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Abstract

In this thesis, the applicability of a multi-source multi-target Bayes filter is evaluated with

respect to its ability to extract and track multipath components (MPCs) in measured indoor

ultra-wideband (UWB) channels. The measurements of the channel impulse responses (CIRs)

were obtained along a reference trajectory of a mobile transmitter station in a realistic indoor

environment. The probability hypothesis density (PHD) filter is used, which approximates

the multi-target posterior probability density function by its multi-target first order statistical

moment and propagates it in time. Two implementations of this filter are considered, a sequential

Monte-Carlo (SMC) and a Gaussian mixture (GM) approach.

The characteristics of the implementations are discussed and performance evaluations are

done both using simulated data and the measured CIRs. The first case allows for a detailed

evaluation of model mismatches, such as target motion which is not following the linear constant-

velocity model that is used for target dynamics. In the second case, it is shown that the

multipath extraction problem is especially challenging due to diffuse scattered components in

the measurements and their distribution in the state space.

Performance results show the applicability of the filter if the assumptions made on target

dynamics and clutter distributions fit well with the measurement set. Important performance

parameters are identified using real measurement data and important directions for future work

are given.

Keywords

UWB, multi-target filtering, PHD-Filter, FISST, RFS, Sequential Monte-Carlo, Gaussian mix-

ture, statistical information fusion





Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit der Evaluierung eines Multihypothesenfilters, dem

probability hypothesis density (PHD) Filter, zur Erfassung und Verfolgung der Komponenten

der Mehrwegausbreitung (MPCs) basierend auf Ultrabreitbandkanalimpulsantworten eines In-

nenraumes, welche entlang einer Trajektorie aufgenommen wurden. Die Messungen sind dabei

überlagert von diffusen Störkomponenten und vorherrschendem Messrauschen.

Der verwendete Filter approximiert die a-posteriori Wahrscheinlichkeitsdichtefunktion des Hy-

pothesenraumes anhand des statistischen Momentes erster Ordnung und propagiert diese zeitlich

weiter. Die Zustandsänderung soll einem konstantem Beschleunigungsmodell folgen. Diese Vere-

infachungen reduzieren das Anwendungsbebiet des Filters. Der Filter selbst schätzt zwar die

Anzahl der vorhandenen Zustände, gibt sie jedoch nicht direkt aus. Daher müssen diese noch

extrahiert und einem Pfad zugeordnet werden.

Zwei Implementierungen des PHD-Filters, eine sequentielle Monte-Carlo Variante sowie eine

Implementierung, welche Gauß’sche Mischverteilungen verwendet, werden untersucht. Zunächst

auf simulierten Messwerten um deren Eigenschaften zu bestimmen, dann mit den Ultrabreit-

bandmessungen. Es zeigt sich, dass das verwendete Multihypothesenfilter sowohl die Anzahl als

auch die vorhandenen Zustände hinreichend genau schätzen kann. Jedoch unter der Bedingung,

dass die Annahmen der Zustandsverteilung und deren Änderung auch dem verwendeten Modell

entsprechen. Andernfalls ist die Filterleistung nicht zufriedenstellend.

Stichwörter

Ultrabreitband, Multihypothesenfilter, PHD-Filter, FISST, RFS, Monte-Carlo, Gauß’sche Mis-

chverteilung
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1
Introduction

Robust and reliable systems for localization are of special interest in various areas. In outdoor

scenarios, this problem has been solved by satellite based systems like the global positioning

system (GPS). In indoor scenarios, GPS can not be used due to the lack of a line-of-sight (LOS)

path which is required for it. Also many indoor localization approaches utilize sensing techniques

based on the LOS path, i.e. light amplification by stimulated emission of radiation (LASER)

or ultra-sound. Based on this, sophisticated localization methods have been developed, e.g.

simultaneous localization and mapping (SLAM) [DWB06,BDW06]. A quite promising sensing

technology for indoor localization is to make use of ultra wideband (UWB) signals. Such signals

benefit of having a large freely available bandwidth of 3.1 − 10.6 GHz according to Federal

Communications Commission (FCC) regulations. This large bandwidth manifests itself in a fine

spatial resolution of only 4cm [Mol09] in all propagation paths. In contrast to this, the spatial

resolution of LASER is superior but only for one observation point. Multiple measurements are

needed to sense the whole observation space. In the case of UWB, multipath propagation can

be resolved. Multipath propagation is a phenomenon where the transmitted signal reaches the

receiver not only on the direct path, but also on multiple paths which are caused by the wave

being reflected or scattered at, e.g. room walls, before arriving at the receiver [SW09]. The

different path lengths of the multi-path components (MPCs) lead to different arrival times at

the receiver side. A distinguishing feature of UWB is that many of these individual paths are

recognizable and resolvable in the measurements [KP03],[HRV11].

Many localization schemes utilize multilateratation of three or more reference nodes to esti-

mate the position. In situations where the LOS path is blocked, schemes based on this tend

to be error prone. Methods which overcome this can e.g. incorporate MPCs for localization

[MSW10]. Here, MPCs are assigned to virtual sources placed at the distance and direction of

the impinging MPC at the receiver side. In fact, if floor plan information is available, robust

– 1 –
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and accurate indoor localization is possible with only one reference node [MAGW11]. However,

these methods still lack an efficient and accurate method for extracting MPCs from the measure-

ments. [SKA+08] and [SKA+10] presented a method for extracting MPCs from UWB channel

impulse responses (CIRs) in an outdoor scenario. They are then assigned to scatterer locations

in the spatial domain. This has been adapted to estimate virtual sources in an indoor scenario

[FMGW11]. However, to perform online localization, these MPC extraction methods are not

applicable. For this purpose, an online method for extraction and tracking of MPCs needs to

be developed.

1.1 Outline

The remainder of this section describes the UWB channel model used, the motivation of this

work and the indoor measurement campaign. In Section 2, optimal single- and multi-target

Bayes filtering is discussed. Section 3 deals with the approximations of the optimal multi-

target filtering and introduces the PHD-Filter together with its two implementations. Section 4

describes multi-target miss-distances. The evaluation of the filter implementations on simulated

and real measurement data is discussed in Section 5. Finally, in Section 6 a conclusion of the

results obtained is given.

1.2 Channel Model

A model for the UWB-CIR is given as [Mol05]

h(τ) =
N∑
i=1

αiχi(τ)⊗ δ(τ − τi). (1.1)

Here, αi denotes a scalar weighting factor, χi(τ) denotes the distortion of the i-th MPC by the

frequency selectivity of interaction objects, δ(τ − τi) is the time delay of the i-th MPC and ⊗ is

the convolution operator. The distortion factor χi(τ) is often unknown.

A simplification of this model leads to a tapped delay line model. Such a simplified model for

the CIR assuming a mobile agent at position pk is given by [MAGW11]

hk(τ) =

Lk∑
l=1

ak,lδ(τ − τl) + vk(τ) + nk(τ). (1.2)

The CIR hk(τ) is a summation of Lk deterministic, specular reflections; diffuse scattering com-

ponents vk(τ) and the measurement noise nk(τ). ak,l is the complex-valued amplitude of the

l-th deterministic, specular reflection. We are interested in estimating and tracking of these

deterministic, specular reflections (the MPCs) from the UWB-CIR measurements.

– 2 –
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1.3 Motivation

Within this work, a suitable method for tracking MPCs in indoor UWB-CIR measurements shall

be evaluated.

The method used has to cope with:

� the number of MPCs present in the measurements Lk is unknown and has to be estimated

� Lk varies for different positions pk of the MS

� the measurements are superimposed by vk(τ) and nk(τ)

Within this work, the applicability of a multi-source multi-target filter, the probability hy-

pothesis density (PHD) Filter, is evaluated with respect to its ability to extract and track MPCs

in indoor UWB CIR measurements gathered along a MS trajectory. As the PHD-Filter does

not produce target tracks, a sophisticated method of target track estimation has to be used.

Furthermore, the indoor UWB measurements have to be preprocessed in an adequate manner,

before they can be utilized as inputs for the multi-target PHD-Filter.

1.4 Indoor Measurement Campaign

The indoor UWB measurement campaign took place at a hallway located at the department of

the Signal Processing and Speech Communication Laboratory at Graz, University of Technology.

The measurement setup is given in Tab. 1.1 and the floor plan is plotted in Fig. 1.2. The walls

of the hallway are made of concrete. The hallway has large glass fronts with small metal

pillars located in front of them. Another pillar made of concrete is located close to the position

of the receiver base station. In the floor plan the receiver base station (BS) is marked with

BS 3. The transmitter mobile station (MS) is moving along the illustrated trajectory. The

trajectory of the MS is composed of 381 positions spaced by 10cm. For every MS position, the

complex channel transfer function in the frequency range of 6 − 8GHz was measured with a

vector network analyser with 1MHz spacing. The CIRs are computed using the inverse discrete

Fourier transform (IDFT) of the complex channel transfer function with a certain amount of

oversampling and are plotted along the MS trajectory in Fig. 1.1. In the figure the amplitude

of the single CIRs is encoded in colour. The LOS component is clearly visible having the lowest

delay and the highest amplitude along the MS trajectory. Also some MPCs with a higher delay

than the LOS component caused by single and double reflections are visible. In the non line-

of-sight (NLOS) situation (MS position 280 to 320) no LOS component and also almost zero

specular MPCs are present. Additional details can be found in [FMGW11,MAGW11]. The

measurements are preprocessed beforehand following the method explained in [MAGW11]. The

preprocessing step is explained in Section 5.3.1.
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Figure 1.1: Measured CIRs along the MS position trajectory

Parameter Value

Scenario Indoor hallway with concrete walls,
large glass fronts and metal pillars

No. of MS positions 381, spacing 10 cm
Frequency range 6− 8GHz
Frequency spacing 1MHz

Network Analyzer Rhode & Schwarz ZVA-24
Antennas Skycross SMT-3TO10M plus

custom made 5-cent coin antenna

Antenna height 1.5m

Table 1.1: Measurement Setup of indoor measurement campaign
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Figure 1.2: Floor plan and measurement trajectory of the MS
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1.5 Related Work

In [YSK+08], a method for tracking MPCs utilizing particle filters (PFs) was established. This

method is restricted to the case where no path overlap occurs. Then, tracking of multiple MPCs

can be performed simultaneously with multiple parallel PFs, one for each MPC. In a real world

scenario the assumption of no path overlap is likely to be violated. Furthermore, the number of

MPCs present in the measurements varies, which has to be handled separately.

Another possibility is to use an multi-source multi-target filtering approach for tracking MPCs

in succeeding time-steps [BSL95]. One filtering technique capable of maintaining multiple target

tracks is the multi hypothesis tracking (MHT) filter [Rei79]. It maintains multiple hypotheses of

the association between a target state and the measurement in the measurement set [PVSD04].

The drawback of MHT is the exponentially growing number of hypotheses over time [PVSD04].

Another method is the joint probabilistic data association (JPDA) filter. It approximates the

posterior target distribution as separate Gaussian distributions for each target [SVL04,BSL95].

The Rao-Blackwellized Monte Carlo data association algorithm for multi-target tracking par-

titions the multi-target tracking problem into the estimation of the posterior distribution of

the data associations and the estimation of the single target tracking sub-problems solved by a

Kalman filter [SVL04,SVL07]. Special assumptions on clutter appearance, target dynamics and

prior distributions of target states are needed.

Another proposed approach called the PHD-Filter is based on finite-set statistics (FISST)

theory [Mah04,Mah01,Mah03,Mah07b]. This multi-source multi-target filter does not produce

direct target tracks and therefore avoids the target-measurement association problem. The

PHD-Filter propagates the PHD, a first order moment of the multi-target posterior, in time.

The single-target counterpart to the PHD is the mean value. The PHD-Filter is the multi-target

counterpart to the constant-gain Kalman filter [Mah03]. Several implementations of the PHD-

Filter based on a sequential Monte Carlo implementation exist [Sid03, VS03, CB07, RCV10].

If target movement is restricted to Gaussian dynamics, a closed-form solution of the PHD

recursion exist [VM06] and several Gaussian mixture implementations have been established

[VM05,VM06,CPV06,PCV09].

The PHD-Filter confines the propagation of the full multi-target posterior to the first order

multi-target moment which corresponds to a loss of information [Mah07b]. Propagating the

whole multi-target posterior is up to now computationally intractable. The CPHD-Filter (car-

dinalized PHD) additionally propagates the cardinality distribution to the PHD and leads to

better performance [Mah07b,Mah07a,VVC06]. This is still a simplification to the propagation

of the first and second order multi-target moment of the multi-target posterior.
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Multi-target Tracking for UWB Channels Using PHD Filters

2
Bayes Filtering

2.1 Tracking of a Single Target

2.1.1 Problem Definition

A physical process that changes over time is mathematically referred as a dynamical system.

Observing the system’s state at discrete time steps allows the description of the dynamical

system by difference equations. A system model is needed to describe the behaviour of the

physical process mathematically. Let xk = [xk,1, . . . , xk,N]
T be the N-dimensional system state

at discrete time step k . Then the system can be described by the difference equation [AMGC02]

xk = fk(xk−1,vk−1). (2.1)

The system state xk is determined by a possibly non-linear function fk(·), the independent and

identically distributed (i.i.d.) noise sequence vk−1 and the system state xk−1 of the previous

time-step k − 1. Note, for this equation to hold the first order Markov assumption has to be

considered [BN07], i.e.

p(xk|xk−1:1) = p(xk|xk−1). (2.2)

That means the probability of the system state xk in time step k only depends on the state xk−1

in the previous time step k− 1 and not on the whole history of past states x1:k−2. In a physical

system the state vector xk often cannot be directly measured. Furthermore, the measurement

may be affected by noise or other distorting effects causing the measurement being only a noisy

observation of the system state xk at time step k. Putting the measurement into relation with

– 6 –



2.1 Tracking of a Single Target

the system state yields

zk = hk(xk,nk). (2.3)

Here, hk(·) is a possibly non-linear function of the state xk and nk is an i.i.d. noise sequence;

e.g. the system state vector could be xk = [α, τ,∆α,∆τ ]T and the measurement vector could

be zk = [α, τ ]T, where α denotes the amplitude, τ the delay and ∆α,∆τ their changes from the

previous to the current time step.

2.1.2 Optimal State-space Filter

We are interested in estimating the system state xk, given all the measurements z1:k = {zi|i =
1, . . . , k} up to time k. From a probabilistic point of view, this corresponds to estimating the

posterior probability density function (pdf) p(xk|z1:k). The computation of the posterior pdf

can be split up into a prediction and an update step. The Chapman-Kolgomorov equation

[AMGC02] describes the prediction step and is given by

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (2.4)

Here, p(xk|z1:k−1) is called the prior pdf, p(xk|xk−1) describes the state propagation from the

previous time step k − 1 to the current time step k and p(xk−1|z1:k−1) is the posterior pdf in

time step k − 1. The update equation computes the posterior pdf and can be inferred using

Bayes’ law [BN07], namely [Sim06]

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
. (2.5)

Here, p(zk|xk) is the likelihood of the measurement zk conditioned on the system state xk and

the prior pdf p(xk|z1:k−1) was obtained in the prediction step. It is divided by the marginal

distribution p(zk|z1:k−1) of receiving measurement zk knowing all the previous measurements

z1:k−1. This constant is obtained by

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk (2.6)

and depends on the likelihood p(zk|xk) and the process noise, both defined by the system model

(2.3).

2.1.3 Optimal Implementation

The computation of the whole posterior pdf in (2.5) cannot be determined analytically [AMGC02],

unless special assumptions are made. In the case of the Kalman filter the posterior pdf in

any time-step is a Gaussian distribution, which is fully described by its mean and variance

[AMGC02]. This implies certain restrictions on the system: The function fk(·) given in (2.1)

and hk(·) in (2.3) are linear functions; the initial state x0, the process noise vk−1 and mea-

surement noise nk follow a zero mean multivariate Gaussian distribution [Kal60,WB01].Then a
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closed form solution for the posterior pdf exists.

2.1.4 Approximate Implementation

If the assumptions made in the case of the Kalman filter are not satisfied, the computation of the

posterior pdf has to be approximated numerically. One such approximate method is the particle

filter [Sim06,AMGC02]. It samples the posterior pdf and propagates the samples instead of the

whole pdf. These samples are distributed according to the posterior pdf p(xk|z1:k). For linear

Gaussian dynamics the ideal solution of the particle filter reduces to the Kalman filter [Sim06].

2.2 Tracking of Multiple Targets

In the multi-target case, zero or more targets are present. The targets appear and disappear

randomly in the state-space. If a target is present, its state-space model equals the single target

case (2.1). Also the generated observation by the i-th target with state xk,i equals (2.3).

The setXk holds all the targets which are present in time step k and is, according to [PVSD04],

defined as

Xk = {xk,1,xk,2, . . . ,xk,M(k)} ⊂ ES . (2.7)

Here, M(k) is the number of present targets at time-step k. ES is the state-space. The received

measurements in time-step k are also put into a set

Zk = {zk,1, zk,2, . . . , zk,N(k)} ⊂ EO. (2.8)

Here, N(k) is the number of received measurements in time-step k. The received measurement

set Zk is a subset of the observation space EO. It is assumed that not every measurement has its

origin in a state xk,i. Due to clutter, some measurements zk,j ∈ Zk might be present although

they do not origin from an underlying state xk,i ∈ Xk. This spurious measurements are modelled

by a specific clutter model [PVSD04].

Random Finite Set Formulation

To represent uncertainty about the number of elements in the multi-target state Xk and mea-

surement Zk, both are modelled by random finite sets (RFSs) [Sid03]. A RFS X is a finite-set

valued random variable, which can be described by a discrete probability distribution and a

family of joint probability densities [VM06]. The discrete distribution describes the cardinality

of X and an appropriate density characterizes the joint distribution of the elements in X [VM06].

For the further discussion, let Γk = {Xk,1,Xk,2, . . . ,Xk,M(k)} be a RFS. A certain outcome is

then denoted byXk given in (2.7). Similarly for the measurements, let Σk = {Zk,1,Zk,2, . . . ,Zk,N(k)}
be a RFS. A certain outcome is then denoted by Zk given in (2.8).
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2.2 Tracking of Multiple Targets

Definition of the Filtering Problem

The objective of a multi-target state-space estimator is to estimate the unobserved system state

setsX1:k = {Xi|i = 1, . . . , k} up to time k, given the sets of observations Z1:k = {Zi|i = 1, . . . , k},
i.e., obtain X̂k = {x̂k,1, x̂k,2, . . . , x̂k,T̂k}, where x̂k,i are the individual target estimates and T̂k is

the estimate of the number of targets in X̂k at time k [CB07].

Optimal State-space Filter

With the random finite set formulation given in Section 2.2, it is possible to formulate the multi-

target tracking problem within the Bayesian framework [PVSD04]. Assume that Z1:k = {Zi|i =
1, . . . , k} is the set of all measurements received up to time k, then the multi-target posterior,

as a counterpart of the single target posterior in (2.5) is defined by [Sid03]

pΓk|Σ1:k
(Xk|Z1:k) ∝ pΣk|Γk

(Zk|Xk)pΓk|Σ1:k−1
(Xk|Z1:k−1). (2.9)

Here, pΓk|Σ1:k
(Xk|Z1:k) is the multi-target posterior density, pΣk|Γk

(Zk|Xk) the multi-target like-

lihood and pΓk|Σ1:k−1
(Xk|Z1:k−1) the multi-target prior density. To describe these densities a

mathematical framework called finite-set statistics is needed [Sid03].

Finite-set statistics

For an introduction on FISST see [Mah04,Mah01,Mah07b]. The aim of FISST is to transform

multisensor-multitarget problems into single-sensor single-target problems mathematically by

bundling all sensors into a single ”meta-sensor“, all targets into a single ”meta-target” and all

observations into a single ”meta-observation“ [Mah04]. This transformation is illustrated in

Fig. 2.1. The solution of the multisensor-multitarget problem within the FISST framework is

then mathematically equivalent to the single-sensor single-target problem.

Figure 2.1: Illustrates the basic concept of FISST theory. Source: [Mah04]

The connection between the single target case and the multi-target case are collected in table

2.1.
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Single Target Multiple Target

sensor meta-sensor
target meta-target
vector observation z finite-set observation Z

vector state x finite-set state X
derivative set-derivative
integral set-integral

Table 2.1: Connection between single-target problems and multi-target exploiting FISST theory. Source:
[Mah04]
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3
Approximate Multi-target Filtering

In single-target filtering, propagating the full posterior pdf p(xk|z1:k) is only possible if certain

assumptions on target dynamics are made (see Section 2.1.3). In cases where these assumptions

are not fulfilled, suitable approximations have been developed (see Section 2.1.4). Optimal Bayes

multi-target filtering propagating the full multi-target posterior density in time is computation-

ally intractable. The multi-target posterior needs to be approximated by its statistical moments

and then they are propagated in time instead [PVSD04]. Let us redefine the approximations of

the posterior pdf made in the single-target case in order define the approximations necessary in

the multi-target posterior pdf.

The first order moment vector and the second order moment matrix are given by

E{xk} =
∫

xk p(xk|z1:k)dxk (3.1)

and

Ck =

∫
xkx

T
k p(xk|z1:k)dxk, (3.2)

respectively [Mah03]. Here, p(xk|z1:k) is the single-target posterior density, z1:k is the set of all

measurements up to time k. The operator [·]T denotes a matrix transpose. E{·} is the expec-

tation operator. If the posterior pdf is assumed to follow a multi variate Gaussian distribution,

higher order moments can be neglected. The posterior pdf is then fully described by the first

and second order moments. The Kalman filter, which propagates these two moments in time,

is then the optimal solution to this single target filtering problem (see Section 2.1.3).

If the likelihood of the measurement-state, p(zk|xk), is unimodal, and has a small covariance,

it usually can be reasonably approximated with a Gaussian pdf. If furthermore the variance is

low, even an approximation with only the first order moment might be enough. Then the second
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order moment can be neglected as well and it suffices to only propagate the first order moment,

because p(xk|z1:k) ∼= p(xk|E{xk}) [Mah03]. An example for such a filter is the constant gain

Kalman filter.

In the following the idea of only propagating the first order statistical moment is expanded

to the multi-target filtering problem. Then the multi-target first order statistical moment Dk|k

gives a sufficient statistic to approximate the multi-target posterior pdf

pΓk|Σ1:k
(Xk|Z1:k) ∼= pΓk|Σ1:k

(Xk|Dk|k). (3.3)

The definition of a multi-target first order statistical moment will be given in Section 3.1. The

full posterior can only be approximately recovered from the first order moment if the signal-to-

noise ratio (SNR) is high and the targets move independently from each other [Sid03]. Then the

multi-target filtering problem simplifies from multi-target pdf propagation to first order moment

propagation like it is illustrated in Tab. 3.1 [Mah03]. The first row indicates the prediction and

update of the multi-target pdf and the second row indicates the prediction and update of the

first order multi-target moment.

pΓk|Σ1:k
(Xk|Z1:k) → pΓk+1|Σ1:k

(Xk+1|Z1:k) → pΓk+1|Σ1:k+1
(Xk+1|Z1:k+1)

↓ predict ↓ update ↓
Dk|k → Dk+1|k → Dk+1|k+1

Table 3.1: Simplification of multi-target filtering problem from posterior pdf propagation to first order mo-
ment propagation. Source: [Mah03]

3.1 The Probability Hypothesis Density

3.1.1 Definition

The first order moment of a random finite set Ξ is called the probability hypothesis density DΞ

and is given by [PVSD04]

DΞ(x) = E{δΞ(x)} . (3.4)

Here, E{·} denotes the expectation operator and

δΞ(x) =
∑
x∈Ξ

δx (3.5)

is the random density representation of the random finite set Ξ for each x ∈ Ξ. The random

density representation equals the summation of Dirac delta functions δx, which are centred at

the values of x.

The PHD DΞ has the following properties [PVSD04]:

� the peaks of the PHD DΞ(x) give the estimates of the elements of Ξ,
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3.2 PHD-Filter

� the PHD DΞ(x) is a unique function on the space E where the individual targets exist.

Its integral
∫
S DΞ(x)dx over a measurable subset S ⊆ E yields the expected number of

elements of Ξ in S.

3.1.2 Poisson Approximation

In order to hold that the PHD Dk|k and Dk+1|k of pk|k(X|Zk) and pk+1|k(X|Zk) are ”best-fit”

approximations, which means the Kullback-Leibler information functionals are minimized, the

multi-target posterior pk+1|k(X|Zk) has to be approximately Poisson distributed. This also

means that the predictor Dk|k → Dk+1|k is lossless, whereas the corrector Dk+1|k → Dk+1|k+1 is

not lossless [Mah03]. A proof is given in [Mah03].

3.2 PHD-Filter

The PHD-Filter propagates the multi-target first order moment, the PHD, forward in time. The

number of targets and their positions can be estimated in each time step from the PHD. It does

not make any data association and therefore lacks of tracking the targets identity [CB07]. If the

target identities are also of interest a data association algorithm as to be put on top of it. A

data association algorithm is discussed in Section 3.3.

3.2.1 Definition

First, an RFS model for the system state set Xk and the measurement set Zk is defined. This

model incorporates target motion, birth and death. Then, the PHD-Filter, consisting of the

prediction and the update step, operating on this model is defined. The definition of the PHD-

Filter is given in [CB07] and restated here.

System State Set

The system state set Xk is a RFS whose elements within the set have three different origins. It

is composed of [VM06]

Xk =

 ∪
x∈Xk−1

Sk|k−1(x)

 ∪
 ∪

x∈Xk−1

Bk|k−1(x)

 ∪ Γk. (3.6)

Here, Sk|k−1(x) is a RFS containing the surviving targets from the previous system state set

Xk−1. Bk|k−1(x) is a RFS of spawned targets. Spawned targets occur if one target state x forks

into two new target states in the next time-step. For simplicity, spawned targets will be omitted

in this work. Γk is a RFS of new targets occurring in this time-step. The system state RFS Xk

is then a union of target states having these three different origins.
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3 Approximate Multi-target Filtering

Measurement Set

The measurement set Zk is a RFS and is a union of measurements, which origin from system

states and false-alarms measurements caused by clutter. It is described by [VM06]

Zk = Kk ∪

 ∪
x∈Xk

Θk(x)

 . (3.7)

Here, Kk is a RFS containing false-alarms measurements originated from clutter and Θk(x) is

a RFS of measurements originated from system states in the system state set Xk. The actual

model for the clutter RFS is problem-dependent. The intensity of the clutter measurement RFS

is given by

κk(z) = λkuk(z). (3.8)

For the PHD-Filter, the number of false alarms within the measurement set Zk are assumed to

be Poisson distributed with the Poisson parameter λk [Mah03]. Also the number of false-alarms

does not change over time, i.e. λk = λ. uk(z) is the probability density of false-alarms within

the measurement set. Also this density does not change over time, i.e. uk(z) = u(z). For

simplicity, the probability density of false-alarms is chosen as a uniform distribution over the

whole state-space uk(z) ∼ U.

Prediction Step

The predicted prior PHD Dk|k−1(xk|Z1:k−1) for a target state xk ∈ Xk, given all measurements

Z1:k−1 up to time k − 1 is [CB07]

Dk|k−1(xk|Z1:k−1) = γk(xk) +

∫
ϕk|k−1(xk,xk−1)Dk−1|k−1(xk−1|Z1:k−1)dxk−1. (3.9)

With the term

ϕk|k−1(xk,xk−1) = PS(xk−1)fk|k−1(xk|xk−1) + bk|k−1(xk|xk−1). (3.10)

Here, γk(·) denotes the PHD for spontaneous birth at time k, PS(·) is the probability that the

target survives from the previous time step k − 1 to the current time step k, fk|k−1(·|·) denotes
the single-target motion distribution and bk|k−1(·|·) denotes the PHD of a spawned target.

Update Step

The updated posterior PHDDk|k(xk|Z1:k), which takes the current measurement Zk into account

can be expressed as [CB07]

Dk|k(xk|Z1:k) =

ν(xk) + ∑
z∈Zk

ψk,z(xk)

κk(z) + ⟨Dk|k−1, ψk,z⟩

Dk|k−1(xk|Z1:k−1), (3.11)
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where

ν(xk) = 1− PD(xk),
ψk,z(xk) = PD(xk)g(z|xk),
κk(z) = λkuk(z).

Here, PD(xk) denotes the probability of detection, ν(xk) denotes the probability of non-detection

of state xk, g(z|xk) is the single target measurement likelihood function, κk(z) is the intensity of

the clutter RFS Kk, λk is the Poisson parameter specifying the expected number of false alarms

and uk(z) is the probability density over the state-space of clutter points. ⟨·, ·⟩ denotes the inner
product and is computed as follows

⟨Dk|k−1, ψk,z⟩ =
∫
Dk|k−1(xk|Z1:k−1)ψk,z(xk)dxk. (3.12)

3.3 PHD-Filter Implementations

The PHD-Filter propagates the first moment of the full multi-target posterior in time, which is

computationally less complex than propagating the whole multi-target posterior. Approximating

the PHD utilizing a sequential Monte Carlo (SMC) approach further reduces the computational

complexity. The key idea behind the SMC approach is to represent the required posterior density

function by a set of random samples with associated weights and to compute estimates based

on these samples and weights [AMGC02]. The implementation of the SMC PHD-Filter adapted

from [CB07] is described in Section 3.3.1.

Also a closed-form solution of the PHD-Filter exists and is called the Gaussian mixture (GM)

PHD-Filter. It was proposed by [VM05]. The filter assumes the target movement and the targets

birth process to follow linear Gaussian dynamics. The means, covariances and weights of the

Gaussian mixture components are propagated in time. This is similar to the Kalman filter in

the single-target case. The implementation of the GM PHD-Filter is adapted from [VM06] and

explained in Section 3.3.2.

3.3.1 Sequential Monte Carlo Implementation

The implementation of the SMC PHD-Filter is adapted from [CB07] and is explained in detail

here, supported by pseudo code written in Alg. 1 to Alg. 7. For an introduction on SMC meth-

ods for filtering see [AMGC02].

The pseudo code of the SMC PHD-Filter is illustrated in Alg. 1. First, N particles x
(i)
k and

their corresponding weights w
(i)
k are initialized from a given prior PHD D0|0 with T̂0 present

targets (Alg. 2). Once this initialization is complete, the iteration over the received measurement

sets begins. For each iteration step k, the PHD prediction (Alg. 3), PHD update (Alg. 4) and

particle resampling (Alg. 5) steps are performed. Then data association is made where first the

targets are extracted from the particle PHD distribution (Alg. 6), and then a labelling of the

target tracks (Alg. 7) is performed. In the following the single steps are explained in more detail.
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Initialization

In this step, N particles are drawn from an initial PHD D0|0. The shape of the initial PHD

may be arbitrary. If no knowledge about how the measurements are distributed is present, e.g.

a uniform distribution over the whole state-space of the initial particles can be used. This is

also the most general case of how the the initial particles are distributed. The pseudo code is

illustrated in Alg. 2.

Particle PHD Prediction

This step predicts the PHD, represented by the particles’ states and weights. Particles that

have survived from the previous time-step,
{
w

(i)
k ,x

(i)
k

}Nk−1

i=1
, are predicted using the single-target

motion model (compare with (3.9)). Furthermore, M newborn particles are injected into the

system. Like in the initialization step, if no assumption about the target distribution is made the

newborn particles are drawn from a uniform density across the whole state-space. The pseudo

code is illustrated in Alg. 3.

Particle PHD Update

The update of the particle PHD takes the current measurement set Zk into account. All predicted

particle states x̃
(i)
k are evaluated against all measurements within the RFS Zk and reweighted

accordingly (compare with (3.11)). Non-detected targets are accounted for by adding the inten-

sity of non-detected targets ν(x) to the measurements. To filter clutter, which might be present

in the measurements, particle weights are influenced by the clutter PHD intensity κk(z). The

result of this step is a set of updated weights for all particles within the system. The updated

particle weights approximate the present multi-target PHD. The pseudo code is illustrated in

Alg. 4.

Particle Resampling

Like all particle filters which are based on sequential importance sampling, the SMC PHD-Filter

suffers from a phenomenon called the degeneracy problem [AMGC02]. After a few iterations, all

but a few particles will still have a significant and non-zero weight. To overcome this problem,

resampling has to be performed. This can be done if a threshold of a degeneracy measure is

exceeded or simply at each time-step. Here, resampling is performed in every time-step. One

simple method of resampling is to randomly pick particles based on their likelihood distribution

[Sim06]. First, the cummulative distribution function (cdf) is built based on the current particle

distribution in state-space. Next, a set of new particles is generated. Therefore, N times the

number of estimated targets particles are randomly drawn based on their likelihood described

by the cdf. This resampling approach is described in [Sim06]. The pseudo code is illustrated in

table Alg. 5.
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Target Estimation

Target estimation describes the step of estimating the targets position based on the present

particle set representation. A way of extracting the targets, is to estimate the number of present

targets in the current time-step, and then use this information to perform k-means clustering

[Llo82] on top of it. The number of cluster centres for the k-means algorithm is then set equal

to the estimated target number. The drawback of this method is, that if the estimated number

of targets is wrong, also the outcome, which are the estimated target states, will be wrong. The

pseudo code is illustrated in Alg. 6.

Target Track Labelling

Target track labelling associates the estimated targetsm
(i)
k , which were estimated in the previous

computation step, along multiple time-steps. Target values from the previous time-step k − 1

are predicted into the current time-step k using the single-target motion distribution. Next, a

state-transition likelihood matrix Bk is built based on the target state m
(i)
k , the predicted target

state m̂
(i)
k|k−1 and the covariance matrix Sk,i of m

(i)
k . The pseudo code is illustrated in Alg. 7.

Algorithm 1 SMC PHD-Filter

1:

{
w

(i)
0 ,x

(i)
0

}N
i=1
← INITIALIZATION

(
N,D0|0, T̂0

)
◃ see Alg. 2

2: for k = 1 . . . NR do

3:

{
w̃

(i)
k|k−1, x̃

(i)
k

}Rk

i=1
← PREDICTION

({
w

(i)
k ,x

(i)
k

}Nk−1

i=1
,M

)
◃ see table Alg. 3

4:

{
w̃

(i)
k , x̃

(i)
k

}Rk

i=1
← UPDATE

({
w̃

(i)
k|k−1, x̃

(i)
k

}Rk

i=1
, Zk, λk

)
◃ see Alg. 4

5:

{
w

(i)
k ,x

(i)
k

}N
i=1
← RESAMPLE

({
w̃

(i)
k , x̃

(i)
k

}Rk

i=1
, N

)
◃ see Alg. 5

6:

{
m

(i)
k , Sk,i

}K
i=1
← TARGET ESTIMATION

({
w

(i)
k ,x

(i)
k

}Nk

i=1

)
◃ see Alg. 6

7: if k ≥ 2 then

8: target labels ← TARGET LABELING

({
m

(i)
k , Sk,i

}K
i=1

, Bthresh

)
◃ see Alg. 7

9: end if
10: end for

Algorithm 2 Initialization step of SMC PHD-Filter

1: function Initialization(N,D0|0, T̂0)
2: ◃ At time k = 0 initialize N particles drawn from the prior PHD D0|0
3: for i = 1, . . . , N do

4: sample particle x
(i)
0 ∼ D0|0

5: assign initial particle weight w
(i)
0 = T̂0

N

6: ◃ T̂0 . . . estimated number of targets
7: end for

8: return (
{
w

(i)
0 ,x

(i)
0

}N
i=1

)

9: end function
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Algorithm 3 Prediction step of SMC PHD-Filter

1: function Prediction(
{
w

(i)
k ,x

(i)
k

}Nk−1

i=1
,M )

2: for i = 1 . . . Nk−1 do ◃ iterate over all survived particles Nk−1

3: sample x̃
(i)
k from single-target motion distribution fk|k−1(·|x

(i)
k−1)

4: evaluate predicted weights w̃
(i)
k|k−1 = PS(x

(i)
k−1)w

(i)
k−1

5: ◃ PS(·) . . . probability of survival
6: end for
7: for i = Nk−1 + 1, . . . Nk−1 +M do ◃ iterate over all M newborn particles

8: sample x̃
(i)
k from uniform density across state-space

9: compute weights of newborn particles w̃
(i)
k|k−1 =

γk(x̃
(i)
k )

M = 1
M

10: ◃ the PHD for sponaneous birth is set to one γk(·) = 1
11: end for
12: Rk = Nk−1 +M ◃ Rk . . . total number of particles

13: return (
{
w̃

(i)
k|k−1, x̃

(i)
k

}Rk

i=1
)

14: end function

Algorithm 4 Update step of SMC PHD-Filter

1: function Update(
{
w̃

(i)
k|k−1, x̃

(i)
k

}Rk

i=1
, Zk, λk)

2: for each z ∈ Zk do
3: for i = 1, . . . , Rk do

4: ψ
(i)
k,z(x̃

(i)
k ) = PD(x̃

(i)
k )g(z|x̃(i)

k )
5: ◃ PD(·) . . . probability of detection, g(·|·) . . . single-target likelihood function
6: end for
7: compute inner product ⟨w̃k|k−1, ψk,z⟩ =

∑Rk
i=1 ψ

(i)
k,z(x̃

(i)
k )w̃

(i)
k|k−1

8: compute clutter PHD κk(z) = λkuk(z) ◃ with λk = λ and uk(z) = 1 if the
measurement is within the state-space

9: end for
10: for i = 1, . . . , Rk do

11: compute PHD of non-detected target ν(x̃
(i)
k ) = 1− PD(x̃(i)

k )

12: update weights w̃
(i)
k =

[
ν(x̃

(i)
k ) +

∑
z∈Zk

ψ
(i)
k,z(x̃

(i)
k )

κk(z)+⟨w̃k|k−1,ψk,z⟩

]
w̃

(i)
k|k−1

13: end for

14: return (
{
w̃

(i)
k , x̃

(i)
k

}Rk

i=1
)

15: end function
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Algorithm 5 Resample step of SMC PHD-Filter

1: function Resample(
{
w̃

(i)
k , x̃

(i)
k

}Rk

i=1
, N)

2: estimate number of targets: T̂k =
∑Rk

i=1 w̃
(i)
k

3: compute new number of particles: Nk = N · round(T̂k) ◃ round(·) . . . round to nearest
integer

4: compute cdf:

5: c1 =
w̃

(1)
k

T̂k
6: for j = 2, . . . , Rk do

7: cj = cj−1 +
w̃

(j)
k

T̂k
8: end for
9: resample step:

10: for i = 1, . . . , Nk do
11: pick ri ∼ U ∈ [0, 1] ◃ draw sample uniform from state-space
12: j = 2
13: while

∑j−1
m=1 cm < ri do

14: j = j + 1
15: end while
16: x

(i)
k = x̃

(j)
k ◃ set new particle with index i equal to old particle with index j

17: w
(i)
k = T̂k

N
18: end for

19: return (
{
w

(i)
k ,x

(i)
k

}Nk

i=1
)

20: end function

Algorithm 6 Target estimation using k-means Algorithm

1: function Target estimation(
{
w

(i)
k ,x

(i)
k

}Nk

i=1
)

2: perform k-means clustering:

3: K = round(
∑Nk

i=1w
(i)
k ) ◃ number of cluster centers

4: cluster particles
{
x
(i)
k

}Nk

i=1
into K cluster sets {C1, . . . , CK} with cluster centre m

(i)
k

∣∣∣K
i=1

according to [Llo82]
5: compute cluster covariance Sk,i = cov(Ci) ∀ K clusters ◃ cov(·) . . . covariance function

6: return

({
m

(i)
k , Sk,i

}K
i=1

)
7: end function
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Algorithm 7 Track association and labelling

1: function Target Labeling(

{(
m

(i)
k , Sk,i

)∣∣∣K
i=1

}NR

i=1

, Bthresh)

2: for j = 1, . . . , T̂k−1 do

3: m̂
(j)
k|k−1 = Fm

(j)
k−1 ◃ predict new state

4: end for
5: construct state transition likelihood matrix:
6: for j = 1, . . . , T̂k−1 do
7: for i = 1, . . . , T̂k do

8: Bk(i, j) = exp

(
−1

2

(
m

(i)
k − m̂

(j)
k|k−1

)
S−1
k,i

(
m

(i)
k − m̂

(j)
k|k−1

)T
)

9: end for
10: end for
11: associate target track:
12: if Bk(i, j) is maximum ∀i, j and Bk(i, j) > Bthresh then
13: ◃ Bthresh . . . threshold defining minimum labelling-likelihood

14: label target m
(i)
k with label of m

(j)
k−1

15: else
16: pick new label for target m

(i)
k

17: end if
18: return target labels
19: end function
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3.3.2 Gaussian Mixture Implementation

The GM PHD-Filter offers a closed form solution of the PHD recursion [VM06]. This requires

three additional assumptions:

� Each single target follows a linear Gaussian dynamical model with the state-transition pdf

fk|k−1(xk|xk−1) = N (xk;Fk−1xk−1, Qk−1), (3.13)

and the single-target measurement likelihood

gk(zk|xk) = N (zk;Hkxk, Rk). (3.14)

Here, N (·;m, P ) denotes a Gaussian pdf with mean m and covariance P. In the state-

transition equation, Fk−1 denotes the state transition matrix and Qk−1 is the process

noise covariance matrix. The single-target measurement likelihood equation contains the

observation matrix Hk and the observation noise covariance Rk.

� The probability of target survival and detection are state independent:

PS,k(xk) = PS,k (3.15)

and

PD,k(xk) = PD,k. (3.16)

� The intensities of the birth and spawn RFS are Gaussian mixtures of the form

γk(xk) =

Jγ,k∑
i=1

w
(i)
γ,k N (xk;m

(i)
γ,k, P

(i)
γ,k) (3.17)

and

βk|k−1(xk|xk−1) =

Jβ,k∑
i=1

w
(i)
β,k N (xk;F

(i)
β,k−1xk−1 + d

(i)
β,k−1, Q

(i)
β,k−1). (3.18)

Here, the intensity of the birth RFS is a summation of Gaussian intensities with mean m
(i)
γ,k

and covariance P
(i)
γ,k. The weight w

(i)
γ,k marks the expected number of newborn targets at

m
(i)
γ,k. The Gaussian mixture components of the intensity of spawn RFS have their means

at F
(i)
β,k−1xk−1 + d

(i)
β,k−1 and covariances Q

(i)
β,k−1. A newly spawned target is assumed to

be in the proximity of its parent given by the distance d
(i)
β,k−1. This condition is justified

with the example of a target firing, e.g., a missle. The newly spawned target origins at

the parents’ position and it is detected at a distance d
(i)
β,k−1 from its parent.

For the complete derivation of the GM PHD-Filter the reader is referred to [VM06]. Their

implementation has been adapted here and the pseudo code is illustrated in Alg. 8. In the
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following, the steps of the algorithm are explained in more detail.

Algorithm 8 GM PHD-Filter

1: initialization:
2: set k = 0

3: select
{
w

(i)
0 ,m

(i)
0 , P

(i)
0

}J0
i=1

4:

5: iteration:
6: for k = 1, . . . , NR do

7:

({
w

(i)
k ,m

(i)
k , P

(i)
k

}Jk
i=1

)
← GM PHD-FILTER

({
w

(i)
k−1,m

(i)
k−1, P

(i)
k−1

}Jk−1

i=1
, Zk

)
8: ◃ pseudocode can be found in table I in [VM06]
9: pruning:

10:

11:

({
w

(j)
k ,m

(j)
k , P

(j)
k

}Jk,p
j=1

)
← PRUNING

({
w

(i)
k ,m

(i)
k , P

(i)
k

}Jk
i=1

)
12: ◃ pseudocode can be found in table II in [VM06]
13:

14: multi-target state extraction:

15:

({
m

(j)
k , P

(j)
k

}∣∣∣K
j=1

)
← STATE EXTRACTION

({
w

(j)
k ,m

(j)
k , P

(j)
k

}Jk,p
j=1

)
16: ◃ pseudocode can be found in table III in [VM06]
17: target labelling:
18: if k ≥ 2 then

19: target labels ← TARGET LABELLING

({
m

(j)
k , P

(j)
k

}∣∣∣K
j=1

, Bthresh

)
20: ◃ pseudocode can be found in Alg. 7
21: end if
22: end for
23:

24:

Initialization

In the initialization step, an initial target distribution encoded in the Gaussian mixture compo-

nents can be set. If no knowledge about the initial target distribution is available, the number

of GM components J0 is set to zero.

Iteration

In each iteration step k a new measurement set Zk is available. The GM PHD-FILTER(·)
function performs the PHD recursion. This function computes the posterior PHD by taking

the current measurements and the present targets, which are encoded in a Gaussian mixture

representation, into account. The posterior PHD itself is then again represented by a Gaussian

mixture distribution. The pseudo code of the GM PHD-FILTER(·) function is not restated here,

but it can be found in table I in [VM06].
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Pruning

The GM PHD-Filter propagates the GM components in time. With no additional steps, the

number of GM components in the posterior PHD of the GM PHD-Filter would grow without

bound. At time k, O(Jk−1|Zk|) Gaussian mixture components are needed [VM06]. Here, Jk−1 is

the number of Gaussian mixtures present at time k−1 and |Zk| is the number of elements in the

current measurement set Zk. To limit the growing number of Gaussian mixture components, a

pruning mechanism has to be applied. The pruning algorithm used is given in table II in [VM06].

GM components with a weight smaller than a specified truncation threshold are neglected.

GM components which are located within a merging threshold are merged into a single GM

component. The weight of this new GM component is the summation of the merged GM

components. If the number of GM components is still higher than a maximum value Jmax, only

the Jmax GM components with highest weight are reported.

Multi-Target State Extraction

The multi-dimensional mean of a GM component directly represents an estimate of the multi-

dimensional state of the target. The height of the peaks of the PHD give the estimate of the

number of targets present at the peaks position [PVSD04,Mah03]. The height of the peaks of

the PHD is encoded in the weight of the GM component with its mean as the state of the target.

The total number of targets T̂k present at time-step k can be estimated with a summation over

all the weights of the GM components in that time-step. The multi-target state estimation is

given in table III in [VM06]. For all GM components in the system, targets are only reported if

the weight of that component exceeds a threshold, e.g. 0.5. The number of targets reported for

a single GM component depend on its weight and is round to the nearest integer value.

Target Track Association and Labelling

Target track association and labelling is equal to the method described in Alg. 7.
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4
Multi-target Distance Metrics

In the single target case, well-known performance measures exist. If the true state xk of a

system in time-step k is known the distance to its estimate x̂k can be computed using any

distance metric, e.g. the Euclidean distance d(xk, x̂k) =
√

(xk − x̂k)T(xk − x̂k). In the multi-

target case, the distance between a set of true target states Xk = {xk,1,xk,2 . . . ,xk,N} and a

set of estimated target states X̂k = {x̂k,1, x̂k,2 . . . , x̂k,M} has to be evaluated. This introduces a

problem known as the association problem. Which target estimates in X̂k are associated with

which true target states in Xk? Furthermore, if a cardinality miss-match between the the true

target state set Xk and the target estimate set X̂k is present, how is this handled by the distance

metric? A multi-target distance metric has to incorporate this. In the following, three known

multi-target distance metrics are presented.

4.1 Hausdorff Distance Metric

The Hausdorff distance [HM02], [SVV08] is defined by

dH(X,Y ) = max

{
max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)

}
. (4.1)

Here, dH(X,Y ) is the Hausdorff distance of the two finite non-empty subsets X = {x1, . . . , xm}
and Y = {y1, . . . , ym} of a finite set W.

Three major drawbacks of this metric are noted in [SVV08],

� it does not consider cardinality errors,

� it penalizes outliers heavily and

� it cannot be reasonably defined if one of the sets is empty.
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4.2 Wasserstein Distance Metric

The Wasserstein distance was introduced in [HM02] and is given as

dp(X,Y ) = min
C

 m∑
i=1

n∑
j=1

Ci,jd(xi, yj)
p

 1
p

. (4.2)

Here, dp(X,Y ) is the Wasserstein distance of order p of two finite subsets X = {x1, . . . , xm} and
Y = {y1, . . . , yn} of a finite set W. C is a m× n transportation matrix with the constraint

n∑
j=1

Ci,j =
1

m
for 1 ≤ i ≤ m and

m∑
i=1

Ci,j =
1

n
for 1 ≤ j ≤ n. (4.3)

Furthermore,
∑n

j=1

∑m
i=1Ci,j = 1. The transportation matrices form a convex polytope and

the computation of the distance dp(X,Y ) is then of minimizing a linear function on a convex

domain [HM02].

This metric copes with the problems of the Hausdorff metric, but still has several drawbacks

[SVV08]:

� inconsistency of the metric, i.e. the Wasserstein distance depends on how well the elements

of the set X are balanced among the set Y,

� contrived construction for differing cardinalities, i.e. individual objects are decomposed

into small parts, which makes it hard to interpret the resulting distance from an intuitive

point of view,

� geometry dependent behaviour, i.e. the order of magnitude of the Wasserstein distance

depends on the geometry of the ground truth,

� undefined if cardinality is zero,

� incompatibility with mathematical theory, such as point process theory.

4.3 OSPA Distance Metric

The optimal sub pattern assignment (OSPA) distance metric is based on theWasserstein distance

metric. It is defined as [SVV08]

d̄(c)p =

[
1

n
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p + cp(n−m)

] 1
p

. (4.4)

Here, d̄
(c)
p is the OSPA distance of the two finite subsets X = {x1, . . . , xm} and Y =

{y1, . . . , yn} of a finite set W. The distance term d(c)(x, y) = min(c, d(x, y)), i.e. an arbitrary

distance d(x, y), cut-off at c. Πn is the set of permutations on {1, 2, . . . , n}, p and c are metric

parameters, where p describes the order and c is the cut-off value. The parameter p defines how
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outliers are treated. A large value of p has the effect of putting more focus on outliers, in the

sense that the miss-distance is larger compared to a small p. The cut-off parameter c affects

cardinality errors and also defines the maximum search-radius c of the state xi ∈ X to look for

a state present in yi ∈ Y .

As the OSPA distance metric fixes most problems associated with the Hausdorff and Wasserstein

distance metric, it will be used as a performance measure in Section 5.

4.4 Examples

Four simple examples should illustrate the use of the OSPA distance as a valid performance

measure. The examples are plotted in Fig. 4.1. The multi-target miss distances of these examples

are given in Tab. 4.1. For distance calculation the ℓ1-norm is used, i.e. p = 1. For the OSPA-

metric the cut-off value is set to c = 2. In example one, the set Y is empty. In this case,

the Hausdorff distance is defined to be infinite, the Wasserstein distance is undefined and the

OSPA distance can be computed using (4.4) as d̄
(c)
p = c. In the second example, no cardinality

error is present and the miss-distance equals the ℓ1-distance for all three distances. In the third

example, a cardinality error is present. This cardinality miss-match of the two sets does not

affect the Wasserstein distance, which is zero. In the fourth example, the cardinality of the two

sets is equal, two elements in Y and X match perfectly and one element in Y shows a large error.

Then from an intuitive perspective, this outlier should not be that dominant in the outcome of a

multi-target miss-distance if the other elements of the two sets match perfectly. Unfortunately,

this is the case with the Hausdorff distance. In contrast to this, the OSPA distance considers the

sub-pattern which can be assigned optimally between the two sets X and Y within the cut-off

value c. Entries that are not assigned, are penalized with cp, which means that their contribution

can be controlled by the choice of c.
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(a) Example 1
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(d) Example 4

Figure 4.1: Multi-target miss-distance examples
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4.4 Examples

Parameter Example 1 Example 2 Example 3 Example 4

n = |X| 1 1 2 3

m = |Y | 0 1 1 3

Hausdorff dH(X,Y ) ∞ 2 1 3

Wasserstein dp(X,Y ) undefined 2 0 1.67

OSPA d̄
(c)
p c 2 1 1

Table 4.1: Multi-target miss-distance examples
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5
Performance Evaluation

This chapter presents the evaluation of the two PHD-Filter implementations described in Sec-

tion 3.3. The evaluation was carried out on simulated and real measurement data. The advan-

tages of using simulated measurement data are obvious: The ground truth is perfectly known

as well as the clutter model and parameters. Thus, constraints concerning the PHD-Filter and

their implementations can be fulfilled. Furthermore, simulated measurement data allow a com-

parison with a defined ground truth and a performance quality of the filter can be given. Once

the implementations are verified in this manner, a field trial with real measurement data can be

carried out.

5.1 State-Space Model

Both PHD-Filter implementations use the same constant velocity state-propagation model. A

target state xk ∈ Xk is described by four states with the vector

xk = [τ, α,∆τ,∆α]T. (5.1)

Here, τ denotes the delay and α the amplitude of an MPC. The entries ∆τ,∆α mark the change

of the system state in each time step. The state-space propagation follows the constant velocity

model

xk+1 = Fkxk + vk. (5.2)
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Here, xk+1 is the target state at the time-step k + 1 with the linear state-update matrix

Fk =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 . (5.3)

The process noise is denoted as vk. A single measurement zk ∈ Zk is described by the linear

equation

zk = Hkxk + nk. (5.4)

Here,

Hk =

[
1 0 0 0

0 1 0 0

]
(5.5)

is the observation matrix and the vector nk denotes the measurement noise. Hence, the mea-

surement consists of τ and α.

5.2 Simulated Measurements

Two types of simulated measurement data are used. One follows the constant-velocity model

of the state-space model used in the PHD-Filter implementations. The target movement in the

α-τ -plane is therefore linear. For the upcoming discussion this will also be denoted as the linear

measurement scenario. The other measurement data follows a non-constant-velocity model and

hence violates this linear target dynamics. The target movement in the α-τ -plane is non-linear.

This will also be denoted as the non-linear measurement scenario.

5.2.1 Scenario with Linear Motion

The measurement of the constant-velocity scenario is illustrated in Fig. 5.1. The measurement

noise nk is zero and the ground truth is equal to the measurements. The upper sub-plot contains

the amplitude α of the measurement set at each time-step. The lower sub-plot contains the delay

τ value of the received measurement. The measurement properties are given in Tab. 5.1. Target

movement is restricted to linear dynamics. The number of targets present reaches from three to

seven. The cardinality at each time-step is shown in Fig. 5.4(a).

To evaluate the influence of clutter, clutter is added uniformly distributed over the state-space.

This is shown in red in Fig. 5.1. The number of clutter values per time-step follows a Poisson

distribution with the Poisson parameter λ = 10.

Performance Results for the SMC PHD-Filter

The SMC PHD-Filter has several parameters which have to be set properly in order to perform

well. The parameter setting of the SMC PHD-Filter is given in Tab. 5.2. For each measurement
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Parameter Value

Measurement set linear non-linear
clutter parameter λ 0 or 10 0 or 10

min. number of targets present 3 2
max. number of targets present 7 2

NR 50 50
αmin 0 0.5
αmax 1 1

∆αmin 0 0.01
∆αmax 0.077 0.01
τmin 0 0.07
τmax 1 0.935

∆τmin 0 0.071
∆τmax 0.008 0.071

Table 5.1: Properties of simulated measurements

set, a reasonable trade-off between accuracy and execution time was made. The probability of

detection PD = 1, because there are no missed measurements in the measurement set. In the

clutter-free scenario the parameter κk specifying the intensity of the clutter RFS is set to zero.

Each target is represented by a number N0 of particles. In each time-step, a number of M

newborn particles are introduced into the system. The particle variances depend on the mea-

surement set used. The target labelling likelihood is set for good labelling output performance.

Performance results of the SMC PHD-Filter are plotted in Fig. 5.2. The linear clutter-free

measurements are plotted in blue in Fig. 5.1. They have been used as measurement inputs to the

filter. The variance of the particles in the amplitude domain (upper plot in Fig. 5.2) is higher

compared to the delay domain (lower plot). Note that both α and τ domain are normalized to

the range [0, 1]. The higher variance of the particle in one dimension is due to the properties of

the measurement set, where ∆αmax > ∆τmax, which is a situation we also expect for the real

measurements. To give the SMC PHD-Filter the ability to follow the target tracks, these filter

parameters have to be set at least equal to the true ones. The influence of a larger particle

variance σ2α and σ2∆α in the amplitude domain compared to a lower particle variance σ2τ and

σ2∆τ in the delay domain is directly observable in the plots in Fig. 5.2(a) and Fig. 5.2(b). In

Fig. 5.2(a) the particle variance around a state value is large, whereas in Fig. 5.2(b) it is small.

In the case where the particle variance is high, also the estimated target states after k-means

clustering will have a higher variance around the real targets.

As described in Section 3.3.1, the targets are extracted from the particle representation using

k-means clustering. The outcome of this clustering step is plotted in Fig. 5.2 and Fig. 5.3. In

the latter, the k-means outcome is plotted against the ground truth. The k-means outcome

agrees well with the ground truth. In the case where no clutter is present in the measurement

set the ground truth equals the measurement set. For some time-steps, e.g. k = 7 and k = 9,

the estimated target state in one dimension is not in the proximity of its ground truth. This is
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Figure 5.1: Simulated measurements: linear case; clutter present with an average of λ = 10 spurious mea-
surements per time-step

caused by the k-means clustering algorithm, where the initial cluster centres are selected ran-

domly from the present particles. If the initially selected cluster centres are chosen from the

same particle mass, the k-means algorithm can produce two closely spaced cluster centres as

long as the global optimization criterion is fulfilled. Also, if an initially selected cluster centre is

based on a particle outlier the k-means algorithm can output that particle state as the optimal

cluster centre. The reported cluster centre is then not located in the location of the particle

masses. This is a specific issue of the k-means clustering algorithm. The estimated cardinality

of the SMC PHD-Filter and the true cardinality are plot in Fig. 5.4(a). Because no clutter is

present and no measurements are missing, the estimated cardinality matches with the real one.

In the first iteration step, the estimated cardinality is zero, because up to then no particles are

in the system yet. Then, for the next time-stepM new particles have been injected into the sys-

tem and the cardinality is fully encoded in the particles weight. The multi-target miss-distances

averaged over 100 Monte-Carlo runs are plotted in Fig. 5.5. The cut-off parameter for the OSPA
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Parameter Value

Measurement set linear linear non-linear non-linear
clutter parameter λ 0 10 0 10

Filter setting

PS 0.95 0.995 0.95 0.995
PD 1 1 1 1

κk 0 1/50 0 1/200
N0 500 200 100 500
M 500 500 20 1000

Measurement-target likelihood variance:

σ2α,L 3 · 10−2 3 · 10−2 1 · 10−2 1 · 10−2

σ2τ,L 3 · 10−3 3 · 10−3 5 · 10−3 5 · 10−3

Particle birth variance:

σ2α,b 1 1 1 1

σ2τ,b 1 1 1 1

σ2∆α,b 1 · 10−1 1 · 10−1 1 · 10−2 1 · 10−2

σ2∆τ,b 1 · 10−2 1 · 10−2 5 · 10−2 5 · 10−2

Process noise variance:

σ2α,n 0 0 0 0

σ2τ,n 0 0 0 0

σ2∆α,n 5 · 10−2 5 · 10−2 5 · 10−3 5 · 10−3

σ2∆τ,n 5 · 10−3 5 · 10−3 2 · 10−2 2 · 10−2

Association threshold:

Bthresh 1 · 10−1 1 · 10−3 1 · 10−3 6 · 10−1

Table 5.2: Parameter setting of SMC PHD-Filter for simulated measurement sets

distance was set to c = 0.1 and order p = 2. The OSPA miss-distance shows maxima at the

time-steps where the cardinality of the ground truth changes, because the distance between the

estimated and the true target position is high (compare with Fig. 5.3). If a target appears or

disappears in the state-space, the estimated multi-target posterior pdf represented by the PHD is

no longer valid and particles drawn from it reside at invalid target positions. Therefore, the dis-

tance between the estimated target position and the true target position is high at this time-step.

The labelled result using the clutter-free linear measurement set is plotted in Fig. 5.6(a). The

association threshold for target track labelling was set to Bthresh = 0.1. The choice of Bthresh is

a trade-off between maintaining target track continuity and suppressing association of different

estimated target states to the same target track. A small value of Bthresh associates neighbour-

ing target states with the same target track, whereas a large value of Bthresh prevents this. An

increased Bthresh leads to a higher number of not associated targets and shorter target tracks.

This threshold depends on the input measurement set of the SMC PHD-Filter and has to be ad-

justed by the user to meet the design criteria. Here, the focus was set on target track continuity.

In the case where the delay τ stays constant, estimated targets with the same τ are associated

to the same track despite the fact that a target state is missing. Then the target track is labelled
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with a new label. If the target tracks cross in the state-space the succeeding target is associated

to the track with the highest labelling-likelihood. This can cause target tracks with the same

label after the crossing. The computation of the labelling-likelihood is outlined in Alg. 7.

In the case where clutter is present in the measurement set (see Fig. 5.1), it is tricky for the

SMC PHD-Filter to estimate the correct number of targets. In Fig. 5.4(b), the estimated and

the true cardinality are shown. In the first time-steps the estimated cardinality lags behind the

true one. Furthermore, it does not stay constant in cases where the true cardinality remains

constant. Nevertheless, the estimated cardinality is close to the true cardinality and fluctuates

around the true value. An incorrect estimation of the target cardinality is crucial for the target

estimation step using k-means clustering. If the number of cluster centres is set too low, parti-

cles from different targets will be clustered together, which results in an erroneously estimated

target position. On the other hand, if it is set too high, more targets than actually present will

be extracted. The first case is worse, because two closely spaced targets are combined into a

single one. The second case when the number of cluster centres is set too high, can lead to the

behaviour where one target is represented by two closely spaced cluster centres, or to the case

where a cluster centre is placed at the position of particles caused by clutter, which has not

been filtered by the SMC PHD-Filter. The result of the SMC PHD-Filter for cluttered data is

plotted in Fig. 5.7.

In cases where the SMC PHD-Filter does not properly filter out clutter from the measure-

ments, particles will be placed at the position of the measurements caused by them. These

particles can cause a problem in the initialization step of the k-means clustering algorithm as

previously explained. The OSPA multi-target miss distance, averaged over 100 Monte-Carlo

trials, is shown in Fig. 5.5(b). Compared to the clutter-free scenario shown in Fig. 5.5(a) the

overall miss-distance has increased. At the time-steps where the cardinality of the ground truth

changes, a higher miss-distance compared to the other time-steps is still notable. The miss-

distance has significantly increased in the first time-step because the estimated cardinality lags

behind the true one (compare with Fig. 5.4(b)).

The labelled results using the cluttered linear measurement set are plotted in Fig. 5.6(b). To

optimize the track association and labelling step described in Alg. 7 of the SMC PHD-Filter, the

computation of the labelling likelihood should not only consider target states propagated from

the previous time-step into the current time-step. A more sophisticated labelling algorithm has

to take the evolution of target tracks from the further past into account.
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Figure 5.2: SMC PHD-Filter: Outcome of k-means clustering; Measurement set: linear, no clutter present
λ = 0
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Figure 5.3: SMC PHD-Filter: Ground truth vs. outcome of k-means clustering; Measurement set: linear,
no clutter present λ = 0
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Figure 5.4: SMC PHD-Filter: Estimated vs. true cardinality; Measurement set: linear
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Figure 5.5: OSPA multi-target miss-distances of simulated measurements with the constant velocity model.
The miss-distance of the SMC PHD-Filter output was averaged over 100 Monte-Carlo runs.
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Figure 5.6: SMC PHD-Filter: Labelled outcome; Measurement set: linear
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Figure 5.7: SMC PHD-Filter: Ground truth vs. outcome of k-means clustering; Measurement set: linear,
clutter present with λ = 10
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Performance Results for the GM PHD-Filter

The parameter setting of the GM PHD-Filter for the different simulated measurement sets is

given in Tab. 5.3. The result of the GM PHD-Filter for the linear clutter-free measurement set is

shown in Fig. 5.8. Almost all targets have been identified and match well with the ground truth.

At the birth of a target, the distance of the estimated target positions and the ground truth is

larger compared to succeeding estimates. This is due to the distribution of the birth RFS, which

is a Gaussian mixture modelling (GMM). Because we assume that we have no prior knowledge

of where the targets will appear in the state-space, a number of GM components is placed

equally spaced over the whole state-space. If a new target appears in the state-space, which

causes a corresponding measurement in the current measurement set it is evaluated against the

birth RFS. The estimated target position is therefore attracted by the position of the closest

GM component of the birth distribution. Despite this deviation of the targets birth, the GM

PHD-Filter performs better compared to the SMC PHD-Filter. This is also reflected in the

OSPA multi-target miss distance plotted in Fig. 5.5(a). In the multi-target state extraction step

in Alg. 8, a valid target is extracted only if the weight of a single GM component exceeds the

threshold of 0.5. If this is not the case, no target is extracted. This threshold procedure can

lead to missed targets in the results of the GM PHD-Filter at time-steps where the weight of

a single GM component has lowered due to the update of the current PHD. In Fig. 5.8, such

situations of missed targets are observable in some rare time instances. In the previous time-

step the target is estimated correctly, then in the current time-step it is missing, because of a

lowered weight. In the next time-step, the weight of the GM component has again increased

above the threshold and a target state is extracted from it. The estimated cardinality is shown

in Fig. 5.10(a) and matches exactly with the ground truth although not all targets have been

extracted at each time-step. The summation of the weight of all GM components yields the cur-

rent targets present. It is reasonable to say that such a hard threshold in the target extraction

step in Alg. 8 might not be the optimal choice.

The result of the GM PHD-Filter applied to the linear cluttered measurement set is plotted in

Fig. 5.9. The estimated cardinality is shown in Fig. 5.10(b) and is close to the true target cardi-

nality. In the first few time-steps, the estimated cardinality of the GM PHD-Filter lags behind

the true one. This could be combated if prior knowledge of the targets birth is incorporated.

The GM components of the target birth RFS are placed close to the position in the state-space

where the targets will likely appear. If a measurement is situated far away from the birth GM

components centres, the likelihood between them is low and the weight of the GM component

representing that target state is very small. Additional measurements in succeeding time-steps

are needed to push the GM components weight high enough such that a state will be reported

at the output of the GM PHD-Filter.

In Fig. 5.9(b), target estimates caused by clutter are observable, which means that the GM

PHD-Filter was not able to successfully filter all clutter. This depends on the choice of the pa-

rameter value of the clutter intensity κk. If κk is high, the weight increase of the GM components
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in the proximity of received measurements will be low. More measurements from succeeding

time-steps are needed until a target is reported. Therefore, also clutter suppression is high. On

the other hand, if κk is low, the sensitivity to clutter increases, i.e. the filter reacts faster to

system changes like a change in cardinality. Hence, clutter suppression is deteriorated.

The OSPA miss-distance is plotted in Fig. 5.5(b). In the first time steps the estimated car-

dinality lags behind the cardinality of the ground truth. In this case the OSPA miss-distance

is close to the cut-off value c = 0.1. In the succeeding time steps it decreases, because the

estimated cardinality is close to the true cardinality. Compared with the clutter-free scenario,

the OSPA miss-distance is relatively large, which is due to some estimated targets caused by

clutter. The performance of the GM implementation of the PHD-Filter is worse compared to

the SMC implementation plot in Fig. 5.5(b).

Concerning track continuity, the GM implementation of the PHD-Filter is comparable to the

SMC implementation. Track continuity of the GM PHD-Filter is plotted in Fig. 5.11. The

labelling algorithm used can fail if the targets intersect, because only the previous target state

is used for the computation of the target likelihood matrix (see Alg. 8). An increased labelling-

threshold can relax this behaviour to some degree, but also will lead to more not associated

targets and therefore shorter target tracks.
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Parameter Value

Measurement set linear linear non-linear non-linear
λ 0 10 0 10

Filter setting:

PS 0.9 0.9 0.9 0.9
PD 1 1 1 1
κ 0 10 0 10

Process noise covariance:

σ2τ,Q 1 · 10−3 1 · 10−5 1 · 10−5 1 · 10−5

σ2α,Q 1 · 10−3 1 · 10−5 1 · 10−5 1 · 10−5

σ2∆τ,Q 8 · 10−2 5 · 10−4 5 · 10−4 5 · 10−4

σ2∆α,Q 1 · 10−2 5 · 10−4 5 · 10−4 5 · 10−4

Measurement noise covariance:

σ2τ,R 1 · 10−4 1 · 10−6 1 · 10−6 1 · 10−6

σ2α,R 1 · 10−4 1 · 10−6 1 · 10−6 1 · 10−6

Birth RFS intensity:

σ2τ,B 1 · 10−3 1 · 10−5 1 · 10−5 1 · 10−5

σ2α,B 1 · 10−3 1 · 10−5 1 · 10−5 1 · 10−5

σ2∆τ,B 2 · 10−2 3 · 10−2 3 · 10−2 3 · 10−2

σ2∆α,B 2 · 10−2 3 · 10−2 3 · 10−2 3 · 10−2

No. of GM components 9 400 9 400

Single GM component weight 1/9 1/400 1/9 1/400

Association threshold:

Bthresh 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3

Table 5.3: Parameter setting of GM PHD-Filter for simulated measurement sets
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Figure 5.8: Outcome GM PHD-Filter; Measurement set: linear, no clutter present λ = 0
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Figure 5.9: Outcome GM PHD-Filter; Measurement set: linear, clutter present λ = 10
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Figure 5.10: Estimated cardinality of GM PHD-Filter; Measurement set: linear
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Figure 5.11: Labelled outcome of GM PHD-Filter; Measurement set: linear
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5.2.2 Scenario with Non-linear Motion

The clutter-free non-linear motion scenario of the simulated measurement set is plotted in blue

in Fig. 5.12. In the upper plot, the amplitude α of the received measurement at each time-step

is plot. The lower sub-figure contains the delay τ of the received measurement. The scenario

properties are given in Tab. 5.1. The target movement is linear in the amplitude domain and

non-linear in the delay domain. The number of targets present is kept constant at a value of

two. There is an intersection of both target tracks in time-step k = 1 and k = 37.

Superimposing uniformly distributed clutter over the whole state-space yields the non-linear

measurement set given in Fig. 5.12. The number of clutter values at each time-step follows a

Poisson distribution with the Poisson parameter λ = 10.
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Figure 5.12: Simulated measurements: non-linear case, clutter present with λ = 10
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Performance Results for the SMC PHD-Filter

The parameter setting of the SMC PHD-Filter for the non-linear measurement set is given in

Tab. 5.2. In the same manner as with the linear measurement set the choice of parameters for

the SMC PHD-Filter is optimized to the measurement set and a reasonable trade-off between

accuracy and execution time has been made. The state-space model for the SMC PHD-Filter

still stays linear and tracking of non-linear moving targets becomes harder. To cope with this

inaccuracy, the number of particles per object has to be increased. Then, together with the

process noise, particles will survive the update step and a target state can be extracted. This

only works for non-linearities where the model miss-match is not too severe. The number of

particles per object is N0 = 100 in the clutter-free scenario and N0 = 500 in the case where

clutter is present. The number of newborn particles per time-step is M = 20 in the clutter-free

scenario, compared to M = 1000 in the measurement scenario superimposed by clutter.

The outcome of the SMC PHD-Filter for the clutter-free non-linear scenario is plotted in

Fig. 5.13. The target states of the linearly changing amplitude parameter in Fig. 5.13(a) and

the non-linearly changing delay parameter in Fig. 5.13(b) are estimated quite well until the

direction of motion in the τ -dimension changes at time-step k = 21. Then, due to the model

miss-match and a still too low process noise variance, the SMC PHD-Filter estimates the new

target states to follow the same direction in the delay domain as in the time-step before. This

results in a wrong target state estimation. After a few more time-steps, the non-linear motion

in the delay domain better follows the constant-velocity model and the target estimation error

therefore decreases. This behaviour can be observed in the OSPA multi-target miss distance

plotted in Fig. 5.16(a).

The OSPA distance shows a maximum at time-step k = 23 where the distance between the

estimated targets and the ground truth is maximal. Another maximum is at time-step k = 3.

Since time-step k = 1, the two targets have drifted away from each other, but still the SMC

PHD-Filter only has followed one target properly. The cardinality is, due to the clutter-free

scenario, correctly estimated as two targets (see Fig. 5.15). In the first two time-steps the filter

follows only one target and estimates two targets at the same position. In the succeeding time-

steps the other target track is found as well, and the OSPA distance decreases as soon as the

target estimate is in the vicinity of the ground truth.

The labelled result of the SMC PHD-Filter for the clutter-free measurement set is plotted

in Fig. 5.17(a). Target track labelling only works well if the target evolution is nearly linear

(approximately time-step k = 35 till k = 50). Then also the OSPA multi-target miss distance

is small (see Fig. 5.16(a)). In the case where the OSPA distance is large, also the result of the

target labelling step is unsatisfactory. This can be easily explained, because if the estimated

target is not present or somewhere in the state-space but far away from the previous targets, no

track association to previous target tracks is possible.
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If the non-linear measurement set is superimposed by clutter, target estimation becomes more

difficult for the SMC PHD-Filter. The result is plotted in Fig. 5.14. One can observe the higher

number of outliers of the estimated k-mean cluster centres compared to the clutter-free mea-

surement scenario plotted in Fig. 5.13. If the SMC PHD-Filter is not able to filter all clutter

properly from the measurements, the resulting PHD will be non-zero at the corresponding po-

sitions. Particles drawn from the posterior pdf given by the PHD will then also be located at

the position of the cluttered measurement. The k-means clustering algorithm randomly selects

the initial cluster centres from all particles in the state-space. This can lead to isolated target

estimates with only a small amount of underlying particles, which has already been addressed

in Section 5.2.1. In Fig. 5.14, estimated target states obviously caused by clutter are visible.

The cardinality is plotted in Fig. 5.15(b), where one can observe the over-/under-estimation

of the present target cardinality. The estimated cardinality stays in the vicinity of the ground

truth. This, although a high number of measurements caused by clutter are present in the mea-

surements. In time-step k = 3, the filter is capable of following one target track (see Fig. 5.14).

After additional two time-steps the filter has also found the second target track. Besides the

fact that the cardinality is over-estimated for certain time-steps until time-step k = 21 the filter

follows consequently the two target tracks. In time-step k = 21 the delay parameter of the

true target states changes its direction of movement and the filter needs a few time-steps (until

time-step k = 25) to re-find at first one target track and in the succeeding time-steps the second

target track. The OSPA multi-target distance penalizes these target mismatches and shows its

maxima at these time-steps, which is illustrated in Fig. 5.16(b).

The labelled result of the SMC PHD-Filter using the cluttered non-linear measurement set is

plotted in Fig. 5.17(b). Only at time-steps where the OSPA multi-target miss distance is low,

track association works well. The outcome is comparable with the clutter-free measurement set.

Target tracks are interrupted if the target state is not detected. The succeeding target track

then gets assigned a new label.
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Figure 5.13: SMC PHD-Filter: Ground truth vs. outcome of k-means clustering; Measurement set: non-
linear, no clutter present λ = 0
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Figure 5.14: SMC PHD-Filter: Ground truth vs. outcome of k-means clustering; Measurement set: non-
linear, no clutter present λ = 10
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Figure 5.15: SMC PHD-Filter: Estimated vs. true cardinality; Measurement set: non-linear
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Figure 5.16: OSPA multi-target miss-distances of simulated measurements with the non-constant velocity
model. The miss-distance of the SMC PHD-Filter output was averaged over 100 Monte-Carlo
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Figure 5.17: SMC PHD-Filter: Labelled outcome; Measurement set: non-linear
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Performance Results for the GM PHD-Filter

The parameter setting of the GM PHD-Filter using the non-linear measurement set is shown

in Tab. 5.3. The result for the clutter-free non-linear measurement set is plotted in Fig. 5.18.

The estimated target states match perfectly with the ground truth. This is supported by the

cardinality plot in Fig. 5.20(a) and the all-zero multi-target OSPA miss distance in Fig. 5.16(a).

Although the GM PHD-Filter uses a constant velocity model it performs better on this non-

constant velocity scenario compared to the constant case. In the linear measurement scenario

a deviation between the target estimate and the ground truth was present at the time-step of

the targets birth (see Fig. 5.8). Here, this behaviour is not observable, because the distribution

of the birth RFS has exactly a GM component placed at the targets birth location by coinci-

dence. In the linear measurement scenario, some target states had not been extracted properly,

because no weight of the underlying GM components in the corresponding time-step exceeded

the state-extraction threshold of 0.5. In this non-linear measurement scenario, this is not an

issue, because the weight of the GM components representing a target state is high from the

first time-step on and no target birth lowers the weight of the single GM components. All target

states are extracted properly.

The result of the GM PHD-Filter for the non-linear measurement set superimposed by clutter

is plotted in Fig. 5.19. The clutter is not entirely successfully filtered out by the GM PHD-

Filter, which manifests itself as estimated targets in the output. The estimated cardinality is

plotted in Fig. 5.20(b). Only in the beginning (until time-step k = 3) and after the time-step

where the direction of the true targets delay τ has changed (time-step k = 21), the cardinality

is under-estimated. In the first case, this is because the distribution of the birth RFS is not

exactly located at the real targets birth and therefore the weight increase is too slow. Note,

the parameters of the birth RFS are different for the clutter-free and the cluttered non-linear

measurement set (see Tab. 5.3). In the second case, the direction of movement of delay τ has

changed and the likelihood of the measurements with respect to the propagated GM components

leads to a weight decay of the respective GM components. Because of some erroneously detected

clutter points, the real target states are not extracted until time-step k = 25. Then the weights

of the GM components have increased enough, such that the estimated cardinality reached two

(see Fig. 5.20(b)) and the outcome of the GM PHD-Filter matches again with the real target

states.

The OSPA multi-target miss distance is plotted in Fig. 5.16(b). Whenever the estimated car-

dinality and the estimated target states match with the ground truth, the OSPA distance is zero,

which implies that the detected targets are estimated accurately. Clutter has been successfully

filtered out from the measurements by the GM PHD-Filter. An over-estimation in cardinality is

penalized with an increase of the OSPA miss-distance. The miss-distance is equal to the cut-off

limit of c = 0.1 in cases where the true target sate could not be estimated and only pure clutter

is present at the filter output (time-step k = 22 to k = 24).
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The labelled output of the GM PHD-Filter applied to the non-linear measurement set is

plotted in Fig. 5.21. In both cases the clutter-free and the cluttered environment the target track

is well maintained if the target propagation resembles a constant-velocity model. Depending on

the value of the labelling-likelihood threshold Bthresh, more or less target states are included

in the target track where the target movement is strongly non-constant (in the proximity of

time-step k = 21). If the threshold Bthresh is set too, clutter which has not been successfully

filtered out by the GM PHD-Filter is associated with the closest target track. Therefore, a

compromise in setting the threshold Bthresh has to be made. A comparison of the labelled GM

PHD-Filter output compared to the SMC implementation (see Fig. 5.17) leads to the conclusion

that target track continuity is superior with the method that is used with the GM PHD-Filter.

This although the OSPA miss-distance is higher for certain time-steps and reaches the cut-off

value c = 0.1 compared to the result of the SMC PHD-Filter. Target track life-time is longer

compared to the target tracks produced by the SMC PHD-Filter implementation. Intersecting

target tracks are assigned to the correct track, because the variance of the estimated target

states of the underlying GM components is smaller compared to the estimated target states

obtained with the SMC implementation of the PHD-Filter.
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Figure 5.18: Outcome GM PHD-Filter; Measurement set: non-linear, no clutter present λ = 0
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Figure 5.19: Outcome GM PHD-Filter; Measurement set: non-linear, clutter present λ = 10
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Figure 5.20: Estimated cardinality of GM PHD-Filter; Measurement set: non-linear
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Figure 5.21: Labelled outcome of GM PHD-Filter; Measurement set: non-linear
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5.2.3 Summary

The SMC implementation of the PHD-Filter does not impose any restrictions on the target dy-

namics. In scenarios with approximately constant-velocity the linear state-space model of target

movement together with an increased process noise suffices to estimate target states correctly.

Whenever this is not the case, non-linear target dynamic can be incorporated in the state-space

model of the SMC PHD-Filter. Also, targets may appear anywhere in the state-space. Because

the SMC PHD-Filter does not provide a closed-form solution of the PHD recursion, many par-

ticles are needed for a good approximation of the posterior PHD. This leads to an increase in

execution time. The PHD-Filter itself does not produce estimated targets directly. They have

to be extracted from the estimated PHD given by the particle population, by additional cluster-

ing. In the SMC PHD-Filter, the k-means clustering algorithm used can introduce new errors.

If the estimated cardinality of the SMC PHD-Filter is incorrect, the extracted targets of the

clustering algorithm will also differ from the ground truth. This leads to a weak performance

of the labelling procedure, because mean and covariance of the estimated targets vary from

time-step to time-step and only short target tracks are produced. As the SMC PHD-Filter only

approximates the posterior PHD, the estimated targets never exactly match the ground truth

and a residual position error is always present. Therefore, the OSPA multi-target miss-distance

is low, but non-zero even if no clutter is present in the measurements.

In contrast to the SMC implementation of the PHD-Filter, the GM implementation provides

a closed-form solution of the PHD recursion. The PHD can be propagated in time if the single

targets follow linear Gaussian dynamics, which is of course a strong assumption. Additionally,

the targets birth intensities have to follow a GMM. The restrictions of the GM implementation

of the PHD-Filter limit the field of application. If there is a miss-match in target dynamics, the

GM PHD-Filter can still be used even though the performance degrades. If target appearance

does not match with the given GMM birth distribution, targets will be hardly detected. Using

equally spaced GM components over the whole state-space does not lead to a better performance.

In cases where the restrictions of the GM implementation are full-filled, the GM implementation

is superior to the SMC implementation. Extraction of the targets state is easily done, because

the GM components directly represent the targets mean and covariance. Furthermore, because

target dynamic is restricted, also the output target tracks of the labelling procedure are very

continuous.
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5.3 Real Measurements

Here, the performance of the two different PHD-Filter implementations on real measurement

data is evaluated. The measurement data used was obtained in an indoor measurement campaign

explained in Section 1.4 [FMGW11]. As the measurement are UWB-CIRs, a preprocessing step

is needed to convert them to measurement inputs for the PHD-Filters with states α and τ . The

preprocessing step is explained first, followed by the results of the PHD-Filter implementations.

The properties of the input measurement set are given in Tab. 5.4.

5.3.1 Data Preprocessing

Peak extraction

In the preprocessing step, MPC amplitude estimates are extracted as peaks in the CIRs at each

MS position. At first the CIRs are computed with a IDFT of the measured complex channel

transfer functions. Next, amplitude peaks, which lie above a given threshold, are extracted from

the CIRs with a search-and-subtract approach. This is done in an iterative manner: The highest

amplitude peak above a suitable threshold is estimated and then subtracted either in frequency

[FMGW11] or in time domain [MAGW11] until no more peaks are found, or a certain maximum

number of estimated peaks is reached. Here, the latter criterion is used. To subtract a peak in

time-domain, the impulse response of the windowing function used in the computation of the

IDFT is scaled with the peak amplitude value and then subtracted from the CIR. The cleaned

CIR is then used to estimate the next amplitude peak. The peak amplitude threshold is set to

10% of the maximum peak amplitude in the current CIR. A maximum number of 20 peaks is

estimated for each CIR. As an example, Fig. 5.22 contains a plot of the CIR at MS position

k = 70 together with the estimated peaks above the threshold Ak. In Fig. 5.23 the extracted

peaks for all MS positions are plot in amplitude and delay domain.
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Figure 5.22: Extracted amplitude peaks from CIR at MS position 70
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Normalization

The next step is the normalization of the extracted peaks from all the CIRs in the amplitude

and delay domain. The peaks are normalized to one, based on the minimum and maximum

amplitude and delay values within the measurement set. The normalized measurement set is

then used as input for the PHD-Filter. Normalization of the input data set is important in order

to make use of the whole state-space of the PHD-Filter, which is then defined between zero and

one in the amplitude and delay domain. Also, normalization is needed to avoid different scales

for τ and α domain when calculating the miss-distances. The PHD for spontaneous birth was

assumed to be uniformly distributed over the whole state-space in the SMC implementation of

the PHD-Filter. In the case of the GM implementation, the GM components of the intensity

of the birth PHD are placed equally spaced over the whole state-space. Note, the estimated

target states of the PHD-Filters are de-normalized and then again normalized to one with the

minimum and maximum values of both sets, the estimated target set and the ground truth set.

This is needed for calculating the miss-distances. Also the ground truth data set is normalized

to one in the amplitude and delay domain based on the overall minimum and maximum values.

The ground truth is then used to evaluate the performance of the PHD-Filters outcome.

Ground truth

To obtain an approximate ground truth for the indoor measurements, knowledge about the floor

plan is needed. This method is explained in detail in [MAGW11]. The ground truth is plotted

in Fig. 5.24. In the plot the LOS component corresponds to the path of measurements having

the highest amplitude α and the lowest delay τ . Also, the variation in α is limited for succeeding

measurements. MPCs does not show this property. Although, the variation of τ is limited for

succeeding measurements, α is strongly fluctuating. Estimating the ground truth out of the

measurement set given in Fig. 5.23 will be a challenging task for the PHD-Filters with their

constant-velocity model.

Parameter Value

Measurement set:

Min. amplitude α [dB] −119
Max. amplitude α [dB] −66
Min. delay τ [ns] 0

Max. delay τ [ns] 266
Min. number of measurements 5

Max. number of measurements 20

Ground truth:
Min. cardinality 0

Max. cardinality 10
αdB,min −114dB
αdB,max −66dB
Delay τmin 8ns

Delay τmax 173ns

Table 5.4: Measurement properties
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Figure 5.23: Extracted peaks from real measurements

5.3.2 Performance Results for the SMC PHD-Filter

The input measurement set, which contains the extracted and normalized peaks from the mea-

surements, is used as a measurement input to the SMC PHD-Filter. The parameter setting of

the filter is given in Tab. 5.5. It has been chosen to be able to track targets whose measurement

values do not change rapidly in time, which allows to suppress most of the clutter present. The

particles together with the estimated cluster centres of the k-means algorithm are plotted in

Fig. 5.25. The SMC PHD-Filter is able to successfully estimate target tracks in cases where the

target movement is within the given parameter setting and where the SNR ratio is sufficiently

high. In the case of the LOS component, these conditions are fulfilled up to MS position of

approximately k = 120. The target states are very well estimated. The clutter model used in

the PHD-Filter assumes the clutter to be uniformly distributed in the whole state-space and the

number of measurements caused by clutter is Poisson distributed with the constant value of λ

for all time-steps. Obviously these assumptions are violated here:
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Figure 5.24: Ground truth of real measurements

� In the amplitude domain, the clutter is within the limit of the maximum peak amplitude

in the current CIR and the threshold defined by the peak extraction method. In the

delay domain, the peak extraction method does not have such a constraint. Because of

the physical effects in wave propagation, the amplitude attenuation grows with increasing

delay τ and limits the range of where the clutter is located in the delay domain. For the

UWB-channels, it can be assumed that clutter is often in the vicinity of the MPCs [KP03].

This can be observed in the input measurement set in Fig. 5.23(b) where the delay range

of the measurements is limited, except for the MS positions where no LOS or rather no

strong signal amplitude is dominant (MS Position k = 280 to k = 320).

� The assumption of a constant Poisson distributed number of clutter present over all time-

steps is violated in the sense that there are strong fluctuations in the target cardinality in

the ground truth compared to the input measurement set. The peak extraction method

used extracts peaks from the CIR, if the amplitude is above a threshold relative to the

maximum amplitude of the CIR and a maximum number of peaks. If there is no significant
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LOS or other MPC component, amplitude peaks with low amplitude are added to the

measurement set. These peaks are caused by diffuse scatterer or noise and will cause a

heavy imbalance in the measurement to clutter ratio.

These violations lead to two significant effects in the result of the SMC PHD-Filter:

� If the SNR is low, the separability of target measurement and clutter measurement is

not given. Then the update step of the PHD-Filter is incorrect, because at first particles

are propagated to locations where there is clutter in the measurements. Then, in the

update step, the target-measurement likelihood will be high. Thus, the posterior pdf

is incorrect which results in wrong target state estimates. In [CRV08] this behaviour

is treated by the assumption that measurements caused by a target state will have a

high amplitude compared to measurements caused by clutter. The clutter distribution

and the target-measurement likelihood are adapted to incorporate this. Furthermore, if

the clutter distribution in the measurements does not match with the assumed clutter

distribution of the PHD-Filter, clutter in the measurements might not be well suppressed

by the PHD-Filter. In the implementations of the PHD-Filter, the clutter distribution

is assumed to be uniform over the whole state-space. Therefore, the intensity κk of the

clutter RFS is constant by design. In the measurement set used, clutter in the amplitude

domain is located in the proximity of the amplitude peak extraction threshold (compare

Fig. 5.23 with Fig. 5.24). The influence of received measurements with low amplitude

should therefore be low in the update step of the PHD-Filter. This is only the case if the

clutter probability is adjusted appropriately. An adapted target-measurement likelihood

and an appropriate clutter probability distribution are not used here and are an open issue

for further work.

� If the clutter parameter λ does not match well with the clutter present in the measure-

ments, the filter performance of the PHD-Filter is low. Either too less targets are estimated

or too much clutter is present in the outcome of the filter. This behaviour can be well

observed in the result plotted in Fig. 5.25 for MS positions where the cardinality of the

ground truth is zero (MS position k = 280 to k = 320) and the outcome of the SMC

PHD-Filter is not. The cardinality is plotted in Fig. 5.26(a).

The cardinality of the estimated targets is significantly lower compared to the ground truth.

This is caused by the conservative parameter setting of the SMC PHD-Filter. Focus has to be

put on suppressing clutter in the filter output while maintaining ”well“-shaped target tracks.

The OSPA multi-target miss-distance is plot in Fig. 5.26(b). The high cardinality error of the

filter outcome is penalized with a high miss-distance close to the cut-off value c = 0.1.

The labelled filter output is plotted in Fig. 5.27. The estimated targets originated form the

LOS component are correctly associated to a single track. Also a MPC is tracked for the first

few MS positions. Many isolated targets could not be associated with a target track, because

the labelling-threshold of neighbouring targets is lower than the threshold Bthresh.
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Parameter Value

PS 0.9
PD 0.98

κ 1/1000
N0 500
M 500

Measurement-target likelihood variance:

σ2α,L 7 · 10−3

σ2τ,L 5 · 10−4

Particle birth variance:

σ2α,b 1

σ2τ,b 1

σ2∆α,b 2 · 10−3

σ2∆τ,b 2 · 10−3

Process noise variance:

σ2α,n 0

σ2τ,n 0

σ2∆α,n 2 · 10−3

σ2∆τ,n 2 · 10−3

Association threshold:

Bthresh 6 · 10−1

Table 5.5: Parameter setting of SMC PHD-Filter - Measurement set: real
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Figure 5.25: SMC PHD-Filter: Ground truth vs. outcome of k-means clustering; Measurement set: real
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Figure 5.27: SMC PHD-Filter: Labelled outcome; Measurement set: real
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5.3.3 Performance Results for the GM PHD-Filter

The parameter setting of the GM PHD-Filter is given in Tab. 5.6. The filter design is again

chosen very conservative, allowing only a small noise variance of the target states. The filter

output is plotted in Fig. 5.28. The GM PHD-Filter is also able to track the LOS component,

which has the highest SNR compared to the MPCs. For the first few MS positions no target

state is estimated at the position of the LOS component. The weight of the corresponding GM

components is simply to small to produce a filter output. After this initialization phase, the

weight of the GM component following the LOS component is higher than 0.5 and a target state

is output (see Alg. 7). Although the filter is restricted to constant velocity target dynamics it

is able to track the non-linear state changes of the LOS component. In Fig. 5.28, also target

states present for only one MS position can be observed. This can have several reasons:

� There are measurements caused by a target state which follows the linear state-space

model, but only for a few MS positions. Then the GM PHD-Filter correctly produces an

target estimate at its output. But due to the time it takes for the GM component to reach

the weight threshold, the MPC is reported only for very few succeeding MS positions.

� The assumption of uniformly distributed clutter is violated. Measurements caused by

clutter are concentrated in a small area of the state-space. This has the effect that the

target-measurement likelihood in this area of the state-space used in the update step of

the GM PHD-Filter is always high. Also the intensity of the clutter RFS is lower than

the real one. Then the weight of a GM component increases although no target is present.

Finally, the weight of a GM component exceeds 0.5 and a target state is output.

� The average number of measurements caused by clutter in the input measurement set does

not follow a Poisson distribution. Therefore, the choice of a constant number of average

clutter returns λ over all MS positions is incorrect. Either clutter will show up in the

output of the GM PHD-Filter or too many target states will be suppressed by the filter

and no or too less target states are output. The first is caused if κ is chosen too low and the

latter if κ is too high. The restriction of λ = const. is directly observable in Fig. 5.28 and

in the cardinality plotted in Fig. 5.29(a). At MS position k = 280 to k = 320 the ground

truth cardinality drops to zero whereas the cardinality of the GM PHD-Filter outcome

does not. Incorrect target states are estimated and output from the GM PHD-Filter.

The OSPA multi-target miss-distance is plotted in Fig. 5.29(b). The miss-distance is always

close to the cut-off value c = 0.1, due to the incorrect target estimate and the cardinality mis-

match. Thus, the GM implementation of the PHD-Filter on the real measurement data set is

weak. The cardinality of the estimated targets is higher compared to the SMC implementation.

The cardinality of the ground truth is not higher than ten, but the GM PHD-Filter consequently

over-estimates this. The estimated targets match with the ground truth despite some outliers,

which have not been filtered by the filter.

A zoomed view of the labelled output is plot in Fig. 5.30. The choice of the association

threshold Bthresh allows to suppress target outliers caused by clutter. Despite the LOS com-
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ponent have estimated target tracks only have a small life-time. Too less target states, which

follow the constant velocity model, are estimated in succeeding time-steps in the target tracks.

Parameter Value

PS 0.99
PD 1
κ 15

Process noise covariance:

σ2τ,Q 1 · 10−4

σ2α,Q 5 · 10−4

σ2∆τ,Q 5 · 10−4

σ2∆α,Q 1 · 10−3

Measurement noise covariance:

σ2τ,R 1 · 10−5

σ2α,R 1 · 10−5

Birth RFS intensity:

σ2τ,B 1 · 10−3

σ2α,B 1 · 10−3

σ2∆τ,B 5 · 10−2

σ2∆α,B 5 · 10−2

No. of GM components 81

Single GM component weight 1/81

Association threshold:

Bthresh 1 · 10−1

Table 5.6: Parameter setting of GM PHD-Filter - Measurement set: real
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Figure 5.28: Output GM PHD-Filter; Measurement set: real
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Figure 5.29: Outcome GM PHD-Filter; Measurement set: real
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Figure 5.30: GM PHD-Filter: Zoomed view of labelled outcome; Measurement set: real
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5.3.4 Summary

Both the SMC PHD-Filter and the GM PHD-Filter are able to correctly estimate target states

originated from the LOS component in areas where the SNR is high. This is due to the fact that

the target movement fits quite-well with the constant velocity state-space propagation model

used in the PHD-Filters. Small deviations can be reconcilabled by an increased process noise.

If the SNR is low in both, the delay τ and the amplitude α domain, the PHD-Filter is not able

to estimate valid target states, because then, the estimated PHD is not a valid approximation

of the posterior pdf [Sid03]. For other MPCs present in the measurement set these conditions

are to a great extend not fulfilled and too less target states are estimated or clutter remains at

the output of the filter.

In the case of the SMC PHD-Filter, the estimated cardinality lags far behind the ground

truth. The constant velocity model used in the PHD-Filter can not cope with the non-linear

target dynamics present in the measurement set and leads to a low cardinality.

Despite the model mismatches, the GM PHD-Filter suffers to a greater extend from its restric-

tions. In the GM PHD-Filter the targets birth distribution is restricted to follow a GMM and

the clutter distribution was assumed to be uniform. In the measurements, the MPC can appear

anywhere in the state-space, but the clutter is accumulated in the α-domain at the proximity of

the amplitude threshold of the peak extraction used in the preprocessing step. In the τ -domain

it is located close to the MPCs. These distribution mismatches lead to a treatment of clutter

in the way that it remains in the output of the filter. The cardinality is then also severely

misestimated. The usage of the GM PHD-Filter only makes sense in areas where some prior

knowledge of the target appearance is present. Also, the dynamic of the single targets have to

follow the linear Gaussian assumptions made.

Because of this, the overall performance of both PHD-Filter implementations on the data set

is not satisfying. Also, the linear constant-velocity state-space model used does not cope with

the true target dynamics present in the data set. This results in a deterioration of performance.

Furthermore, the true clutter distribution in the data set does not follow the assumptions of a

uniform distribution made in the PHD-Filter.
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6
Conclusion

Two types of PHD-Filter implementations have been evaluated both on simulated and on real

measurement data. The PHD-Filter performs well if its constraints on the data set are not

violated. For simulated measurement data, these constraints could easily be fulfilled. There,

the PHD-Filter proofed to be a well-performing multi-source multi-target filter. The filter is in

most cases able to estimate the target cardinality, even when there is a lot of clutter present in

the measurements.

The PHD-Filter does not output the target states directly and avoids the data association

problem. Target states have to be extracted from the PHD, the first moment of the multi-target

posterior pdf.

The SMC PHD-Filter uses a sequential Monte-Carlo approach to approximate and propagate

the PHD in time. The target states are then obtained with k-means clustering of the poste-

rior particle representation. The filter is however not always able to suppress the whole clutter

present in the measurement set. This results then in an incorrectly estimated cardinality and

can lead to erroneous results of the clustering step of the SMC PHD-Filter, i.e. to incorrect

target estimates. Estimated targets are assigned to target tracks with a simple labelling al-

gorithm. This algorithm has problems concerning track continuity if single target states are

not estimated. Despite this, the performance of the PHD-Filters is good even if the target

movement shows mismatches with the constant-velocity model used. Then the particle number

has to be increased to cope with this. This leads to a longer execution time of the filter iteration.

In the case of the GM PHD-Filter, the target movement is restricted to follow linear Gaussian

dynamics. Furthermore, the target birth distribution has to follow a GMM. Then the filter pro-
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vides a closed-form solution of the PHD recursion. The restrictions of the GM implementation of

the PHD-Filter limit the field of application. If there is a mismatch in target dynamics, the GM

PHD-Filter can still be used even though the performance degrades. If target appearance does

not match with the given GMM birth distribution, targets will be hardly detected. Using equally

spaced GM components over the whole state-space does not lead to a better performance. In

cases where the restrictions of the GM implementation are fulfilled, the GM implementation is

superior to the SMC implementation. Extraction of the targets state is easily done, because

the GM components directly represent the targets mean and covariance. Furthermore, because

target dynamic is restricted, also the output target tracks of the labelling procedure are very

continuous.

In a real world scenario with non-linear target dynamic, a reasonable performance of the

PHD-Filters is not given any more. The target dynamics present in the data set could not be

tracked using the PHD-Filters with a constant velocity state-space model. However, if mea-

surements are present in the measurement set originated from targets which follow these model

assumptions, e.g. the LOS component, the filters are able to correctly estimate the target states.

In the case of the SMC PHD-filter, these model mismatches lead to an under estimation of

the cardinality. The GM PHD-Filter suffers from its own restrictions: The mismatches of the

clutter and birth distributions between measurement set and PHD-filter lead to a treatment of

clutter in the way that it remains in the output of the filter. The cardinality is then also severely

misestimated. The usage of the GM PHD-Filter only makes sense in areas where some prior

knowledge of the target appearance is present. Also, the dynamic of the single targets have to

follow the linear Gaussian assumptions made.

6.1 Further Work

The measurement set of the PHD-Filters consists only of the delay and amplitude value of the

most strongest peaks to estimate the present MPCs. This might be a too big loss of information.

Furthermore, the state-space model needs to be adapted to incorporate the non-linear dynamics

of the MPCs. Then the GM PHD-Filter cannot be used any more. Non-linear implementations

exist [VM06] and should be considered. We have seen in the measurements that the clutter is

non-uniformly distributed over the state-space. The clutter model used needs to be adapted to

fit with the model of the measurements. In the case of the GM PHD-Filter prior knowledge

about the targets birth needs also to be incorporated. The PHD-Filter only propagates the first

order multi-target moment in time. Propagating also the second order is in the single-target case

comparable with the Kalman filter, but up to now computationally intractable. A step in this

direction is the CPHD-Filter, which additionally to the PHD-Filter, propagates the cardinality

distribution of the target state set [Mah07b]. Using this filter together with the adapted models

of clutter, birth and the target dynamics might lead to the desired performance and makes the

extraction of MPCs from the UWB-CIRs possible.
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