, t)

• aperiodicity map A(ω, t)

The STRAIGHT parameters

Mixed excitation STRAIGHT uses mixed excitation consisting of a weighted sum of a
pulse train with phase manipulation and Gaussian noise (Fig. 2.5).
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Figure 2.5: Excitation signal generation in STRAIGHT [TZ09a]

Jitter (the time difference between two adjacent pairs of impulses) and Shimmer (the
amplitude difference between two adjacent impulses) are also implicitly implemented. The
frequency domain aperiodicity measure controls the spectral shape of the noise and a time
domain concentration measure defines the temporal envelope of the noise [KEF01]. Ran-
domly chosen group delays in higher frequency regions are also used to reduce the perceived
”buzziness” of the signal.

STRAIGHT spectrum When looking at voiced speech, the periodic excitation of a set
of resonators by a pulse train can also be seen as a sampling operation. A periodic signal
s(t) = s(t + nτ0) with a fundamental period τ0 provides information about the produced
spectrum for every τ0 in the time domain and every f0 = 1

τ0
in the frequency domain [Kaw97].

As the transfer function of the vocal tract is not band-limited, aliasing errors might be
introduced when the sampling frequency (i.e., the pulse train frequency) is less than two
times the highest frequency of the vocal tract transfer function.

Spectral distortions can also be caused by fundamental frequency estimation errors. Tem-
poral periodicity occurs due to phase interference between adjacent components [Kaw06]. The
periodic interferences in both the time and frequency domain can be seen in the left panel of
Fig. 2.6.

STRAIGHT uses two steps to solve this problem.

1. Remove temporal periodicity by using a complementary set of windows

2. Inverse filtering and spectral smoothing in a spline space

The resulting STRAIGHT spectrum is shown in the right panel of Fig. 2.6.
As the STRAIGHT spectrum claims to be F0-independent, higher cepstral coefficients

can be calculated without having the problem of interferences between cepstrum and F0 in
the higher coefficients. Using the STRAIGHT-cepstrum, 39 cepstral coefficients can be used
instead of 13 when using the conventional cepstrum.

Aperiodicity map Speech sounds are not strictly periodic. Excitation and filter compo-
nent are fluctuating in frequency and amplitude, due to the movements of the articulators
and to the varying fundamental frequency. The energy of inharmonic frequencies normalized
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Figure 2.6: Estimated spectra of Japanese vowel /a/. The three-dimensional plot has a frequency axis (left
to right in Hz), a time axis (front to back in ms) and a relative level axis (vertical in dB). Left panel shows
the spectrogram calculated using an isometric Gaussian window. The right panel shows the STRAIGHT
spectrogram. (Taken from [Kaw06])

by the total energy provides a good measure of aperiodicity. In order to reliably model the
aperiodicity, it is averaged on five frequency sub-bands (i.e.,0-1, 1-2, 2-4, 4-6, 6-8 KHz).

Tandem-STRAIGHT

Tandem-STRAIGHT [KMT+08] was released in 2007 as a reformulation of STRAIGHT,
which is based on nonlinear transformations and many coefficients for tuning, making a
theoretical analysis of the system intractable. The new approach eliminates ad-hoc parameter
tuning and the heavy demand on computational power, from which STRAIGHT has suffered
in the past. It also introduces a new power-spectrum estimation method called TANDEM,
that eliminates periodic temporal fluctuations while preserving the quality of the current
STRAIGHT version.
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Chapter 3

HMM-Based Speech Synthesis

The HMM-based synthesis is among the most preferred methods of all the statistical para-
metric synthesis techniques, proved by a high number of entries for the Blizzard Challenge
2009 [OWT09].

3.1 System architecture

3.1.1 Overview

Fig. 3.1 shows the basic structure of a HMM-based speech synthesis system. The speech
signal is split into excitation and spectral parameters according to the source-filter model
(2.1.1). Due to a transcription code provided by a label file, the speech data is further
divided into phonetic units. Each phonetic unit is statistically modeled by a HMM.

Figure 3.1: HMM-based speech synthesis system (HTS) [ZON+09]

The label file contains information about the sequence of the phonetic units and prosodic
features, such as rhythm, stress, intonation and contextual factors (full-context modeling,
[Yam06]), e.g.:

• the current and the two preceding and succeeding phonemes

• the number of morae in a sentence (the mora determines the weight of a syllable, its
stress and timing)

25
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• the position of the breath group in a sentence (a breath group is a part of an utterance
that is spoken within a single expiration)

• the number of morae in the preceding, current and succeeding breath group

• etc.

All these features are listed in the label file resulting in complex model names like
lˆf-ax+p=aa@1 2/A:1 0 3/B:0-0-2@1-2&5-6#3-4$2-3!1-1 [...]

In the synthesis step, the waveform of a speech segment is generated from the trained
models. A textanalyzer generates a label file from the text, which lists the models that are
needed to synthesize the phrase. First, it has to be checked if all the models of the target
utterance are available in the training database. If not, the unseen models are built according
to the question trees (3.2), that have been set up in the training step. When all the models
are available, a composite HMM is created by simply concatenating the full-context models in
respect to the label file. The state sequence is determined maximizing the output probabilities
of the state duration models. Next, the most likely parameter sequences of spectrum and
excitation can be calculated from the HMMs given the state sequence. Finally, the excitation
and cepstral parameters are fed into the synthesis filter to generate the speech waveform.

3.1.2 Acoustic modeling

An appropriate parameter representation of the speech signal has to be defined. This repre-
sentation consists of several features, e.g., the fundamental frequency F0 and the spectrum
represented by the cepstral coefficients. The feature vectors consist of the “static” features
and their delta and delta-delta values, referred to as “dynamic” features. They are organized
in stochastically independent data streams, as seen in Fig. 3.2. The spectral parameters
and their dynamic features are assigned to one stream, whereas the logF0 and its dynamic
features belong to separate streams.

Figure 3.2: Multi-stream HMM structure [TZ09b]

The HMMs are mostly left-to-right models using 5-7 emitting states without skip. The
minimum state duration corresponds to the frameshift. When using 7 emitting states and a
frameshift of 5ms, the minimum duration of a phoneme is 7 × 5ms = 35ms. This can be a
problem when very short phonemes (e.g., plosives) are to be generated.
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3.1.3 Duration modeling

In conventional HMMs, the state duration is only defined by the self-transition probability
aii. The probability of being n frames in state i becomes

pi(n) = (aii)n−1(1− aii) (3.1)

This exponential state duration probability does not model the state duration satisfacto-
rily [Yam06]. To gain better control over the temporal aspect of the generated speech, Hidden
Semi-Markov Models (HSMMs) [Mur02] are used in the current HTS system. HSMMs are
HMMs that use an explicit duration model to represent the state duration (Fig. 3.3).

Figure 3.3: Duration synthesis [Yam06]

3.1.4 F0 modeling

As the F0 is not defined in unvoiced regions, it cannot be modeled by conventional HMMs.
Therefore, multi-space distribution HMMs (MSD-HMM) have been introduced [TMMK02]
to model the varying dimensions of F0, which is one-dimensional for voiced regions and
zero-dimensional for unvoiced regions.

3.2 Context clustering

The statistical properties of a phoneme vary a lot, depending on contextual factors. Con-
textual factors include prosodic and linguistic features, such as the position of the phoneme,
the stress, the number of morae or the position of breath groups. Ideally, all the different
realizations of speech units would be available in a database, and in the synthesis step one
would only have to select the compatible ones. As it is practically not possible to record all
possible combinations of contextual factors, it is necessary to group similar instances together
and share properties within those groups. This is called ”parameter tying”. To find out which
instances to group together, a decision-tree-based context clustering algorithm [Yam06] or a
data-driven clustering approach is applied

In decision-tree-based context clustering, each node of the tree has a context, related
question that can be answered with “yes” or “no” (Fig. 3.4), e.g., “R-silence ?” (”is the
previous phoneme a silence ?”). Several questions are concatenated until the final leaf node
is reached. Each leaf node represents a cluster of instances that have some context features
in common - as they had the same answers to the same questions - and is assigned to a
state output distribution that is shared among all the instances belonging to this leaf node.
The question at each node is chosen to maximize the local likelihood of the training data.
Assuming we would only have one cluster for the whole training corpus, the whole corpus
would be modeled by one single PDF. The likelihood of generating the training data with our
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Figure 3.4: An example of a decision tree [Yam06]

given PDF will be rather small. Now the training data is divided into two clusters, each one
modeled by a single Gaussian. Cluster C1 is modeled by PDF1 and cluster C2 is modeled by
PDF2. Then the likelihood of generating the training data assigned to C1 will be increased,
because the more specific PDF1 is used to generate C1. The questions are chosen in a way
such that the log likelihood increase is maximized, when dividing the data into clusters. The
clustering process is repeated until the increase in log likelihood or the occupancy of the leaf
node falls beyond a certain threshhold.

Beside the decision-tree based clustering, there is also a data-driven approach for cluster-
ing of the speech corpus. Starting with an own cluster for each model, the number of clusters
is reduced by merging clusters with the smallest distance of the model parameters. Data-
driven clustering has the disadvantage that unseen models are difficult to relate to seen model
parameters. Normally, the model parameters of a model with lower accuracy is assigned to
the unseen model that has the same central phoneme.

The parameters of a cluster are obtained by averaging over all the instances assigned
to that cluster. This is illustrated in Fig. 3.5 showing all the realizations of a parameter
curve belonging to one leaf node of a decision tree and the resulting average. The magnitude
and center-frequency of the formants are not clearly preserved, resulting in muffled-sounding
speech due to the over-smoothing.

One possible solution to this problem is to increase the model complexity and accuracy
augmenting the number of leaf nodes. Using preciser models, the clusters can be made smaller
and more specific.

3.3 Parameter generation

In this section, it is described how to find the optimal parameter sequence O of length T ,
given a trained model λ. We are interested in the speech parameter vector sequence

O = (o1,o2, ...,oT ) (3.2)

that maximizes P (O|λ, T ):
Ô = arg max

O
P (O|λ, T ) (3.3)
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This implies summing up all the emission probabilities of all possible state sequences and
mixture sequences Q = (q1, i1), (q2, i2), ....(qT , iT ) with qt the state and it the mixture assigned
to time t (see B.6). As the computational cost increases exponentially with T , the parameter
generation is restricted to the most likely state and mixture sequence Q̂ determined by the
Viterbi algorithm:

Ô ' arg max
O

max
Q

P (O,Q|λ, T ) = arg max
O

P (O|Q̂, λ) (3.4)

Given the state qt and mixture it at a certain time t, the probability of emitting ot can
be written as (see B.1):

P (ot|λ, (qt, it)) = wqt,itN(ot; µqt,it ,Σqt,it) (3.5)

Using B.2 the log of P (ot|λ, (qt, it)) can be written as

logP (ot|λ, (qt, it)) = log [
wqt,it√

(2π)D|Σqt,it |
] + [−1

2
(ot − µqt,it)

>Σ−1
qt,it

(ot − µqt,it)] (3.6)

Using the most likely state and mixture sequence Q̂ it can be written

logP (O|Q̂, λ) =
T∑
t=1

logP (ot|λ, (qt, it)) = K − 1
2

T∑
t=1

[(ot − µqt,it)
>Σ−1

qt,it
(ot − µqt,it)]

= K − 1
2

(O− µ)>Σ−1(O− µ) = K ′ − 1
2
O>Σ−1O + O>Σ−1µ (3.7)

where

• K and K ′ are constants that do not depend on ot

• D is the dimensionality of the static feature vector

• µ = [µ>q1,i1 ,µ
>
q2,i2

, ...,µ>qT ,iT ]> is a 3D × T matrix of one static and two dynamic mean
vectors, associated with state qt and mixture it.

• Σ−1 = diag[Σ−1
q1,i1

,Σ−1
q2,i2

, ...,Σ−1
qT ,iT

] is a 3D × (3DT ) matrix of static and dynamic
covariance matrices, associated with state qt and mixture it. .

In order to maximize P (O|Q̂, λ) in respect to O, the first derivative is set to zero. If the
observation vector O only includes static features, we can write O = C with

C = (c1, c2, ..., cT ) (3.8)

ct is the static feature vector at time t. Derivating 3.6 in respect to C yields

∂(logP (O|Q̂, λ))
∂C

=
∂(logP (C|Q̂, λ))

∂C
= −Σ−1C + Σ−1µ

!= 0 (3.9)

For C = µ the equation is true and logP (O|Q̂, λ) has a maximum. But problems occur at
the state borders, when the parameter vector jumps from the mean vector of the current state
to the mean vector of the next state. These jumps lead to discontinuities in the generated
parameter curve and causes artifacts.

When also taking into account dynamic features, these problems can be solved [TKI95b].
The dynamic features are obtained by a linear combination of the static feature vectors of
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several frames around the current frame.
By setting ∆0ct = ct, ∆1ct = ∆ct, and ∆2ct = ∆∆ct, the general form ∆(n)ct is defined as

∆(n)ct =
L∑

τ=−L
w

(n)
t+τct n = 0, 1, 2 (3.10)

The new observation vector ot now is defined as

ot = [ct,∆ct,∆2ct] (3.11)

with the relation
O = WC, (3.12)

where W = [w1,w2, ...,wT ]> is a 3DT ×3DT window matrix that extends the static feature
vector sequence C to the observation vector sequence O, consisting of static and dynamic
features. The more interested reader is referred to [Yam06].

Combining 3.7 and 3.12 we get

logP (O|Q̂, λ) = logP (WC|Q̂, λ) = K ′ − 1
2

(WC)>Σ−1WC + (WC)>Σ−1µ (3.13)

Computing the first derivative and setting it equal to zero yields:

∂(logP (WC|Q̂, λ))
∂C

= (W>Σ−1W)C−W>Σ−1µ
!= 0 (3.14)

This equation is very often written as [Yam06,TKI95b]

RC = r (3.15)

where
R = W>Σ−1W (3.16)

is a TD × TD matrix and
r = W>Σ−1µ (3.17)

is a TD-dimensional vector. To directly solve Eq. 3.16 using only the most likely state and
mixture sequence Q̂, O(T 2D3) operations are needed. When Σ, ∆Σ and ∆2Σ are diagonal,
the complexity of the algorithm becomes O(T 2D) [TKI95b].

There also exist other approaches to find P (O|λ) without the constraint of a given most
likely state sequence [TYM+00]. In this thesis I concentrate on the mostly used one algorithm,
as described above.

3.4 Known drawbacks

Compared to unit-selection approaches, HMM-based speech synthesis still sounds less natural.
The following main factors can be identified to degrade the quality of a HMM-based synthesis
system [BZT07] [ZTB09]:

3.4.1 Vocoder

The generated speech sounds buzzy since a vocoder technique is used. In the older approaches
[YMKK99], the excitation of voiced sounds were modeled by a simple periodic pulse-train.
In the past years, a lot of different high-quality vocoders have been proposed to alleviate this
problem, such as STRAIGHT [Kaw06], the harmonic plus noise model (HNM) [Sty00], the
pitch synchronous residual codebook [TATG09] or the SVLN model [LDR10].
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3.4.2 Over-smoothing

When using HMMs for modeling speech, many assumptions are made that do not hold for
real speech. E.g., constant statistics within an HMM state or statistical independence of the
features are assumed. To perfectly model real speech data, a high number of parameters
would have to be estimated, requiring huge training databases. A trade-off has to be found
between the accuracy of the model and the number of parameters that have to be estimated.
Poor acoustical modeling leads to over-smoothing.

Statistical averaging in the modeling step improves the robustness against data sparseness.
However this averaging very often leads to over-smoothed parameter trajectories and muffled-
sounding speech. Over-smoothing can be categorized into two types: over-smoothing in the
time domain and over-smoothing in the frequency domain [YZTW07,MZW08].

Over-smoothing in the frequency domain is the main factor that degrades the quality
of synthesized speech and it is generally caused by training algorithm accuracy problems
[MZW08]. The most used training algorithm for HMMs is the maximum likelihood estimation
(MLE). This can be considered as an inconsistency between the training algorithm of the
HMMs and its application [WW06]: The aim of HMM-based speech synthesis is to create
speech vectors that are as close as possible to natural speech. The HMM training based on
the MLE on the other hand, tries to find model parameters that fit best to the average of a set
of speech vectors. This is adequate for speech recognition purposes, as we only want to find
the right cluster that belongs to one of many realizations of a phonetic unit (e.g., a word).
But it will obviously fail in synthesis, where we want to generate many different realizations
out of our few models (providing only the mean value and the variance of a feature). Over-
smoothing in the frequency domain is shown in Fig.3.5, where all the realizations of the
spectrum in one leaf node and the resulting average are plotted. The formants of the average
signal are blurred and have a lower magnitude. Increasing the number of leaf nodes in the
decision tree clustering step, increases the accuracy and leads to more expressive formants,
but also increases the number of parameters that have to be estimated from the database.

Figure 3.5: Over-smoothing problem in a typical decision tree leaf-node [YQS09]

Wu and Wang proposed a minimum generation error (MGE) training, which estimates
the model parameter to minimize an error measure between training data and the generated
speech parameters [WW06]. The over-smoothing in the frequency domain can be alleviated
by the MGE leading to an improvement of the speech quality.

Methods like the Global Variance based parameter generation sharpen the formants,
leading to a more intelligible and natural-sounding speech [TT07,TY09], 5.1.1.
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Another approach uses real speech data from the training corpus to generate parameters.
Drugman et al. use a pitch synchronous residual codebook [TATG09] to model the excitation,
and Jian Yu et al. developed a HMM-based TTS system using discrete HMMs, based on
speech vectors from a codebook [YZTW07].

Over-smoothing in the time domain (Fig. 5.1) causes parameter sequences that are too
smooth to carry sufficient detailed information. This is often the case when using a low
number of states and mixtures. The results are long state durations and poor temporal
resolution, because each state is only modeled by one probability distribution. Furthermore,
constraints between static and dynamic features are defined in the feature extraction and
in the parameter generation algorithm, but are not taken into account during the training
process. Once calculated, the dynamic features are trained independently from the static
ones and are treated like the other static features. This inconsistency was fixed by imposing
a trajectory model with explicit relationships between static and dynamic features into the
HMM training [TZK03,ZTK04,HKT06].

A new method proposed in this thesis is the roughness based parameter generation. It
increases the temporal details of a generated curve and hence reduces the over-smoothing in
the time domain (see 5.2).



Chapter 4

Description of the HTK-based
Speech Synthesis System (HTS)

The HMM-based Speech Synthesis System (HTS) was released in 2002 by the HTS work-
ing group to provide a research and development platform for statistical parametric speech
synthesis. Since then it has regularly been updated, according to the newest developments
and has grown in popularity over the years. It is released as a free patch to the HTK
toolkit [YEG+09]. The current version contains two demo scripts to construct speaker-
dependent systems (English and Japanese) and a demo script to train a speaker-adaptation
system (English). The following explanations are based on the speaker-dependent HTS-demo
CMU-ARCTIC-SLT STRAIGHT 2.1.1 (English) that was released on May 14, 2010.

The basic structure of HTS is shown in Fig. 3.1; details are explained in the following
section.

Forced alignment In order to compare natural and generated data, the generated pa-
rameter sequences are force-aligned with the natural data. The most likely state duration
sequence of the natural parameter curves was extracted using the Viterbi algorithm (HVite).
This state duration sequence was fed into the parameter generation algorithm.

4.1 Training Corpus and Model topology

4.1.1 The voice database

The English demo script uses the CMU ARCTIC databases [KB03] for training the models.
They contain 1132 utterances from out-of-copyright texts, spoken by a male US English
speaker. The database was fully phonetically labelled by the CMU Sphinx using the FestVox
based labelling scripts. The utterances were recorded with 16 kHz sampling rate and 16 bit
resolution. The phoneme set (of the basic English language) has 41 elements consisting of the
39 phonemes from CMUDICT, plus the reduced vowel schwa /AX/ and the pause symbol
/PAU/. The number of possible diphones is 41 x 41 = 1.680 and the number of possible
triphones is 41 x 41 x 41 = 68.921, but not all possible diphones/triphones appear in real
speech. The triphone coverage of the database is said to be 13,7 % of all possible triphones .

The database provides one audio file (.raw) and one utterance file (.utt) per training-
phrase. Beyond the transcription of the audio file, the utterance file also contains segmental
and suprasegmental information, like the position of the monophones and diphones within
the phrase, the fundamental frequency and the accentuation.

20 sentences from the training corpus are put in a test pool and therefore are not available
as training data. Using full-context models (3.1.1), 38085 different models occur in the
training database. To test the speech synthesis system, 20 sentences from the test pool and
20 sentences of ”Alice’s Adventures in Wonderland” - written 1865 by the English author
Charles Lutwidge Dodgson - are to be synthesized. These target sentences contain 2824

33
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Figure 4.1: Feature extraction; SPTK [IK09] is the Speech signal processing toolkit

different full-context models. Four models of the target sentences also appear in the training
database, the remaining 2820 are unseen.

4.1.2 Speech features

The demo script first extracts STRAIGHT spectrum, F0 and aperiodicities using STRAIGHT
v40 007c. The spectrum is converted into a generalized 39 order cepstrum, F0 is converted
into logF0 and the aperiodicity is converted into five band aperiodicities (Fig. 4.1).

Vocal tract modeling The conventional cepstral feature vector, as derived from the Short-
Time Fourier Transform (STFT) of a signal, is usually restricted to an order of about 13,
since the higher order coefficients are distorted by the fundamental frequency. STRAIGHT
(2.2.2) carries out a F0-adaptive spectral analysis, that removes all effects of the fundamental
frequency from the shortterm spectrum. Using the STRAIGHT spectrum instead of the
STFT spectrum, the order of the cepstral feature vector can be increased from 13 to 39
[IMN+02].

Frequency warping The demo scripts allow frequency warping using the Mel scale, yield-
ing Mel-frequency cepstral coefficients (MFCCs). The frequency bands represented by the
MFCCs are equally spaced on the Mel scale, in contrast to the conventional cepstral features
that are equally spaced using a linear frequency scale. The Mel scale approximates the human
auditory system better than a linear frequency scale.

4.1.3 Model topology

The models hold the following properties:

• full-context models (see 3.1.1)

• 7 emitting states

• left-to-right models without skip

• HSMM with explicit duration models (see 3.1.3)

• the observation vector is divided into five stochastically independent data streams (see
3.2): 1-spectrum, 2-logF0, 3-∆ logF0, 4-∆∆ logF0 and 5-bap

• the covariance matrix is diagonal, assuming there is no correlation between the features

4.2 Training

In the training stage, the models are trained using the features that have been extracted in
the previous section. An overview of the training process is given in Fig. 4.2
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Figure 4.2: Training process of the HTS-demo [TZ09a]

Figure 4.3: Sequence of the generated model files in the demo script

Compute variance floor (HCompV)

Defining the exact borders of the phonemes and states within a training sentence is called
segmentation. Starting with states having a uniform length (flat start), the likelihood - of a
parameter sequence being generated by the current model parameters (see B.1) - is maximized
by changing the state borders iteratively. To do this, an initialization of the models is needed:
For each stream, a global variance and a mean value are calculated using the whole training
corpus. Then the same variance floor is assigned to each of the segments. The segmentation
performance could be improved, if manually labeled data was available as an initial model,
which is not feasible in most of the cases.

When training large model sets from limited data, setting a floor is often necessary to
prevent variances being badly underestimated through lack of data [YEG+09]. When the
same global variance is assigned to all the segments, the segments, that are not seen in
the training data and therefore are not subsequently re-estimated, remain with the global
variance.

Initialize context-independent HMMs by segmental k-means (HInit)

As the CMU ARCTIC database already provides a label file with the phoneme borders, this
information can be used as an initial model. Within the given phoneme borders only the
state borders have yet to be determined. With the initial HMM parameters the most likely
state sequence of given training utterance can be determined using the Viterbi algorithm (see
B.1). Using this state sequence, model parameters can be re-estimated and a new most likely
state sequence can be found. This is done iteratively until no further increase in likelihood
is obtained.

If the states are modeled by multiple mixture components, each training vector emit-
ted by a state is associated with the mixture component with the highest likelihood. The
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number of vectors associated with each component can then be used to estimate the mix-
ture weights. The initial segmentation is obtained by clustering each state with a k-means
clustering algorithm (k denotes the number of mixture components).

Re-estimate context-independent HMMs by the EM algorithm (HRest & HER-
est)

HRest also updates the HMM parameters like HInit, but instead of Viterbi training it uses
Baum-Welch re-estimation. Viterbi training makes a hard decision about which state has
generated which observation vector. In contrast, the Baum-Welch algorithm makes a soft
decision - it provides the probability of being in each state at a certain time frame. In real
speech there are no hard boundaries between the phonemes and using soft decisions often
yields better results [YEG+09].

HERest simultaneously updates all of the HMMs in a system using all of the training data
in one single iteration (embedded re-estimation) applying the Baum-Welch algorithm. All
the phonemes are joined together in the right order (given by the label file) to create a single
composite HMM per training utterance. HERest estimates the new model parameter and
writes out an updated modelfile.

Copy context-independent HMMs to context-dependent HMMs (HHEd CL)

Until now, the system has only trained monophone models, providing 41 models and their
statistics (mean and variances). Now the full-context models are introduced. Each mono-
phone model is assigned to the full-context model (over all the database contains 38085 such
full-context models) with the corresponding central phoneme, and the statistics are copied to
the full-context model file. At this moment, each full-context model sharing the same central
phone has the same model parameters.

Re-estimate context-dependent HMMs by the EM algorithm (HERest)

The parameters of the full-context HMMs are updated. A statistics file shows the occupation
count for each state of each model, providing information on how much training material was
available for each state.

Decision tree-based clustering (HHEd TB)

At first, states with a low occupation count are removed. Then all possible phonetic questions
are loaded. Now those questions have to be selected, that maximize the likelihood when
dividing the set into clusters. Finally, each cluster is tied together as a macro and saved to a
file with the decision trees. The decision trees are used later to map the unseen models onto
the clusters. As spectrum and excitation have different context dependencies, the decision
trees are built separately. Tree-based clustering reduces the number of model parameters to
about 0.3 %, e.g., 38085 output PDFs of state 6 are reduced to 133 clusters (and 133 PDFs).

Re-estimate clustered context-dependent HMMs by the EM algorithm (HERest)

The parameters of the clustered full-context HMMs are updated.
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Untie parameter tying structure (HHEd UT)

The state transition probabilities and the stream weights have been tied over all the states.
These tyings are reversed in this step. After untying, re-estimation and tree-based clustering
is applied again, to finally yield the estimated HMMs.

4.3 Synthesis

In the synthesis stage, the speech waveform is generated according to the label file and the
trained models (Fig. 4.4).

Figure 4.4: Synthesis stage; SPTK is the Speech signal processing toolkit [IK09]

Make unseen models

Unseen models are models that have not been detected in the training database. The database
can never cover all possible full-context models. In our example, 2824 models are needed to
generate the parameters for the 40 sentences that are to be synthesized. Only 4 models out
of these 2824 are seen in the training data, which corresponds to 0.0014%. The remaining
2820 unseen models have to be generated: Using the decision trees from the training part,
the unseen models can be mapped onto a cluster of similar linguistic properties. Every
unseen model is assigned to the macro of the underlying cluster. E.g., the second state of the
cepstrum of the unseen quinphone “nˆd-ow+n=z” is mapped onto a cluster containing also
the quinphones ”iyˆg-ow+pau=x”, ”aeˆg-ax+n=iy”, ”nˆd-ax+k=aa”, ”iyˆd-ax+p=y”.

4.4 Found problems

4.4.1 Vocoder

STRAIGHT does not provide a perfect representation of a speech signal. The encoding of
a waveform into STRAIGHT spectrum, F0 and aperiodicities is a lossy procedure. For this
reason, the output of the speech synthesis system cannot sound better than the waveform
obtained by natural parameter curves passing through the STRAIGHT filter.

4.4.2 Accuracy of acoustic modeling

In the following section, the amount of training data that is available in relation to the
number of estimated model parameters is examined. The mean occupation count is a measure
indicating how many samples from the training data are available to estimate the parameters
of the PDF describing one state. A low occupation count causes models that have no or only
few training data associated with. This can lead to poor modeling quality, where clicks and
crackles can occur when no suitable PDF for a model can be estimated. In this case, the
complexity of the models should be reduced having less parameters to estimate. This can
be done by using less states, less mixtures or simpler models, such as diphones instead of
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triphones. In contrast, when the occupation count is too high, the complexity of the models
should be increased to achieve the maximum quality from the database. The ideal occupation
count has to be found, facilitating accurate synthesis at one hand and low data sparseness
on the other hand.

The number of leaf nodes for the decision tree based state tying is a good parameter to
gain control over the modeling accuracy. Using the full-context model definition from 3.1.1,
38085 different models are present in our database. Each model has 7 emitting states, yielding
7× 38085 = 266595 different PDFs for each feature when using one mixture per state. This
means 266595 mean and variance values have to be estimated from the training data. Using
the training corpus described in 4.1.1 and a frameshift of 5ms, 666634 frames (and feature
vectors) are extracted. Estimate the 266595 free parameters from the 666634 feature vectors,
a mean occupation count of 666634/266595 ≈ 2.5 is obtained.

In the proposed demo script, these 266595 PDFs are divided into 803 clusters for the
cepstrum, 2084 clusters for F0, 950 clusters for the aperiodicities and 505 clusters for the
duration using decision tree based state tying. The resulting mean occupation count after
the clustering is 830, 320, 701 and 1320 respectively. A perceptional comparison of different
leaf node numbers is given in the following audio examples.

4.4.3 Over-smoothing

Over-smoothing in the time- and frequency domain occurs due to the reasons explained in
3.4.2 and can be seen in Fig. 5.1 and 5.3 respectively. The following section describes two
approaches to reduce the over-smoothing problem in both time- and frequency domain.

Audio examples

Audio example 01 (CD-track 01) Natural speech (16kHz, 16bit)
Audio example 02 (CD-track 02) Speech generated with STRAIGHT from natural parameters
Audio example 03 (CD-track 03) Speech generated using 1943 leaf nodes for spectrum,

6361 for logF0, 2410 for aperiodicities and 1128 for duration
(occupation count = 343 / 105 / 277 / 591)

Audio example 04 (CD-track 04) Speech generated using 803 leaf nodes for spectrum,
2084 for logF0, 950 for aperiodicities and 505 for duration
(occupation count = 830 / 320 / 701 / 1320)

Audio example 05 (CD-track 05) Speech generated using 401 leaf nodes for spectrum,
901 for logF0, 461 for aperiodicities and 250 for duration
(occupation count = 1662 / 740 / 1446 / 2666)

Audio example 18 (CD-track 18) Utterance synthesized with GV and
synthesized state durations using one mixture

Audio example 19 (CD-track 19) Utterance synthesized with GV and
synthesized state durations using two mixtures



Chapter 5

Variance and Roughness based
parameter generation

One of the mayor problems of HMM-based synthesis is the perceived ”muffleness” of the
generated speech. Fig. 5.1 yields a comparison between the third mel cepstral coefficient of
an utterance extracted from natural speech and the curve generated by the HTS system. The
generated curve is much smoother than the natural one. The parameter generation algorithm
reproduces well the means of the models but fails at reproducing the full range of possible
values specified by the variance. The gray area shows the standard deviation of a parameter
per state according to the HMM definitions. That means that 68.2% of all the instances from
the training data have a MFCC value that lies within the gray area and 31.8% of all the
values lie outside. This is obviously not true for the generated curve, as it always sticks very
close to the mean value of the state (dotted line).
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Figure 5.1: 3rd MFCC; Gray area: standard deviation of each state obtained from the HMM model definition;
Solid line: natural speech; Dashed line: synthesized speech

Several approaches have been proposed to solve this problem. The following chapter
describes my research to alleviate the over-smoothing problems by introducing features that
describe the variance (see 5.1) and the ripple (see 5.2) of a parameter trajectory. Preserving
these features in the parameter generation stage should work against an excessive smoothing
of the curve. I concentrated mainly on the parameters describing the spectral envelope of

39
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speech - that is the MFCCs - because I think the unsatisfying generation of the spectral
envelope plays a mayor role in the degradation of the quality in the current HTS version.

5.1 Variance based parameter generation

The variance of a parameter x is the expected quadratic distance from its mean value µ.

V (x) = E{(x− µ)2} (5.1)

µ =
1
T

T∑
t=1

x(t) (5.2)

A high variance of a feature obtained from a trained model is caused by two factors:

1. “Inter-item” variance: The items - meaning states in this context - corresponding to
the same model in the training data are very different from each other. The model
accuracy is too low and many different instances are mapped onto the same model.
This case also occurs when training samples from different speakers are used.

2. “Intra-item” variance: The samples within one state, which are used to train the same
probability density function, vary a lot. This might be the case when dealing with
spectral features of plosives like e.g., ”t” or ”p”.

A high inter-item variance of a training corpus is not desired in speech synthesis, because
the averaging between many different realizations of one state can lead to a loss of details
in the feature curve. Additionally, a high inter-item variance makes the mean value of the
corresponding state less reliable. In speech recognition, we are interested in integrating
the inter-item variance into our models, yielding more robust models against the different
realizations of speech.

This forms a contrast to speech synthesis, where the intra-item variance is something
that we do want to include into our models. Unfortunately, synthesizing the full details of a
feature curve, given only one PDF per state, is an unsolvable problem.

The concept of inter- and intra-item variance can also be extended using phoneme-items
instead of state-items:

1. “Inter-item” variance: The phoneme based inter-item variance describes the diversity
of the realizations belonging to the same phoneme in the training corpus. The char-
acteristics of a phoneme vary depending on the context, the speaker and the speaking
style. Depending on the modeling accuracy and the cluster size, the PDFs are built
from a different number of realizations of the phoneme in the database. Increasing the
model-complexity - e.g., by using quintphones instead of triphones - or increasing the
number of leaf nodes in the clustering step will reduce the interphoneme-variance.

2. “Intra-item” variance: The phoneme based intra-phoneme describes the variation of
a parameter inside one realization of a phoneme. The intra-item variance depends
mainly on the type of the phoneme, e.g., plosives like ”t” or ”p” have a higher intra-
item variance than vowels.

Table 5.1 shows the mean values and variances of the 2nd MFCC of six phonemes within
one utterance (generated and natural). It can be stated that:

• While the mean value of the natural speech has been well preserved by the parameter
generation algorithm, the (intra-item) variance has been reduced.
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Table 5.1: intra-item mean and variances of the 2nd MFCC (examples)

phoneme meangen vargen meannat varnat
t 0.4587 0.0123 0.7489 0.1710
l 1.6767 0.4254 1.8343 0.5007
iy 2.4852 0.0003 2.7955 0.0059
ow 2.9284 0.0139 3.0409 0.0205
b 1.9635 0.1536 1.7909 0.4153
ey 2.6937 0.0287 2.8070 0.0450

• As the values are obtained from only one realization of the corresponding phoneme, the
given values represent intra-item values.

Table 5.2 shows mean and variance values taken from the trained models (monophone
models and full-context models). The values represent all realizations of one phoneme in the
whole database and hence include intra- and inter-item mean and variances. They have been
calculated by taking the mean of all the state parameters belonging to the phoneme. Note
that Tab. 5.1 and Table 5.2 cannot directly compared, because of two reasons: Firstly, the
states in the upper case have different durations and secondly, Table 5.1 describes only the
intra-item values. Nevertheless it can be noted that:

• With increasing accuracy of the model (from monophone to full-context), the variance
decreases. Using more accurate models, less realizations are associated to one model
and the inter-item variance decreases.

• The variances given by the trained models (Table 5.2) include intra- and inter-item
variance of the phonemes and therefore have higher values.

Table 5.2: intra- and inter-item mean and variances of the 2nd MFCC (examples)

phoneme meanmono varmono meanfull varfull
t 1.0443 0.9129 0.3546 0.2321
l 2.0805 0.1924 1.7766 0.1994
iy 2.2655 0.2057 2.5025 0.0571
ow 2.8303 0.1258 2.9192 0.0568
b 1.4918 0.3676 1.9030 0.1081
ey 2.3467 0.3289 2.7521 0.0615

5.1.1 Global Variance

Toda and Tokuda 2007 proposed a new parameter generation algorithm based on a Global
Variance (GV) criterion [TT07]. The Global Variance v(c, d) is defined as the variance of the
trajectory c(d) of a feature d over a whole utterance of length T with t being the time frame
index and c̄(d) denoting the mean value of the d− th feature over a whole utterance.:

v(c, d) =
1
T

T∑
t=1

(ct(d)− c̄(d))2 (5.3)

c̄(d) =
1
T

T∑
t=1

ct(d) (5.4)
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This variance could also be called ”sentence based intra-item variance” in the terminology
described above. It cannot be compared to the (state based intra-and inter-) variance that
is obtained from the trained models.

The GV of synthetic speech is lower than the GV of natural speech, caused by the MLE
based parameter generation algorithm (over-smoothing problem, see 3.4.2). In the approach
described below, the GV is adjusted to match the GV of natural speech.

Implementation

The following description is based on the implementation in the HTS-demo CMU-ARCTIC-
SLT STRAIGHT 2.1.1 script.

Training

1. The GV of each utterance from the training data of each feature is calculated.

2. A 1-emitting-state HMM for each utterance is created: The names of the GV models
are the names of the first monophone model of the corresponding utterance. The mean
value of the emitting PDF is the mean value of the GV of all the utterances beginning
with the same monophone.

3. The monophone models are cloned to yield full-context models. Then the models are
clustered using questions that concern the whole utterance, like ”What is the number of
phrases/words/syllables in the utterance ?” In the demo script, 1047 models (from 1047
utterances in the database) are divided into 2 clusters for cepstrum and aperiodicities
and into 6 clusters for logF0. The corresponding decision trees are saved.

4. Re-estimating the models yields the final GV models.

Synthesis

1. For each utterance to be generated, take the first model and load the corresponding
mean and variance value of the GV model. Unseen models can be made using the
decision trees from the training step.

2. Calculate an initial estimate for the parameter vector c using only the HMM (acoustic)
models.

3. Calculate the Global Variance of the generated sequence according to Eq. 5.3.

4. Calculate the square root of the ratio of the calculated GV µGV,generated and the target
GV µGV,models (from the GV models) for every feature d:

ratio(d) =

√
µGV,models(d)
µGV,generated(d)

(5.5)

5. Expand each frame t of the generated parameter vector c according to ratio. Silence
or pause segments are not expanded.

c(d, t) = ratio(d)× (c(d, t)− µc(d)) + µc(d) (5.6)

µc(d) denotes the mean value of feature d of the generated sequence c(d).
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6. In the conventional parameter generation algorithm (see 3.3), the likelihood P (o|Q̂, λ) is
maximized to find the most probable parameter sequence o, given the HMM parameters
λ and the most likely state and mixture sequence Q̂. Using the GV criterion as an
additional constraint, the likelihood P (v(c)|λv) of the GV v(c) using the GV model λv
also has to be taken into account. This is done by maximizing P (o|λ, λv), the product
of the two likelihoods:

P (o|λ, λv) = P (o|Q̂, λ)ωP (v(c)|λv) (5.7)

where ω is a weight for controlling the balance between the two likelihoods.

Using the gradient ascent algorithm, a local maximum of the two likelihoods can be
found iteratively [TT07,TY09].

Results

Fig. 5.2 shows a time sequence of the 3rd mel cepstral coefficient extracted from natural
speech in comparison to a generated trajectory with and without using the Global Variance
criterion.
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Figure 5.2: 3rd MFCC; Gray area: standard deviation of each state obtain from the HMM definition; Dashed
line: generated without GV; Red solid line: generated with GV; Thin solid line: Natural speech

Fig. 5.3 shows the STRAIGHT spectrum of natural and generated speech with and
without Global Variance adjustment over the time .The Global Variance of the parameter
curve was increased while preserving the main characteristics of the curve (e.g., formant
positions). The increase in GV sharpens the formants and hence leads to clearer speech.

Audio examples
Audio example 06 (CD-track 06) Utterance synthesized without adjustments
Audio example 07 (CD-track 07) Utterance synthesized with adjusted GV
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Figure 5.3: STRAIGHT spectrum of vowel ”ow”. Upper left: synthesized without GV; Upper right: synthe-
sized with GV; Bottom: original speech

5.1.2 Local Variance

In analogy to the Global Variance, a Local Variance algorithm is investigated. The idea is to
reconstruct the phoneme based “intra-item” variance of natural speech. Therefore, the term
“Local Variance” (LV) is introduced that describes the variance of a parameter within one
realization of a phoneme.

The LV v(d, p) of a phoneme p and a feature d is calculated as follows:

v(d, p) =
endp∑

t=startp

(c(d, t)− c̄p(d))2 (5.8)

c̄p(d) =
1
Tp

endp∑
t=startp

c(d, t) (5.9)

with startp and endp denoting the start- and endframe of the phoneme p, Tp the number of
frames belonging to the phoneme, c(d, t) the value of the feature d at time-frame t and c̄p(d))
the mean value of feature d within the phoneme.

The LV of a natural and a generated utterance is shown in Fig. 5.4. As expected, the
variance within plosive phonemes like “p“, ”t“ or ”d“ is higher than the variance of other
phonemes. To test if an adjusted LV increases the naturalness of the generated utterance,
the LV of a natural utterance is extracted and a generated utterance is converted to match
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Figure 5.4: Black solid line: Phoneme based variance of the synthesized utterance; Grey area: State-wise
variance of the natural utterance; Black dashed line: Global Variance of the synthesized utterance; Grey
dashed line: Global Variance of the natural utterance

the natural LV. Obviously, the LV of the natural parameter sequence is not given in reality
and would have to be obtained by a Local Variance model.

To modify the LV of a parameter curve, the variance ratio between generated LV vgen(d, p)
and natural LV vnat(d, p) is calculated analog to Eq. 5.5:

ratio(d, p) =

√
vnat(d, p)
vgen(d, p)

(5.10)

Then the parameter curve can be extended using

c(d, t) = ratio(d, p)× (c(d, t)− µc,p(d)) + µc,p(d) (5.11)

with tpstart ...tpend denoting the frames belonging to the phoneme p, and µc,p(d) being the
mean value of the parameter curve c(d) within the phoneme p.

The ratio of a 3rd MFCC feature curve is shown in Fig. 5.5.

Modification with unsteady variance ratio

The generated curve can be expanded to match the target LV according to Eq. 5.6. To prevent
artifacts at the phoneme borders due to the unsteady ratio curve, linear interpolation over
3 frames was applied at each border. A LV-adjusted 3rd MFCC trajectory is shown in Fig.
5.6.

Fig. 5.6 indicates that there are still discontinuities at the phoneme borders.

Modification with smooth variance ratio

To avoid the discontinuities described above two measures are taken:
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Figure 5.5: Variance ratio of the 3rd MFCC; Dashed line: Global Variance of the synthesized utterance
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Figure 5.6: 3rd MFCC; Gray area: standard deviation of each state obtain from the HMM definition; Dashed
line: generated without LV; Red solid line: generated with LV; Thin solid line: Natural speech

• The ratios of the corresponding central frame of each phoneme are linearly interpolated
to get a smoother trajectory, see Fig. 5.8. This avoids an unsteady ratio curve.

• All phoneme based variances have been calculated using the mean value of the corre-
sponding phoneme. This is a problem when modifying the parameter curve according
to Eq. 5.11, because the mean values µc,p(d) jump at the phoneme borders. To cir-
cumvent this problem, we introduce auxiliary mean values µ̂c(d, t), that lay on a line
interpolating the parameter value c(d, tpstart) with the value c(d, tpend).

Using these values, the LV of the parameter curve can be adjusted using:

c(d, t) = ratiointerpolated(d, p, t)× (c(d, t)− µ̂c(d, t)) + µ̂c(d, t) (5.12)

µ̂c(d, t)) = c(d, tpstart) +
t− tpstart

Tp
× [c(d, tpend)− c(d, tpstart)] (5.13)
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Figure 5.7: STRAIGHT spectrum of vowel ”ow”; Left: synthesized without LV; Right: synthesized with LV

with t = tpstart ...tpend denoting the frames corresponding to the phoneme p and Tp the number
of frames of p.
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Figure 5.8: Variance ratio of the 3rd MFCC; Dashed line: Global Variance of the synthesized utterance

The problem of the discontinuities could be solved using the proposed approach. Fig. 5.9
shows the smooth parameter trajectory with adjusted LV. Fig. 5.10 shows that the second
formant at 1000 Hz of the vowel ”ow” is amplified and sharpened. However, it has to be
stated that the natural Local Variance was assumed to be given, which is not true in reality.

Audio examples
Audio example 08 (CD-track 08) Utterance synthesized with adjusted LV

(unsteady variance ratio)
Audio example 09 (CD-track 09) Utterance synthesized with adjusted LV

(smooth variance ratio and global mean value)
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Figure 5.9: 3rd MFCC; Gray area: standard deviation of each state obtain from the HMM definition; Dashed
line: generated without LV; Red solid line: generated with smooth LV; Thin solid line: Natural speech
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Figure 5.10: STRAIGHT spectrum of vowel ”ow”; synthesized with smooth LV

5.2 Roughness based parameter generation

In the previous section, the variance properties of a generated feature sequence was investi-
gated. In Fig. 5.10 and 5.3 it can be seen that the variance adjustment is a good approach
to alleviate the oversmoothing problem in the frequency domain, as it sharpens the for-
mants. However when looking at the time domain, the variance-adjusted curves still look
very smoothed compared to the natural ones (see Fig. 5.2).

Fig. 5.11 yields two sinus signals that share the same variance (amplitude), but differ in
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frequency. When only adjusting the variances, one aspect of a curve is neglected: the fre-
quency dimension. In this section, the frequency components that are present in a parameter
curve are tested for their influence on the speech quality. Here, the term “frequency domain”
is used for the Fourier transformation of all parameter time sequences, including sequences
of MFCCs.
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Figure 5.11: Two signals with the same variance
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Figure 5.12: Spectrum of the 3rd MFCC sequence; Top: natural speech; Bottom: generated speech (with
GV); Sampling frequency fs = 200 Hz (with a frameshift of 5 ms)

Fig. 5.12 shows the Fourier Transform of a MFCC time sequence. While the generated
curve is similar to the natural curve in the low frequency bands, the natural one contains
larger high frequency components - that cannot be modeled manipulating the variance only.

Due to the statistical modeling with unsatisfying model accuracy, spectral details, repre-
sented by the higher frequency components of a feature curve, get lost. In order to investigate
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the acoustical relevance of higher frequency bands in a feature curve, a “roughness” criterion
is introduced in the following.

5.2.1 Definitions

In metrology, the terms waviness and roughness are used to describe a mechanical surfaces.
This is illustrated in Fig. 5.13.
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Figure 5.13: Top: (primary) profile of a surface; Center: profile of waviness; Bottom: profile of roughness

To distinguish between waviness and roughness, a limiting frequency fr is defined. The
waviness refers to the frequency components below fr of a measured profile, whereas the
roughness determines the frequency components above. This mechanical model can be trans-
ferred to the speech parameter curves. Assuming the waviness of a feature curve has been
reconstructed satisfactorily using the GV adaptation, acoustical details could be added by
manipulating the roughness of a feature curve.

There are many different roughness parameters in literature and I will concentrate on the
most common one, that is the arithmetic average or center line average Ra. It is calculated
by summing up the signal components after a highpass filtering with cut-off frequency fr:

r =
1

N − 2K

N−K−1∑
k=K

|X[k]| (5.14)

where |X[k]| is the magnitude of the k-th Fourier coefficient of the (real-valued) time signal
x[t], N is the FFT length, and K = N × fr

fs
is a number between 0 and N/2, corresponding

to the cut-off frequency fr of the highpass filter. Note that if we sum up only the frequency
components from N/4 to N/2, this corresponds to a highpass filtering with a cut-off frequency
of fs/4 (fs denotes the sampling frequency), if x[t] is real.
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5.2.2 Global Roughness

Similar to the definition of the Global Variance, a Global Roughness (GR) is defined as the
roughness of a feature vector over a whole utterance.

Calculation of the Global Roughness

The roughness is calculated with Eq. 5.14 using the Fourier Transform of a whole utterance.
The output after the highpass is shown in Fig. 5.14.
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Figure 5.14: 3rd cepstral coefficient sequence. Thin line: natural speech; Thick line: generated speech (GV);
Top: untouched signal; Bottom: signal after Hipass (fr/fs = 0.225)

In Fig. 5.15, the Global Roughness of the cepstrum of an utterance is plotted in respect
to the MFCC order. The roughness was normalized by the variance of the feature vector,
to take into account the different range of the values. The normalized roughness increases
with the coefficient order, which is caused by the fact that higher order cepstral coefficients
fluctuate more than the lower order coefficients.
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Figure 5.15: Global roughness normalized by the feature variance (fr/fs = 0.225)
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Adjustment of the Global Roughness

The ratio between the Global Roughness of the natural and the generated utterance is cal-
culated for each MFCC :

ratio =
rnat
rgv

(5.15)

The spectral bins corresponding to a frequency f > fr are multiplied by this ratio. To
prevent distortions between adjacent frequency bins at fr, a linear fade-in is used. The
spectral boosting is shown in Fig. 5.16.
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Figure 5.16: Spectrum of the 3rd MFCC of an utterance. Dashed line: spectral boosting function; Top:
generated signal; Center: generated signal with boosted spectrum; Bottom: original speech

The GR-boosting is applied to the GV-adjusted parameter curve, because the GV ad-
justment was found to improve the speech quality by sharpening the formants (see 5.1.1) and
hence provides a better initial signal for the GR adjustment. Fig. 5.17 and 5.18 show that the
GR adjustment sharpens the edges of a parameter curve as they contain a high magnitude
of high frequency components.

5.2.3 Local Roughness

Using the short time Fourier transform (STFT) a framewise (local) roughness (LR) is defined
and investigated.

Calculation of the Local Roughness

The discrete signal x is divided into overlapping blocks. The Fourier transform of a block can
be interpreted as a snapshot of the spectrum at the center time frame m of the block. Each
block is multiplied with a Hanning window in the time domain to reduce spectral leakage.
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Figure 5.17: 3rd MFCC. Top: generated signal (GV); Center: generated signal (GV + GR); Bottom: original
speech
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Figure 5.18: STRAIGHT spectrum of vowel ”ow”; Left: synthesized without GR; Right: synthesized with GR

X(m, k) =
∞∑

n=−∞
x[n]w[n−m]e−j

2π
N
kn (5.16)

m denotes the center position of the window inside of x and therefore defines the time frame
associated with the spectrum X(m, k). x is the causal, real, discrete time signal, k the
number of the Fourier coefficient, n the time frame index, N the FFT length, and w is the
window function that defines the size of the block. To facilitate an inverse short time Fourier
transform (ISTFT) after having adjusted the roughness, the height of the window has to be
scaled to fulfill

∞∑
n=−∞

w[n] = 1 (5.17)
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Combining Eq. 5.14 and Eq. 5.16 yields the short time roughness r(m, d):

r(m) =
1

N − 2K

N−K−1∑
k=K

|
∞∑

n=−∞
x[n]w[n−m]e−j

k
N
n| (5.18)

with x(n) denoting the value of the feature vector at time frame n and K = N × fr
fs

is the
Fourier coefficient representing the cut-off frequency fr of the highpass filter.

In the following, the Local Roughness is determined using a window size of 16 samples
and fr = 0.225/fs.
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Figure 5.19: Top: 3rd MFCC sequence (thin line: natural speech, thick line generated speech (GV)); Center:
roughness (thin line: natural speech, thick line generated speech (GV)); Bottom: LR ratio

The biggest deviations from natural speech occur at vowels (see peaks of the LR ratio
at “ow“, ”ao”, “er“). These are also the longest phonemes. As we have only a restricted
number of states (here 7 emitting states), the low roughness value is caused by a lacking
model accuracy. E.g., the vowel ”ow” occupies 40 frames. While five states only occupy
one frame each, the remaining 25 frames belong to two states that are modeled by a single
Gaussian distribution each. This evidently results in a loss of acoustic details.

Adjustment of the Local Roughness

To find out, if the correct roughness correlates with the perception of natural-sounding speech,
the roughness values of a generated utterance are manipulated to match the roughness values
of the same utterance spoken by a human speaker. The ratio between the roughness of an
utterance with natural speech and the same utterance with generated speech (with GV) is
determined for each frame m by

ratio(m) =
rnat(m)
rgv(m)

(5.19)
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and plotted in Fig. 5.19.
The feature vector is transformed into the frequency domain using the STFT (Eq. 5.16).

The frequency bins k of X(k) corresponding to the frequencies above fr are multiplied with
the ratio determined in Eq. 5.19 accordingly to yield X̂:

X̂(m, k) = X(m, k)× ratio(m) (5.20)

with k = K...(N−K−1). An ISTFT (see Eq. 5.21) re-transforms the manipulated spectrum
X̂ back to the time domain:

x(n) =
1
L

∞∑
k=−∞

L∑
m=1

X̂(m, k)e−j
2π
N
kn (5.21)

with L denoting the length of the time window w. Due to the condition stated in 5.17, the
blocks can be overlapped and added without scaling problems.

The adjustment of the LR is repeated until the error between the natural LR and the
generated LR is minimized. This yields Fig. 5.20.

The roughness of the generated curve (Fig. 5.20, 2nd from top) matches the rough-
ness profile of the natural speech. Fig. 5.21 shows that the spectrum is less smooth while
preserving the positions of the formants.

Audio examples
Audio example 10 (CD-track 10) Utterance synthesized with natural GR
Audio example 11 (CD-track 11) Utterance synthesized with natural LR
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Figure 5.20: 3rd MFCC sequences (from top to bottom); 1st: generated with GV; 2nd: generated with GV
and LR; 3rd: natural speech; 4th: roughness (thick solid black line: only GV; thin solid black line: natural
speech; red line: GV and LR
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Figure 5.21: STRAIGHT spectrum of vowel ”ow”; synthesized with LR



Chapter 6

Experiments

A listening test provides an evaluation of the approaches described in the previous section.
The test is supposed to find out if the variance and roughness based features are relevant
for the quality of the synthesized speech. The variance based features alleviate the over-
smoothing problem in the frequency domain, whereas the roughness based parameter gener-
ation increases the temporal details of a curve and reduces its temporal over-smoothing by
boosting higher frequencies of the parameter curve. The first part of this section describes
the design of the test, the second part the testing procedure and the last part presents the
results.

6.1 Description of the experimental setup

14 people, among them 10 men and 4 woman, participated in the test. 7 of them can
be regarded as ”expert listeners”, as they have been studying electrical engineering-sound
engineering at the Technical University Graz and the University of Music and dramatic Arts
or they have been working at the Signal Processing and Speech Communication Laboratory
for several years. The participants were between 23 and 53 years old and performed the tasks
at home or in their offices using headphones. The duration of the test was varying, as an
individual number of tests could be freely chosen by the participants. Most of them made 10-
15 of the overall 20 test cycles. Each of the tests lasted about 3 minutes. Over a webpage the
participants could download 20 folders, each of them containing 6 audio examples of the same
utterance. The 20 utterances were taken from the CMU ARCTIC databases [KB03](b520 -
b539). The six versions of each utterances were randomly titled by a number from 1 to 6.
The participants should bring the 6 examples into the order, such that the most preferred
example is number 1 and the least preferred example is number 6.

The audio examples were produced by the STRAIGHT synthesis filter using the F0 and
aperiodicities generated by the HTS-2.1.1 demo script. The state duration sequence was
taken from a natural recording of the utterance. All the STRAIGHT parameters (F0, ape-
riodicities and spectrum) were generating using the same natural state duration sequence.
The STRAIGHT spectrum was obtained using different approaches:

• Extraction from natural speech

• Synthesis with the HTS-2.1.1 demo script without Global Variance adaption

• Synthesis with the HTS-2.1.1 demo script with GV adaption (see 5.1.1). The GV of
the synthesized cepstrum was calculated and boosted to match the GV of the natural
cepstrum.

• Synthesis with the HTS-2.1.1 demo script with LV adaption (with unsteady LV ratio,
see 5.1.2). The variance of the synthesized cepstrum was calculated phoneme-wise and
boosted to match the variance of the corresponding phonemes of the natural cepstrum.
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• Synthesis with the HTS-2.1.1 demo script with GV and GR adaption (see 5.2.2). The
GR of the synthesized cepstrum (GV adapted) was calculated and boosted to match
the GR of the natural cepstrum.

• Synthesis with the HTS-2.1.1 demo script with GV and LR adaption (see 5.2.3). The
roughness of the synthesized cepstrum (GV adapted) was calculated frame-wise and
boosted to match the roughness of the corresponding frames of the natural cepstrum.

6.2 Comparison of Variance- and Roughness-based parameter
generation

The GV based parameter generation alleviates the over-smoothing in the frequency domain.
Fig. 5.3 shows that the formants of the GV adapted spectrum are more expressive and
sharper than without GV. This is also true for the LV adapted signal. The frequency valleys
are equally expressive as in the global case, but the phoneme-wise adjustment introduces
distortions because the relations between phonemes are disturbed and the parameter curve
jumps at phoneme borders. In the roughness cases, the roughness was increased by boosting
high frequency components in the spectrum of a feature curve. This implies that only fre-
quency components can be amplified that are already present in the signal. High frequencies
mostly appear at sharp edges of the curve. When boosting these high frequencies, mainly
those regions are amplified, where jumps appear. This can be seen in Fig. 5.17. Adjusting
the LR of a parameter curve also affects the more steady regions of the signal, as it can be
seen in Fig. 5.20.

To compare the approaches described above, the error between the generated signal and
the same signal produced by a human speaker is plotted in Fig. 6.1 for the first 15 cepstral
coefficients of the cepstrum. The error is calculated by summing up the Euclidean distances of
each synthesized frame from the corresponding natural frame. It is normalized by the error
of the generated signal without variance and roughness adjustments. The signal without
adjustments (no GV, no RN) has the lowest error, as it was generated using the maximum
likelihood criterion that minimizes the error. Adjusting the GV, the error of the coefficients
2-4 decreases, but the overall error increases. All the other approaches augment the error.

6.3 Perceptual evaluation

Each audio example was assigned a number from 6 (best quality) to 1 (worst quality). For
each of the 6 approaches, the mean value of all the assigned numbers was calculated to yield
the final preference score.

The listening test revealed that the Global Variance criterion produces the best results
among the investigated approaches. It clearly enhances the quality of the generated speech,
sharpening the formant regions while preserving the relations within the generated speech
signal.

All the other approaches to modify the variance locally or to adjust the roughness of the
signal lead to degradation of the speech quality.

However, it can be noted that the result of the listening test does not correspond with
the Euclidean error measure as shown in Fig. 6.1.
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Audio examples
The following examples, are taken from the listening test.
”So far as flags were concerned, they were beyond all jurisdiction”
Audio example 12 (CD-track 12) Utterance synthesized with natural cepstrum
Audio example 13 (CD-track 13) Utterance synthesized with adjusted GV
Audio example 14 (CD-track 14) Utterance synthesized with adjusted LV
Audio example 15 (CD-track 15) Utterance synthesized with adjusted GR
Audio example 16 (CD-track 16) Utterance synthesized with adjusted LR
Audio example 17 (CD-track 17) Utterance synthesized without adjustments



Chapter 7

Conclusions

In this work, different methods for improving the generation of parameter curves (especially
the spectral envelope) in Hidden Markov Model-based speech synthesis were investigated
and evaluated in terms of their influence on the speech quality. For this purpose, the HMM-
based speech synthesis system (HTS) based on the Hidden Markov Model Toolkit (HTK)
was chosen as a software framework, as it is a very flexible research tool offering a variety of
algorithms related to HMMs.

Taking a closer look at the HTS system, the over-smoothing problem was identified as the
main factor to degrade the quality of the generated speech. The maximum likelihood criterion
in the parameter generation algorithm results in parameter trajectories that are close to the
mean vector sequences of the HMMs, and hence fails at producing natural parameter curves.
The statistical modeling removes certain characteristics of the parameter trajectories that are
relevant for the speech quality. Re-introducing these characteristics leads to an enhancement
of the speech quality. This thesis investigates variance and roughness features.

Inspired by a paper by Tomoki Toda and Keiichi Tokuda from 2007 about a speech pa-
rameter generation algorithm considering a Global Variance criterion [TT07], I firstly focused
on the variance features and extended the approach to adjust not only the variance over a
whole utterance, but also over a single phoneme.

Secondly, a new feature named ”roughness” was proposed to describe the ripple of a
cepstral parameter curve. The roughness is a measure for the presence of high frequency
components in a parameter trajectory and was found to be higher in natural cepstral se-
quences than in the generated ones. When phonemes with long state durations (e.g. vowels)
are modeled, temporal details of the cepstrum get lost due to the low number of available
model parameters. The proposed approach reintroduces spectral details, amplifying the fre-
quency components beyond a certain cut-off frequency in order to improve the naturalness
of the generated speech.

To compare and evaluate the approaches described above, a listening tests was conducted.
10 participants had to evaluate 6 audio examples of 20 different sentences by assigning them
a preference score between 6 (best quality) and 1 (worst quality). The tests revealed that
the Global Variance adaption is most effective method to increase the speech quality. All
the other attempts (Local Variance, Global Roughness and Local Roughness) restored the
variance or roughness features that had been removed during the modeling process, but did
not further upgrade the speech quality.

In the case of the roughness based features, two reasons have been identified to explain
the inferior speech quality: 1) over-smoothing in the time domain has a smaller impact on the
perceived quality than over-smoothing in the frequency domain [MZW08], 2) the local and
the global roughness adjustments cause audible discontinuities because of the exaggerated
emphasis of the signal flanks.

In the case of the Local Variance, the speech quality degraded because of unsteady signal
properties at the phoneme borders. An improved local variance adaption method using a
smoothed Local Variance-ratio was proposed and was found to remove some of the artifacts,
but was not evaluated in the listening test.
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While doing my research, a lot of new questions and ideas arose. In the limited time of
this diploma thesis, I had to stop at a certain point and leave some questions for future
investigations. In the following I want to document some of the ideas that occurred in the
course of my thesis.

One big problem still is the lack of modeling accuracy of long state durations. It happens
regularly (especially with vowels) that one state has a duration of 10 or more frames and is
modeled by one probability density function. The inverse problem exists when the duration
of very short phonemes (especially fricatives) is smaller than the number of states of the
HMMs and no skip is used. The time- and the frequency resolution would increase if each
pdf modeled more or less the same amount of frames. HMMs with bigger amount of states
and skip could alleviate these problems.

Secondly, the steps of Thomas Drugman and Jian Yu [YZTW07, TATG09] could be fol-
lowed further and a combination of statistical parametric synthesis and unit selection could
be implemented. Every state could not only be represented by one probability density func-
tion but by a set of parameters describing an actual instance from the training corpus. If
there is more than one instance in the training data associated to the same model, the longest
entry would be taken. Different durations of this instance could be generated by compacting
or expanding the parameter sequence. For unseen models the training sequence would have
to be found that is as close as possible to the most likely parameter curve.

Finally, other machine learning approaches, such as neural networks or support vector
machines, could be applied to generate the spectral envelope. It should be investigated, if
other statistical methods are equally sensitive to the over-smoothing problem as HMMs are.



Appendix A

Mathematical formulations used in
this thesis

A.0.1 Joint probability

P (A ∩B) = P (A,B) = P (AB) (A.1)

A.0.2 Conditional probability

P (A|B) =
P (AB)
P (B)

(A.2)

A.0.3 Bayes theorem

P (A|B) =
P (B|A)× P (A)

P (B)
(A.3)
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Appendix B

The Hidden Markov Model

The theoretical background of the HMMs was firstly described in a series of statistical papers
by Leonard E. Baum et al. in the late 1960s. In the mid-1970s HMMs were successfully ap-
plied to speech recognition and later in the 1980s they were found to be very useful analyzing
biological sequences such as the DNA.

In this thesis, Continuous Density Hidden Markov Models (CDHMM) are applied to
speech synthesis. The related basic mathematical formulations are explained in this section.

A HMM consists of N states, that are sequentially visited (left-to-right model without
skip) and is defined by a set of three parameters λ = {A,B,Π}. A HMM has always one
initial state, one or more emitting states and an ending state.

1. The transition probability matrix A
A transition from state i to state j occurs with a probability of aij = P (qt = Sj |qt−1 =
Si). All the transition probabilities of a HMM can be defined by the N ×N transition
probability matrix A.

2. The state output probability matrix B
The state i outputs a certain feature value with an output probability bi. As we as-
sume the feature value to be a continuous quantity (CDHMM), each feature is assigned a
probability density function. These PDFs usually are represented by a sum of multivari-
ate Gaussian distributions. The probability that the state i produces the observation
vector ot at time t can be written as

bi(ot) =
M∑
m=1

wimN(ot; µim,Σim) (B.1)

with the definition of a Gaussian distribution

N(ot; µim,Σim) =
1√

(2π)D|Σim|
e−

1
2
(ot−µim)>Σ−1

im(ot−µim) (B.2)

M denotes the number of mixtures and D is the dimensionality of the feature space.
wim is the weight, µim the D-dimensional mean vector and Σim the D×D covariance
matrix of mixture m and state i.

3. The initial probability vector Π

Π = {πi}Ni=1 (B.3)

where πi is the probability of the model to initially be in state i. In the left-to right
models, the initial state of a HMM is always the first (initial) state.

B.1 Basic problems and algorithms

Three main problems appear when dealing with HMMs and are discussed in this section. A
more detailed description can be found in [?].
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What is the likelihood of an observation sequence O, given the model λ (Evalu-
ation problem) ?

Let us assume we observe the feature sequence O with

O = [o1,o2, ...,oT ] (B.4)

ot denoting the feature vector extracted at time t.
How probable is it, that the observation sequence O was produced by a given HMM λ ?

This depends on two factors:

1. The output probabilities bi of the observation vector ot at the state i

2. The possible (hidden) state sequences Q that can be emitted by the HMM λ

Q = [qt=1, qt=2, ...qt=T ] (B.5)

with qt is the state assigned to the time frame t. If we sum up all the possible state sequences
that could occur, multiply them by the observation probability bi of the corresponding state
i, we get a simple but very impractical solution:

P (O|λ) =
∑
allQ

P (O, Q|λ) (B.6)

Using Bayes’ rule (Eq. A.0.3) the term P (O, Q|λ) can be split into two parts:

P (O, Q|λ) = P (O|Q,λ)P (Q|λ) (B.7)

The first term P (O|Q,λ) can be calculated multiplying the observation probabilities bqt for
all the time frames t, where qt is the state corresponding to time frame t:

P (O|Q,λ) = bq1(o1)× bq2(o2)× ...× bqT (oT ) (B.8)

The second term P (Q|λ) is the probability of the state sequence Q given the HMM λ and
can be calculated by multiplying the state transition probabilities between two adjacent time
frames in the sequence Q:

P (Q|λ) = aq1 × aq1q2 × ...× aqT−1qTaqTN ) (B.9)

Combining Eq. B.8 and Eq. B.9 yields:

P (O|λ) =
∑
all Q

aq1bq1(o1)aq1q2bq2(o2)...aqT−1qTaqTNbqT (oT ) (B.10)

The demand in computational power of solving equation B.10 increases exponentially with
the length of the observation sequence. A method to calculate P (O|λ) more efficiently is the
forward-algorithm.

The forward-algorithm The problem of solving equation B.10 directly is that all the
state sequences are treated independently. Even if two state sequences differ only in the last
state, the probability of both of them is calculated from the first to the last state. It would be
a lot more efficient to reuse the results from other state sequences that have equal states up
to a certain frame. This is done in the forward-algorithm, where probabilities called forward
probabilities αt(i) are saved for each state i and each step t in the sequence (going from left to
right) and are reused for the next step. The forward probability is defined as the probability
of being in state i at time t and having emitted the observation sequence Ot

1 = [o1,o2, ...ot].
To obtain the final likelihood P (O|λ), only the forward probabilities at time T have to be
summed up (ignoring the initial and ending state, that are not emitting any observations):

P (O|λ) =
N−1∑
i=2

αT (i)aiN (B.11)
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What is the most probable state sequence Q̂, given the model λ (Decoding prob-
lem)

The true state sequence Q, given the observation vector sequence O, can rarely be determined
with 100% security, because in most cases the same observation vector can be produced by
more than one state sequence. If we still want to find out the underlying state sequence, a
criterion has to be defined, how to chose the right state sequence. In our case this will be the
sequence with the highest a-posteriori probability:

Q̂ = arg max
Q

P (Q|O, λ) (B.12)

An efficient method to solve this problem is the Viterbi-algorithm.

The Viterbi algorithm The Viterbi algorithm is a recursive algorithm that calculates for
each time step t (from beginning t=1 to the end of the sequence t=T) and each state j:

• the probability of the most likely state sequence that ends in the state j at timestep t
and has emitted Ot=1...t:

δt(j) = max
i

[δt−1(i)aij ]bj(ot) (B.13)

i is the state assigned to the time frame t− 1.

• the most probable precursor state of the actual state j:

Ψt(j) = arg max
i

[δt−1(i)aij ] (B.14)

When the recursion has ended, the most probable state sequence can be determined in taking
all the most probable precursor states of the last (most probable) ending state. This proce-
dure is known as backtracing.

What are the most suitable model parameters to model the training data (Train-
ing problem) ?

The most difficult problem is the training problem (also referred to as learning or estimation
problem), where the model parameters λ = (A,B,Π) are estimated from training data O
in a manner such that the model describes the training data as good as possible. In other
words we have to find the model parameter λ̂ that maximize the likelihood of the training
data P (O|λ).

λ̂ = arg max
λ

P (O|λ)

Up to now, there is no known analytical way to obtain λ̂ in a closed form, so iterative
algorithms have to be used to find at least a local maximum. The most popular among these
algorithms is the so called Baum-Welch- or Forward-backward algorithm. In order to explain
it, we first have a look at the backward-algorithm:

The backward-algorithm According to the forward-probability αt(i), a so-called back-
ward probability βt(i) can be defined. βt(i) is defined as the probability of being in state
i at time t when the next observation vectors are OT

t+1 = ot+1 × ot+2 × ot+3...oT . That
means we calculate the probability of a state sequence starting from the last state and save
intermediate results like in the forward algorithm. These intermediate results can again be
shared among state sequences that have the same ending states to reduce complexity.
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The Baum-Welch algorithm The Baum-Welch- or forward-backward algorithm is an
iterative algorithm that was introduced in the early 70ies by Leonard E. Baum and Lloyd R.
Welch. To describe the algorithm, two auxiliary probabilities have to be defined:

• γt(i) is the probability of being in state i at time t given the observation sequence O
and the model parameters λ. Using Bayes theorem (equation A.0.3) this can be also
written as:

γt(i) = P (qt = i|O, λ) =
P (O, qt = i|λ)

P (O|λ)
(B.15)

with 1 ≤ t ≤ T, 1 < i < N
The numerator of B.15 represents the probability of all the state sequences that are in
state i at time t and emit the observation sequence O, whereas the denominator stands
for the probability of all the state sequences that emit O. The numerator can also be
expressed as the product of αt(i) (covering the states before i) and βt(i) (covering the
states after i):

γt(i) =
αt(i)× βt(i)
P (O|λ)

(B.16)

• ξt(i, j) is the probability of a transition from state i to j given the observation sequence
O and the model parameters λ. Using Bayes’ rule again, this can be also written as:

ξt(i, j) = P (qt = i, qt+1 = j|O, λ) =
P (O, qt = i, qt+1 = j|λ)

P (O|λ)
(B.17)

with 1 ≤ t ≤ T, 1 < i, j < N
The numerator of B.17 represents the probability of all the state sequences that have
a transition from state i to j at time t and emit the observation sequence O, whereas
the denominator stands for the probability of all the state sequences that emit O.
The numerator can be expressed in terms of the forward- and backward-probability as
follows:

ξt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

P (O|λ)
(B.18)

Summing up these auxiliary probabilities γt(i) and ξt(i, j) over the whole observation se-
quence, yields very useful information:∑T

t=1 γt(i) can be interpreted as the expected number of times that state i is visited
in the sequence.∑T−1

t=1 ξt(i, j) can be interpreted as the expected number of transitions from state i to
state j that occur in the sequence.
From these two sums the parameters λ̂ = (Â, B̂) of a HMM can be estimated:

âij =
∑T−1
t=1 ξt(i, j)∑T
t=1 γt(i)

=
expected number of transitions from i to j

expected number of times state i has been visited
(B.19)

b̂j(ok) =
∑
all t with ot=ok

γt(j)∑T
t=1 γt(j)

=
expected number of times j is visited when observation ot = ok

expected number of times j is visited
(B.20)

These steps are iterated until the parameters converge and the maximum likelihood is
reached. It has to be stated that it is very important to have good initial model parameters
because the Baum-Welch algorithm (like the other iterative algorithms) only finds a local
maximum of the likelihood.



Appendix C

CD index of audio examples

All generated audio examples (except no. 18 and 19) have been forced aligned to natural
speech to yield better comparing. As this thesis concentrates on modifying the spectral en-
velope, the other STRAIGHT parameters (aperiodicities, F0) are synthesized without any
adaptions.

CD-index description

Audio example 01 (CD-track 01) Natural speech (16kHz, 16bit)
Audio example 02 (CD-track 02) Speech generated with STRAIGHT from natural

parameters
Audio example 03 (CD-track 03) Speech generated using 1943 leaf nodes for spectrum,

6361 for logF0, 2410 for aperiodicities and 1128 for
duration (occupation count = 343 / 105 / 277 / 591)

Audio example 04 (CD-track 04) Speech generated using 803 leaf nodes for spectrum,
2084 for logF0, 950 for aperiodicities and 505 for
duration (occupation count = 830 / 320 / 701 / 1320)

Audio example 05 (CD-track 05) Speech generated using 401 leaf nodes for spectrum,
901 for logF0, 461 for aperiodicities and 250 for
duration
(occupation count = 1662 / 740 / 1446 / 2666)

Audio example 06 (CD-track 06) Utterance synthesized without adjustments
Audio example 07 (CD-track 07) Utterance synthesized with adjusted GV
Audio example 08 (CD-track 08) Utterance synthesized with adjusted LV

(unsteady variance ratio)
Audio example 09 (CD-track 09) Utterance synthesized with adjusted LV

(smooth variance ratio and auxiliary mean value)
Audio example 10 (CD-track 10) Utterance synthesized with adjusted GR
Audio example 11 (CD-track 11) Utterance synthesized with adjusted LR
Audio example 12 (CD-track 12) Utterance synthesized with natural cepstrum
Audio example 13 (CD-track 13) Utterance synthesized with adjusted GV
Audio example 14 (CD-track 14) Utterance synthesized with adjusted LV
Audio example 15 (CD-track 15) Utterance synthesized with adjusted GR
Audio example 16 (CD-track 16) Utterance synthesized with adjusted LR
Audio example 17 (CD-track 17) Utterance synthesized without adjustments
Audio example 18 (CD-track 18) Utterance synthesized with GV and

synthesized state durations using one mixture
Audio example 19 (CD-track 19) Utterance synthesized with GV and

synthesized state durations using two mixtures
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