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Abstract

There is high demand for accurate indoor localization for use in logistic, industrial, and commer-
cial systems. However, due to multipath propagation, localization is a difficult task in indoor
environments. Available accurate solutions require costly, inflexible infrastructure in terms of
several fixed physical anchors.
The multipath-assisted indoor navigation and tracking (MINT) approach assumes a known floor
plan, which enables multipath-assisted localization through mapping multipath components to
virtual anchors. So, cost can be saved by reducing the number of required fixed physical anchors.
Cooperative MINT (Co-MINT) is an advanced, more flexible concept that allows for anchorless
localization. It assumes several cooperating mobile agents equipped with ultra-wideband (UWB)
transceivers that perform monostatic and bistatic measurements, share these observations, and
estimate the agent positions jointly. A proof of concept has been presented in a recent work,
but a quantitative assessment of the localization performance was not given.
The goal of this master thesis is to obtain a performance bound for Co-MINT. In a first step, the
dependence of multipath propagation delays on the room geometry is studied to obtain a general
formula for spatial delay gradients which express the influence of the indoor geometry on the
localization performance. Next, the thesis analyses monostatic localization as a building block
of Co-MINT. The derivation of the Cramér-Rao lower bound (CRLB) of monostatic position
estimation and numerical results thereof are presented. The ranging information provided by
particular monostatic multipath geometries is examined.
The final part of the thesis contains a derivation of the CRLB for Co-MINT and gives the corre-
sponding equivalent Fisher information matrix (EFIM). Numerical results reveal characteristics
of cooperation and show the behaviour of the position error bound (PEB) for several scenarios.
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Kurzfassung

Es herrscht hoher Bedarf an Systemen zur präzisen Positionsbestimmung in Innenräumen, etwa
in der Logistik, im industriellen Sektor und Handel sowie im Rüstungsbereich. Aufgrund von
Mehrwegeausbreitung ist die Positionsbestimmung in Innenräumen allerdings ein schwieriges
Unterfangen. Bestehende Lösungen von hinreichender Genauigkeit erfordern beträchtliche, starre
Infrastruktur in Form von mehreren fixen Basisstationen.
Multipath-assisted Indoor Navigation and Tracking (MINT) ist ein Ansatz, der einen bekan-
nten Grundriss des Innenraums voraussetzt. Dadurch wird mehrwegeunterstützte Positions-
bestimmung ermöglicht, wobei jede Mehrwegekomponente einer virtuellen Quelle mit bekan-
nter Position zugeordnet wird und so die Anzahl der erforderlichen Basisstationen reduziert
wird. Cooperative MINT (Co-MINT) ist ein weiterführendes, noch flexibleres Konzept das ganz
ohne Basisstationen auskommt. Dabei kooperieren mehrere mobile Geräte, jeweils mit einem
Ultrabreitband-Transceiver ausgestattet, indem sie monostatische und bistatische Messungen
durchführen und diese Messdaten austauschen um dann gemeinsam ihre Positionen zu schätzen.
Ein Machbarkeitsnachweis wurde in einer kürzlich erschienenen Arbeit erbracht, eine quantita-
tive Beurteilung der Lokalisierungsgenauigkeit wurde darin allerdings nicht angegeben.
Ziel dieser Masterarbeit ist es, eine enge Positionsfehlerschranke für Co-MINT herzuleiten. Als
erster Schritt wird die Abhängigkeit der Mehrwegezeitverzögerungen von der Raumgeometrie un-
tersucht und eine allgemeine Formel für räumliche Gradienten dieser Verzögerungen hergeleitet.
Dies löst das Problem des Einflusses der Raumgeometrie auf die Lokalisierungsgenauigkeit.
Ferner wird monostatische Lokalisierung als Baustein von Co-MINT beleuchtet und die Cramér-
Rao-Ungleichung für diesen Fall bestimmt, sowie die Eigenschaften verschiedener Arten mono-
statischer Mehrwegekomponenten bezüglich ihrer Geometrie untersucht.
Der finale Teil der Arbeit widmet sich Co-MINT selbst. Die Cramér-Rao-Ungleichung sowie
die äquivalente Fisher-Informationsmatrix werden für den kooperativen Fall bestimmt. Charak-
teristiken der Kooperation sowie das Verhalten der Positionsfehlerschranke in verschiedenen
räumlichen Anordnungen werden anhand von numerischen Ergebnissen aufgezeigt.
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Abbreviations

AoA . . . . . . . . . . . . . . . . . . . . . . Angle of arrival

AoD . . . . . . . . . . . . . . . . . . . . . . Angle of departure

AWGN . . . . . . . . . . . . . . . . . . . . Additive white Gaussian noise

Co-MINT . . . . . . . . . . . . . . . . . . . Cooperative MINT

CRLB . . . . . . . . . . . . . . . . . . . . . Cramér-Rao lower bound

DMP . . . . . . . . . . . . . . . . . . . . . Diffuse multipath

EFIM . . . . . . . . . . . . . . . . . . . . . Equivalent Fisher information matrix

FI . . . . . . . . . . . . . . . . . . . . . . . Fisher information

FIM . . . . . . . . . . . . . . . . . . . . . . Fisher information matrix

LHF . . . . . . . . . . . . . . . . . . . . . . Likelihood function

LOS . . . . . . . . . . . . . . . . . . . . . . Line of sight

MINT . . . . . . . . . . . . . . . . . . . . . Multipath-assisted indoor navigation and tracking

MPC . . . . . . . . . . . . . . . . . . . . . Multipath component

NLOS . . . . . . . . . . . . . . . . . . . . . Non line of sight

PEB . . . . . . . . . . . . . . . . . . . . . . Position error bound

PSD . . . . . . . . . . . . . . . . . . . . . . Power spectral density

RI . . . . . . . . . . . . . . . . . . . . . . . Ranging information

RX . . . . . . . . . . . . . . . . . . . . . . . Receiver

SINR . . . . . . . . . . . . . . . . . . . . . Signal-to-interference-plus-noise ratio

SNR . . . . . . . . . . . . . . . . . . . . . . Signal-to-noise ratio

SPEB . . . . . . . . . . . . . . . . . . . . . Squared position error bound

TX . . . . . . . . . . . . . . . . . . . . . . . Transmitter

UWB . . . . . . . . . . . . . . . . . . . . . Ultra-wideband

VA . . . . . . . . . . . . . . . . . . . . . . . Virtual anchor
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Frequent Symbols

Symbol Set1 Meaning

Signal Model and Channel

m {1, . . . ,M} Indexes the m-th agent as RX.

j {1, . . . ,M} Indexes the j-th agent as TX.

k {1, . . . ,Km,j} Indexes the k-th multipath component (MPC).

M N Number of agents.

Km,j N0 Number of deterministic MPCs between m-th and j-th agent.

rm,j(t) C Signal between m-th and j-th agent, cf. (2.3).

s(t) R Transmitted UWB waveform.

τ
(k)
m,j R>0 Propagation delay of an MPC (3.1).

α
(k)
m,j C Path amplitude of an MPC.

τ
(k)
j,j R>0 Monostatic indexing convention, shown for a delay.

c R>0 Speed of light c ≈ 3 · 108 m/s.

N0 R>0 PSD of AWGN n(t) at the RX antenna.

w
(k)
m,j (0, 1) Weight (2.6) of an MPC due to diffuse multipath (DMP).

Geometry of the Indoor Environment

pm R2 Position of the m-th agent addressed as RX.

pj R2 Position of the j-th agent addressed as TX.

p
(k)
m,j R2 Virtual anchor (VA) position (3.13) for a given MPC.

φ
(k)
m,j (−π,+π] AoA (3.2). Points from VA p

(k)
m,j to RX pm.

γ
(k)
m,j R Effective wall angle (3.26) of a MPC.

Q
(k)
m,j N0

Order of a MPC and its VA, i.e. number of wall reflections.
Zero value refers to the LOS component.

q {1, . . . , Q(k)
m,j} Indexes the q-th step of a VA construction.

Continued on next page
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Symbol Set Meaning

γ
(k,q)
m,j (−π

2 ,+
π
2 ] q-th wall angle involved in the construction of a VA.

Single Transmission Estimation Problem

rm,j R··· Holds the Karhunen–Loève sampling (2.4) of rm,j(t).

f(rm,j | . . .) R Likelihood function (LHF) (2.5) of a single transmission.

Φm,j(x,y) R(dimx)×(dimy) Fisher information matrix (FIM) of some parameters x and y
w.r.t. LHF of a single transmission m, j, cf. (4.5).

τm,j RKm.j>0 Holds MPC delays τ
(k)
m,j of a transmission m, j, cf. (2.7) (4.1).

αm,j CKm.j Holds MPC amplitudes α
(k)
m,j of a transmission, cf. (2.8) (4.2).

θ R2+2Kj,j
Monostatic estimation parameter vector (4.3),
θ = (pTj ,<αTj,j ,=αj,j)T .

ψ R3Kj,j
Monostatic support parameter vector (4.4),
ψ = (τTj,j ,<αTj,j ,=αj,j)T .

Jθ Rdimθ×dimθ Fisher information matrix (FIM) (4.7) (4.10) Jθ = Φj,j(θ,θ).

Jpj R2×2 Monostatic equivalent Fisher information matrix (EFIM)
(4.11).

Cooperative Estimation Problem

r R··· Holds all sampled received signals rm,j , cf. (5.1).

f(r|θ) R Likelihood function (5.7).

Φ(x,y) R(dimx)×(dimy) FIM of some parameters x and y w.r.t. joint LHF, cf. (5.8).

p R2M Holds all agent positions, cf. (5.2).

K N Number of MPC parameters K =
∑M

m=1

∑M
j=1Km,j .

τ RK+ Holds all delays of all transmissions, cf. (5.3).

α CK Holds all amplitudes of all transmissions, cf. (5.4).

θ R2M+2K
Cooperative estimation parameter vector (5.5),

θ =
(
pT ,<αT ,=αT

)T
.

ψ R3K
Cooperative transformed parameter vector (5.6),

ψ =
(
τT ,<αT ,=αT

)T
.

Jθ Rdimθ×dimθ Fisher information matrix (FIM) (5.12) Jθ = Φ(θ,θ).

Jp R2M×2M Cooperative EFIM (5.13) (5.14) (5.26).
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Mathematical Notation

All vectors are column vectors unless an explicit transpose is applied. They are denoted in bold
lowercase letters, e.g. x. Matrices are bold uppercase. tr{A} is the trace [1] of A. I and 0
are the unity and zero matrix. Matrix dimensions are given by the context or sometimes by
explicit subscript denotation. We access element i, j of matrix A via [A]i,j . We sometimes use
matlab notation like [A]1:i,: for submatrix, row, or column access. When A has well-arranged
block structure, we refer to the i, j-th M ×N submatrix with [A]M×N,i,j .
e (φ) := (cos(φ), sin(φ))T is a unit vector in direction of angle φ. Rot(γ) is a standard 2×2 angle
γ rotation matrix. For complex numbers z ∈ C, we write <z and =z for real and imaginary parts.

The gradient of a scalar function f(x) w.r.t. to a vector x is

∂f(x)

∂x
=

(
∂f

∂x1
, . . . ,

∂f

∂xM

)T
.

When derivatives appear in text, we will usually use a slash, e.g. ∂f(x)/∂x. With regard
to related literature like [2], we assume ∂f(x)/∂(xT ) = (∂f(x)/∂x)T for transposed differen-
tials. Regarding second order partial derivatives, we explicitly note a transpose on the second
differential ∂yT as to clarify the dimensions of the resulting matrix

∂f(x,y)

∂x∂yT
=


∂f

∂x1∂y1
. . . ∂f

∂x1∂yN
...

. . .
...

∂f
∂xM∂y1

. . . ∂f
∂xM∂yN

 .

The gradient of a vector-valued function f(x) w.r.t. x is the Jacobian2

∂f(x)

∂x
=


∂f1
∂x1

. . . ∂fN
∂x1

...
. . .

...
∂f1
∂xM

. . . ∂fN
∂xM

 .

1 In the case of a function symbol, the ’Set’ column states the image set of that function. Dots used as an
exponent indicate high dimensionality where an exact figure would be too involved and also unimportant for
this overview.

2 Notice that the assumed Jacobian dimensions dimx × dimy are consistent with communication theory liter-
ature but contradict most math texts, where the transposed dimensions dimy × dimx are used (cf. usage in
multivariate Taylor series).
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Performance Bounds of Co-MINT

1
Introduction

1.1 Literature Survey

Many fields of application demand accurate position knowledge of vehicles, devices or person-
nel. The most prominent localization solutions are satellite-based systems like Galileo and GPS,
where several satellites orbit the earth and serve as reliable anchors for mobile agents to tri-
angulate their positions from the received signals, see for instance [3]. However, these systems
fail in rough or tree-covered terrain, dense urban settings and especially in indoor environments
because of poor material penetration and dominant multipath propagation [4]. Applications in
logistics, disaster relief forces, military blue force tracking and within industrial buildings require
location-awareness under such conditions though [3–5].

Wideband and ultra-wideband (UWB) pulses are promising candidates for localization in dense
indoor environments as described by [2,4,6] amongst others. Large bandwidth yields short pulse
durations and in further consequence high spatial resolution and resolvability of multipath com-
ponents (MPCs) in measurements. In 2002, the US Federal Communications Commission issued
regulations, ”that allow the unlicensed operation of UWB radios in the microwave range” [7],
which is sufficient transmission power for most indoor localization applications. The new regu-
lations led to wide research efforts in the UWB field, for instance [5, 7–9]. Indoor propagation
channels were studied in works like [9, 10]. Papers like [5, 6, 11] suggest that Diffuse multipath
(DMP) is a dominant portion of indoor propagation channels.

Most available (conventional) systems for indoor positioning require several fixed anchors [2, 4,
12, 13] and are non-robust against NLOS situations. These anchors are immobile transmitters
(TXs) or sometimes receivers (RXs) with precisely known position, resulting in high infrastruc-
ture expenditure and low flexibility. Multipath-assisted indoor navigation and tracking (MINT)
[6, 9, 14] is one possibility to overcome those disadvantages and impairments. MINT assumes a
known floor plan of the indoor environment and models MPCs as direct paths from so-called
virtual anchors (VAs) [6, 13, 15, 16]. The VAs are mirror images of the TXs with respect to
the walls and, because of the known floor plan, have equal position uncertainty as the TX, i.e.
precisely known VA positions in the fixed anchor case. Knowledge about VA positions allows
their utilization for position estimation, which reduces the amount of required fixed anchors and
thereby lowers infrastructure efforts. Accurate performance results of MINT implementations
with down to just a single fixed anchor are presented in [17–19].

– 1 –



1 Introduction

In [6] the Cramér-Rao lower bound (CRLB) for the MINT set-up has been derived using a
channel model which considers deterministic and diffuse multipath. This result is based on work
of Shen and Win [4, 12], who showed that MPCs, which are just considered as interference, are
usable for localization in the presence of prior knowledge about the channel parameters. Shen
and Win use a prior distribution of the channel parameters, while MINT assumes prior knowl-
edge in the comprehensible form of a known floor plan to enable multipath-assisted localization.
An alternative way of formalizing room geometry (but with different intentions) is presented in
[20]. While [4, 12] assume anchors merely providing one-dimensional ranging information (RI)
in line of sight (LOS) direction, agents in a MINT set-up receive individual RI contributions
from deterministic MPCs in direction of the respective angle of arrival (AoA).

Cooperative localization is a concept that allows for accurate localization despite low anchor
deployment [2, 16, 21, 22]. Several mobile agents transmit pulses to one another and exchange
observations for joint position estimation, which boosts localization performance [2]. Cooper-
ative MINT (Co-MINT) [16] is a promising combination of cooperative and multipath-assisted
localization. There, cooperating mobile agents perform monostatic and bistatic measurements,
i.e. pulse transmission and MPC measurement via receive antenna either happen collocated on
the same agent or at physically different agents. The a-priori known floor plan again gives rise
to applicable VAs. This renders anchorless localization possible, so no fixed infrastructure is
required at all. Fröhle [16] gave a successful proof of concept and developed an estimation al-
gorithm for Co-MINT, but quantitative performance figures like the CRLB [23] on the variance
of position estimation are currently unavailable.

Similar CRLB derivations are given for a single agent and multiple fixed anchors with or without
prior knowledge in [4, 12], for MIMO radar systems with RI contributions in AoA direction of
the individual components in [24], for MINT with one fixed anchor in [6], and for cooperating
agents and multiple fixed anchors in [2]. All these derivations work on continuous-time received
signals instead of extracted signal metrics to incorporate the entire observed information in the
performance bound [4].

1.2 Idea of this Work

In this master thesis, we want to derive a performance bound of Cooperative MINT, which was
introduced in [16]. This requires profound understanding of multipath geometry. Particularly,
the influence of a mobile TX on the propagation delays of higher-order MPCs is, to the best of
our knowledge, an open problem. Therefore, we have to investigate multipath and VA geometry
in detail and tackle the aforementioned problem among other things.
Monostatic measurements are a fundamental building block of Co-MINT and, due to TX and RX
being collocated, have very specific properties. Hence, we want to study monostatic localization
of a single agent, obtain the CRLB thereof, investigate the peculiarities and compute numerical
results.
Ultimately, we want to obtain a closed-form CRLB of Co-MINT. The CRLB is not only useful
for computing numerical results of the position error bound (PEB), but a closed-form solution
also allows studying the influence of technical and environmental parameters on the localization
performance.3

3 Furthermore, a closed-form CRLB is a valuable prerequisite for computing covariance matrices during
maximum-likelihood estimation [25].

– 2 –



1.3 Goals

1.3 Goals

� Extend the notation of [6] to a mathematical framework capable of all scheduled cooper-
ative derivations within the chosen signal and geometry model.

� Study multipath geometry, formalize room geometry and VA construction with the goal
of finding a general formula for spatial delay gradients of MPCs.

� Define the monostatic position estimation problem. Derive and analyse the monostatic
CRLB. Investigate the peculiarities and usefulness of certain classes of monostatic MPCs.

� Define the cooperative position estimation problem. Derive and analyse the cooperative
CRLB.

1.4 Outline

� Chapter 2 gives a detailed problem description and introduces, the propagation channel
model, the signal model as well as the mathematical and notational framework that will
be used throughout the thesis. It introduces estimation of vector parameters from ob-
servations, a transformation to an alternative parameter space, nuisance parameters and
defines the CRLB.

� Chapter 3 analyses the fundamental quantity of room geometry influence: The spatial
gradient of propagation delays over multipath components. A thorough linear algebraic
derivation gives an exact result for virtual anchor positions. The spatial gradient thereof
will yield a closed-form result for the desired quantity.

� Chapter 4 defines the monostatic position estimation problem and derives the CRLB. The
chapter pursues with a theoretical examination of several monostatic multipath geometries
and the evaluation of numerical results.

� Chapter 5 defines the cooperative anchorless multipath-assisted position estimation prob-
lem and conducts the involved CRLB derivation. On the basis of numerical results, we
carry out an investigation of the CRLB result and subsequently the merits of cooperation
and the approach by itself.

� Chapter 6 concludes the thesis and discusses possible future research.

– 3 –
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Performance Bounds of Co-MINT

2
Problem Framework and Notation

2.1 Localization Problem

We assume a total of M mobile agents at a priori unknown positions in a two-dimensional4

indoor environment with a priori known floor plan. The environment is enclosed by walls of a
material that reflects radio waves to some extend. Walls are modeled as plane surfaces.
Each agent acts as both omnidirectional transmitter (TX) and receiver (RX) for ultra-wideband

(UWB) [7,8] pulses s(t). The agents alternately transmit (one agent at a time) a pulse while all
other agents listen. Furthermore, all agents gather the channel impulse response to their own
transmitted pulse. Thereby, all monostatic and bistatic measurements are obtained. Figure 2.1
shows an exemplary scenario. We define the meaning of those terms for our purpose:

� Monostatic: An agents emits a pulse which then bounces off of walls and returns to
the agent over various reflection paths. The agent measures these so-called multipath
components (MPCs). TX and RX are collocated on the same device.

� Bistatic: One agent emits a pulse while another agent receives the signal. The emitted
pulse propagates over a line of sight (LOS) path (if unobstructed) and over several MPCs
by bouncing off of walls one or more times before arriving at the RX. TX and RX are
different agents.

MPCs are usually nothing but interference, but [4] showed that prior knowledge about the
channel parameters enables the utilization of MPCs for localization. In our particular problem,
a priori floor plan information allows us to use MPCs for anchorless cooperative localization [16].

The idea was introduced in [16] as follows:

“In the first phase, each mobile performs mono-static measurements. In this mono-
static measurement setup, the mobile is both TX and RX. Localization with only
this type of measurements alone would not be possible due to ambiguities in the

4 Throughout this thesis, we are dealing with two-dimensional geometries exclusively. Related literature [13]
claims, “Extension to the three-dimensional localization is straightforward”. In our case though, the extension
would require angle pairs instead of single angles for wall and agent alignments in Chapter 3 and would raise
the dimensions of mirror matrices from 2 × 2 to 3 × 3 in Sections 3.3 and 3.4, which would render those
derivations laborious to say the least.
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2 Problem Framework and Notation

(a) Monostatic measurements. (b) Bistatic measurements.

Figure 2.1: The two fundamental modes of transmission are shown. (a) Agents serve as both TX and RX.
There is no LOS component, the receive antenna just picks up all signal components that bounced
off walls. The shown transmissions do not happen concurrently for obvious reasons. (b) The
upper agent is transmitting while the others are listening. The red arrow illustrates a LOS path.
Even though the LOS path to the lower left agent is obstructed by a wall corner, the agent still
receives two MPCs. In both figures, higher-order reflections were discarded for clarity.

likelihood-function caused by the room geometry. In the second phase, each mo-
bile performs cooperative measurements with its neighbors [...]. In this bi-static
measurement setup, the neighbor node acts as TX for the RX node. Cooperative
measurements are useful only if the TX position is known. Hypotheses for this are
taken from the mono-static measurement. It is therefore possible to determine the
position of each cooperating mobile node without the help of a known reference
anchor.”

Vectors pm,pj ∈ R2, 1 ≤ m, j ≤M are unknown agent positions. Both indices m and j can be
used to refer to any agent, but we use m when referring to the current RX and j when referring
to the current TX. We assume a transmission protocol that avoids collisions and exchanges
measurement data. The combined knowledge drawn from the measurements of all agents will
be used to perform cooperative estimation of all agent positions.

2.2 Channel and Signal Model

A transmission from TX agent j to RX agent m that receives signal rm,j(t) is defined by

rm,j(t) =

∫ +∞

−∞
s(λ) · hm,j(t− λ)dλ+ n(t) (2.1)

where hm,j(t) is the impulse response of the propagation channel, s(t) is an UWB pulse, the
integral represents a convolution and n(t) is measurement noise at the receive antenna. We
assume n(t) to be additive white Gaussian noise (AWGN) [23] with power spectral density
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2.2 Channel and Signal Model

(PSD) N0/2.5 Our assumed channel model is

h(τ) =

Km,j∑
k=1

α
(k)
m,j · δ(τ − τ

(k)
m,j)︸ ︷︷ ︸

Deterministic MPCs

+ νm,j(τ)︸ ︷︷ ︸
Diffuse multipath

. (2.2)

The wave propagates over a total of Km,j deterministic MPCs represented by the delta comb
in the impulse response. Diffuse multipath (DMP) on the other hand represents all reflections
that are not covered by the MPC model. This does not only refer to high-order reflections or
reflections w.r.t. objects that are not present in the floor plan, e.g. furniture, wireways, gadgets,
people, or animals, but also to scattering and reflections off the agents themselves or any other
object in close vicinity to the antennas. Therefore, DMP impairs a received signal rm,j(t) on an

interval t ∈ (τ
(k′)
m,j ,∞) when there is an unobstructed LOS component k′. DMP is the equivalent

to reverberation in acoustics [26]. The suitability of the used model for diffuse indoor channels
was confirmed in [6, 9]. The topic is also dealt with in [5, 25] and in much more detail in [11].
νm,j(t) is a realization of a non- stationary random process [6, 27]. We use the delay power
spectrum [5, 28, 29] Sνm,j (τ) to describe the evolution of power density of DMP in the delay
domain.

By using (2.2) and performing the convolution in (2.1), we obtain a complex-valued baseband
signal model

rm,j(t) =

Km,j∑
k=1

α
(k)
m,js(t− τ

(k)
m,j) +

∫ +∞

−∞
s(λ)νm,j(t− λ)dλ+ n(t) . (2.3)

The same channel and signal model are used in [6]. Each MPC has a distinct propagation delay

τ
(k)
m,j ∈ R+

0 (a fundamental quantity in position estimation) and a path amplitude α
(k)
m,j ∈ C

representing pathloss and phase shift. For bistatic transmissions, a possible LOS path is simply
included in the list of MPCs. The frequent symbols table in the front matter gives an overview
of indices.
The same signal model is used for monostatic transmissions. Whenever a single agent serves
as both RX and TX (m = j) we will refer6 to it via index j. Thus we write rj,j(t) for a
monostatically received signal. Signal model (2.3) applies to the monostatic case.
In (2.3), νm,j(t) convoluted with pulse s(t) represents DMP. An alternative way of looking at
DMP is as output of a fictional filter with impulse response s(t) whose input signal is random
process νm,j(t). The DMP process νm,j(t) convolved with the transmit pulse is thus described
as coloured noise process.
For our following estimation problem, we need a discrete set of observations instead of the
continuous rm,j(t) to obtain a likelihood function (LHF). Detailed reasons therefor are explained
in [6] and like them, we use Karhunen-Loève sampling [27]

rm,j := KL {rm,j(t)} . (2.4)

5 We use constant PSD N0/2 for AWGN at all RX antennas. Extensions like an individual PSD per RX or even
per transmission are unnecessary for our derivations.

6 The monostatic indexing convention j, j was chosen that way because MPC quantities are mostly influenced
by TX positioning. This will be explained in detail in Chapter 3.
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For a received signal within our signal model, Witrisal et al. [6] derived7 the LHF

f(rm,j |τm,j ,αm,j) ∝ exp

{
2

N0

∫ T0

0
<
[
rm,j(t)

Km,j∑
k=1

(w
(k)
m,j)

2 · (α(k)
m,j)

∗s(t− τ (k)
m,j)

]
dt

− 1

N0

∫ T0

0

Km,j∑
k=1

w
(k)
m,j · α

(k)
m,js(t− τ

(k)
m,j)

K∑
k′=1

w
(k′)
m,j · (α

(k′)
m,j)

∗s(t− τ (k′)
m,j )dt

}
. (2.5)

Weights w
(k)
m,j are given [6] as

w
(k)
m,j =

N0

N0 + Ts · Sνm,j (τ
(k)
m,j)

(2.6)

where we evaluated the delay power spectrum at the delay of the k-th MPC. (2.6) describes the
impairment of signal-to-interference-plus-noise ratio (SINR) of a MPC due to DMP.
LHF (2.5) is conditioned on stack vectors of all delays and amplitudes of a single transmission
m, j. Later in the text, we will make extensive use of those stacks.

τm,j :=
(
τ

(1)
m,j , . . . τ

(Km,j)
m,j

)T
(2.7)

αm,j :=
(
α

(1)
m,j , . . . , α

(Km,j)
m,j

)T
(2.8)

We will never use (2.5) directly in this thesis but it is fruitful for understanding. Particularly
in our Cramér-Rao lower bound (CRLB) end results, we will use certain quantities of Fisher
information (FI) among signal model parameters (cf. Appendix A.1) that Witrisal et al. [6]
derived from (2.5).

2.3 The Cramér-Rao Lower Bound

Let θ be a vector parameter and r noisy observations [23] with distribution8 p(r|θ) where the
conditioning implies that r depends on θ in some way. We want to find the value of θ by
observing r. Intuitively, this works best when θ has a strong influence on the distribution of r.
An estimator θ̂ is a a deterministic function that takes r as input to compute an estimate of θ.
Since r is a random variable, the output value θ̂ is a random variable as well.
A particular estimator that is often sought after is the minimum-variance unbiased estimator
(MVUE) [23]:

� Unbiased: An unbiased estimator obtains the true value on average, i.e. Er|θ{θ̂} = θ.

� Minimum variance: No unbiased estimator has variance var{θ̂} lower than the MVUE.

A popular means of obtaining a lower bound for the variance of an unbiased estimator is the
Cramér-Rao lower bound (CRLB). For a vector-valued parameter θ, the CRLB is defined [23]

7 The authors used techniques like orthonormal basis functions in conjunction with Karhunen-Loève expansion
to derive an inverse kernel for whitening of the DMP, which was required to obtain a standard LHF. The
involved derivation is out of scope of this thesis. Although, one should keep in mind that, according to [6],
the LHF (2.5) is valid only for signals with certain block spectra and non-overlapping pulses. This is usually
violated in practice and thus (2.5) should be used cautiously.

8 Despite the bayesian notation, we assume a deterministic (i.e. not random) parameter θ. This is common
practice in related literature.
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as

var
{
θ̂i

}
≥
[
J−1
θ

]
i,i

(2.9)

where Jθ is the Fisher information matrix (FIM)

Jθ := −Er|θ

{
∂2ln p(r|θ)

∂θ∂θT

}
. (2.10)

The i-th diagonal element of the FIM inverse is the Cramér-Rao lower bound for the i-th
component of θ̂. The CRLB theorem holds if all occurring derivatives exist and a weak condition
on the distribution shape is fulfilled, for details see [23].
In our localization problem, the observed data r consists of sampled received signals that were
measured by the agents’ receive antennas and are described by LHF (2.5). We will define θ as
the stack vector of agent position(s) and all real and imaginary parts of path amplitudes, e.g.
the parameter vector of the monostatic estimation problem is

θ :=
(
pTj ,<αTj,j ,=αj,j

)T
.

We will then obtain the CRLB for position estimation by using (2.9) with those diagonal elements
of J−1

θ that correspond to x and y components of position pj , i.e. [J−1
θ ]1,1 and [J−1

θ ]2,2 for the
given parameter vector example.9 This yields the position error bound (PEB), a figure of high
technical relevance.
While θ must contain positions pj for aforementioned reasons, switching to a higher-dimensional
parametrization ψ can facilitate the CRLB derivation: We will define a ψ that contains all delays

τ
(k)
m,j instead of positions pj , e.g. again for the monostatic estimation problem

ψ :=
(
τTj,j ,<αTj,j ,=αj,j

)T
.

Then, the FIMs of our parametrizations θ and ψ are related [6, 23] to one another by

Jθ =
∂ψ

∂θ
· Jψ ·

∂ψ

∂θ

T

(2.11)

where ∂ψ/∂θ is the Jacobian matrix that represents the derivative of ψ w.r.t. θ. Computing
Jψ is easier than direct computation of Jθ because (2.10) then dictates derivation w.r.t. delays
rather than agent positions. The former is more convenient because the signal model (2.3) and

subsequently LHF (2.5) explicitly use τ
(k)
m,j whereas they depend on pm and pj only implicitly

via τ
(k)
m,j (which is a function of agent positions and room geometry).

Transformation (2.11) decomposes Jθ into the two major influences to the CRLB:

� Jψ: Fisher information (FI) among signal model (2.3) quantities τ
(k)
m,j and α

(k)
m,j . Accounts

for the resolvability and detectability of these given a measurement rm,j(t).

� ∂ψ/∂θ: Effect of room geometry. Most importantly contains the sensitivity of delays τ
(k)
m,j

towards RX and TX agent position, which the entire Chapter 3 is devoted to.

2.4 Nuisance Parameters and Path Overlap

Multipath-assisted cooperative localization and especially monostatic localization suffer from
an effect called path overlap. The problem arises when pulses overlap which prevents accurate

9 The necessity of including amplitudes in the parameter vector will be explained in Section 2.4.
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2 Problem Framework and Notation

estimation of the MPC amplitudes α
(k)
m,j , although the amplitude values may seem irrelevant

to position estimation at first glance. Figure 2.2 shows how the adverse effect of path overlap
can tremendously degrade estimation performance. Since path overlap is a major issue but
somewhat unintuitive, we discuss the matter in this introductory section.

Why do we estimate the path amplitudes even though they are not in our interest? Let us
emphasize the necessity of nuisance parameter estimation with the help of a classical example:
Variance estimation on samples of an unknown normal distribution x[n] ∼ N (µ, σ2). The MVUE
σ̂2 involves a normalized sum over terms (x[n] − µ)2 [23]. Since this estimation endeavour is
essentially the exploration of an unknown random variable, we have to assume that we do not
have perfect knowledge of its mean value µ just as well. Hence we are forced to estimate µ̂
as a nuisance parameter, even though it is not of direct interest. Inaccurate µ̂ estimation will
drastically impair the accuracy of σ̂2. The only way around would be perfect prior knowledge
about the mean value from the problem context, e.g. µ = 0.

Our situation is completely analogous: Our end result for the CRLB of agent position estimates

will be a formula involving the amplitudes α
(k)
m,j , thus knowledge thereof is crucial. In our case

with an involved room geometry and channel model, there is certainly no way to obtain perfect
knowledge of all MPC phase shifts and attenuations a-priori. Thus, not estimating the path
amplitudes as nuisance parameters would be grossly negligent.

Countermeasures to path overlap include a higher transmission bandwidth and thus shorter
pulses, changing the localization setup (agent positions and room geometry) as to avoid MPCs
with similar delay, or dropping one of the overlapping MPCs from the estimation model. All of
these measures are either limited by technical constraints or implementation issues [30], would
require unrealistic foresight or suffer from miscellaneous peculiarities that cannot be discussed
here.

τ
(1)

τ
(2)

α
(1)

α
(2)

(a) |τ (1) − τ (2)| > Ts

τ
(1)

τ
(2)

α
(1)

α
(2)

(b) |τ (1) − τ (2)| ≈ Ts

τ
(1)
τ
(2)

α
(1)

α
(2)

(c) |τ (1) − τ (2)| < Ts

Figure 2.2: The plots show a signal α(1) · s(t − τ (1)) + α(2) · s(t − τ (2)) which is in accordance with signal
model (2.3). s(t) is a raised-cosine pulse with duration Ts. Amplitude estimates α̂(1), α̂(2) are
heavily impaired by the effect of path overlap which arises when the difference of pulse delays is
lower than the pulse duration. a) Pulses do not overlap, amplitude estimation is unproblematic.
b) Pulses overlap slightly, there will be some impairment. c) Pulses overlap vastly and are
indistinguishable. Merely some skewness tells that the later pulse has lower power.

Shen and Win [12] explain how ignoring path-overlap led to overly optimistic performance
bounds in earlier literature. In [31] they explain the negative effect of path-overlap in great
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detail and give a quantitative answer to the extent of impairment on localization performance.
Later in this thesis, we will see in the CRLB results how path overlap reduces FI between
delays of a received signal and in the course worsens position estimation. Equal MPC delays

τ
(k′)
m,j = τ

(k′′)
m,j will cause a singular amplitude FIM and thus an infinite PEB.

2.5 Equivalent Fisher Information Matrix

When deriving the CRLB, formula (2.9) requires us to compute the inverse J−1
θ of a high-

dimensional FIM, even though most of its blocks are irrelevant (bounds on variances and co-
variances of nuisance parameters). This amounts to high computational effort and renders all
aspirations towards a closed-form solution problematic.
Fortunately, there is a linear algebraic method called Schur complement [4,6,12] that we will use
extensively to compute solely the interesting block of the FIM inverse. The following statement
is a result of Schur complement customized to our needs:

Let M ∈ R(a+b)×(a+b) be a symmetric square matrix with an upper left block A ∈ Ra×a

M =

(
A B

BT C

)
.

Then the upper left a× a submatrix of M−1 is equal to the inverse of a matrix ME ∈ Ra×a[
M−1

]
a×a = M−1

E , ME := A−BTC−1B . (2.12)

Applied to our estimation problem, the upper left block of the FIM inverse J−1
θ is then equal to

an inverse J−1
p where matrix Jp is known as equivalent Fisher information matrix (EFIM) [4,6,

12]. Not only does this ease computation, but, more importantly, also allows for a closed-form
EFIM solution for the position estimation and subsequently an analysis of CRLB dependency
on technical parameters like room geometry, noise power or the shape of UWB pulse s(t).
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3
Geometry of Multipath Components

During Cramér-Rao lower bound (CRLB) derivations of monostatic or cooperative position

estimation, we will inevitably stumble upon spatial gradients of propagation delays ∂τ
(k)
m,j/∂pm,

∂τ
(k)
m,j/∂pj and ∂τ

(k)
j,j /∂pj . For a derivation of CRLBs, a detailed understanding is therefore

necessary, however the topic is too involved for an auxiliary treatment in the respective sections.
Thus, we dedicate this chapter to the study of multipath geometry to obtain a closed-form
solution of the spatial delay gradients.

3.1 Virtual Anchors

In Chapter 2, we defined our scenario with M agents within a room that is limited by flat walls.
When a pulse is transmitted, the walls reflect the electromagnetic wave which is considered as
a multipath component (MPC), cf. signal model (2.3). A different way of looking at a MPC is
to imagine it coming from a virtual anchor (VA) that is located behind the wall. Meissner et
al. [15] explain the VA concept,

“Our approach exploits the multipath components (MPCs) of the UWB signal, which
result from signal reflections at e.g. the room walls. Using given floor plan informa-
tion, these MPCs can be mapped to virtual anchors (VAs), which are mirror images
of the anchor with respect to the room walls, or other reflecting surfaces.”

Even though they assumed a fixed anchor with known position, this does not invalidate the idea

for our purpose: We obtain VA positions p
(k)
m,j at the mirror images of the current transmitter

(TX) agent position pj .
10 Consequently, the k-th MPC is, from a receiver (RX) point of view,

equal to a direct path from the k-th VA at p
(k)
m,j [13, 15].

The equivalence of MPC and VA model is twofold: Both angle of arrival (AoA) φ
(k)
m,j and

propagation delay τ
(k)
m,j are maintained. The latter implies that the travel distance of the MPC

10 VAs being the mirror images of pj raises the question why we are using RX index m at all for VA position p
(k)
m,j .

The only reason is that transmissions rm,j(t) involving the same TX j but to different RXs m each require their
own specific MPC indexing domain 1 ≤ k ≤ Km,j . This is due to certain intricacies, for instance monostatic
cases cannot hold line of sight (LOS) paths in their MPC lists or in bistatic cases a certain MPC might be
meaningless or obstructed for some RX. See Figure 3.2 and 3.3, where the addition of a LOS component
changes k-indexing. Formally, k cannot occur in the absence of m because its upper limit Km,j is dependent
on m. On these grounds, the excessive and somewhat unintuitive notation with m, j subscript is necessary.
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3 Geometry of Multipath Components

and the RX-VA distance ‖pm−p
(k)
m,j‖ are equal. These properties hold for any VA order, which

is the number of reflections of the associated MPC. We denote the VA order or likewise the
MPC order with Q

(k)
m,j . The VA concept is known as virtual source in acoustics. Shen and Win

[13] use the term virtual node.11

Figure 3.1 shows the set of first-order VAs for an exemplary indoor environment with a TX
agent at position pj . The VA positions are simply the mirror images of the TX w.r.t. the walls.

pj

Figure 3.1: Three first-order VAs of a transmitting agent in an exemplary indoor scenario.

Figure 3.2 illustrates the VA-modeled part of a monostatic transmission of the same agent. Agent

j functions as both RX and TX. First-order MPCs (Q
(k)
j,j = 1) and their rays are depicted. Three

walls amount to Km,j = 3 VAs, i.e. 1 ≤ k ≤ 3. The rays bounce off perpendicularly and return
to the agent on the same path they came from.
Figure 3.3 shows a bistatic transmission where the TX remains in the same position pj as in
the previous scenarios, but an RX node at a separate position pm has entered the scene. All VA
positions stay the same, they do not depend on RX position. There is a LOS path from pj to

pm, which we consider as an additional MPC of 0-th order with index k = 1 (Q
(1)
m,j = 0). Thus,

pj coincides with VA p
(1)
m,j , the number of VAs Km,j = 4 increased compared to the monostatic

scenario, and the k-indexing of the remaining VAs changed. The figure elegantly shows the
aforementioned properties of the VA model regarding preservation of travel distance and AoA.
The first segment of each reflected ray, that is the path from the TX to the wall, is obtained by
finding the intersection point between wall and VA-RX path.
We also want to give a construction example of a VA that represents a higher-order MPC,
i.e. multiple wall reflections. We consider a threefold reflection that involves the three walls
of the exemplary room in clockwise order (upper → right → lower wall). Figure 3.4 shows the
construction process: a) Mirroring the TX on the first wall yields a first intermediate position

p
(1)
I (which is also the VA of a first-order MPC that we do not consider for the moment). b)

Mirroring p
(1)
I as well, but now on the second wall, yields a second intermediate position p

(2)
I .

c) Mirroring p
(2)
I on the last wall finally attains the virtual anchor p

(3)
I = p

(k)
m,j .

11 The term “virtual node” might be more suitable than “virtual anchor” within this thesis because of the absence
of actual fixed anchors. Nevertheless, we stick to “virtual anchor” to maintain consistency with other MINT
and Co-MINT literature.
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p
(1)
j,j

p
(2)
j,j

p
(3)
j,j

pj

Figure 3.2: Monostatic transmission where three first-order MPCs are modeled by their respective VAs.

pj =p
(1)
m,j

pm

p
(2)
m,j

p
(3)
m,j

p
(4)
m,j

Figure 3.3: Bistatic transmission where three first-order MPCs and a LOS path are modeled using four VAs.

Figure 3.5 shows how the propagation path of a bistatic MPC ray modeled by the above third-
order VA is obtained: The VA-RX path (i.e. the long line including the last ray segment)
intersects with the last involved, lower wall. The intersection point serves as destination for

the previous ray segment, whose virtual source is intermediate position p
(2)
I . This path then

intersects with the right wall and so on. The backtracking in the depicted fashion ultimately
reaches the TX, which concludes the procedure.
Figure 3.6 shows the outcome of the same procedure for a monostatic MPC of the same third-
order VA. Again, whether or not RX and TX are collocated does not affect the VA position.
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p
(1)
I

pj

(a)

p
(1)
I p

(2)
I

pj

(b)

p
(1)
I p

(2)
I

p
(3)
I = p

(k)
j,j

pj

(c)

Figure 3.4: Construction of a third-order VA.

Beware that the VA construction procedure may yield unrealistic reflection paths. This includes
the following aspects:

� Feasibility: Does the VA account for a feasible reflection path?

� Obstacles: Is the ray unobstructed? Are the only points of contact the designated wall
reflections in the intended order?

� Orientation: Does the ray hit all designated walls on their surface areas rather than the
material side?

The executing program must pay attention to the reasonableness of the construction. The
mathematical model introduced later in this chapter does not account for these peculiarities
either, but our Matlab scripts for numerical results, cf. Section 4.3 and 5.3, do so. Examples
for infeasible VA constructions are second-order VAs between parallel walls of equal orientation
or between two walls of an obtuse-angled corner (i.e. > 90°). In such scenarios, the VA may sit
inside the room instead of behind a wall and/or results in a reflection path that immediately
contradicts elementary optics and common sense. Often these cases lead to the ray visiting walls
in an unintended order or from the material side, so they can be intercepted by the unobstructed-
criterion or orientation-criterion, but for computational reasons it is wise to discard void VAs
beforehand instead of checking said criteria for each agent arrangement.
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pj

pm

p
(1)
I p

(2)
I

p
(3)
I = p

(k)
m,j

pj

pm

p
(1)
I p

(2)
I

p
(3)
I = p

(k)
m,j

pj

pm

p
(1)
I p

(2)
I

p
(3)
I = p

(k)
m,j

pj

pm

p
(1)
I p

(2)
I

p
(3)
I = p

(k)
m,j

Figure 3.5: Bistatic ray tracing of a given third-order VA and its intermediate construction positions.

pj

p
(1)
I p

(2)
I

p
(3)
I = p

(k)
j,j

Figure 3.6: Monostatic ray tracing of a third-order VA. Intermediate steps are analogous to Figure 3.5 and
not shown.
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3.2 Spatial Delay Gradient: Preliminary Results

Earlier in the chapter, we outlined the importance of the spatial gradient of the propagation

delay τ
(k)
m,j of an MPC. And rightfully so: The path delay is the central quantity of position

estimation and therefore its sensitivity towards positioning is crucial. For example, think about
the role of delays in the popular time of arrival (ToA) or time difference of arrival (TDoA) [3]
localization implementations. Low sensitivity means one can draw little position information
from delays and will subsequently experience poor localization performance and vice versa.

Monostatic measurements raise interest in the gradient ∂τ
(k)
j,j /∂pj . Concerning bistatic mea-

surements, both the delay gradients w.r.t. RX position ∂τ
(k)
m,j/∂pm and TX position ∂τ

(k)
m,j/∂pj

are relevant. We will perform derivations in a universal fashion and look at ∂τ
(k)
m,j/∂pη where η

is arbitrary and either m 6= j or m = j may be the case.

Section 3.1 explained that distance and angle between VA and RX are equal to travelling distance
and AoA of the MPC ray. This constitutes the fundamental properties of our geometric figures:

The propagation delay τ
(k)
m,j fulfills [4, 6, 12,24]

c · τ (k)
m,j = ‖pm − p

(k)
m,j‖ =

√
(xm − x(k)

m,j)
2 + (ym − y(k)

m,j)
2 (3.1)

where c ≈ 3 · 108 m/s is the speed of light. On the other hand, AoA φ
(k)
m,j is the angle between

p
(k)
m,j and pm (cf. [4, 6, 12]) and thus per definition [32] of trigonometric functions

sin(φ
(k)
m,j) =

ym − y(k)
m,j

‖pm − p
(k)
m,j‖

, cos(φ
(k)
m,j) =

xm − x(k)
m,j

‖pm − p
(k)
m,j‖

. (3.2)

Ultimately, we want to obtain the spatial gradient of τ
(k)
m,j . But instead of differentiating τ

(k)
m,j

from (3.1) directly w.r.t. pη, i.e. xη and yη componentwise, let us use a two-dimensional function
f : R2 → R2, (x, y) 7→ f(x, y) to keep the notation unscattered and simple:

∂

∂x
‖f(x, y)‖ =

∂

∂x

∥∥∥∥(fx(x, y)

fy(x, y)

)∥∥∥∥ =
∂

∂x

√
fx(x, y)2 + fy(x, y)2

=
2 · fx(x, y) · ∂∂xfx(x, y) + 2 · fy(x, y) · ∂∂xfy(x, y)

2 ·
√
fx(x, y)2 + fy(x, y)2

=
fx(x, y)

‖f(x, y)‖
· ∂fx(x, y)

∂x
+

fy(x, y)

‖f(x, y)‖
· ∂fy(x, y)

∂x

We apply the above formalism on ‖pm − p
(k)
m,j‖ from (3.1)

c ·
∂τ

(k)
m,j

∂xη
=

xm − x(k)
m,j

‖pm − p
(k)
m,j‖

·
∂(xm − x(k)

m,j)

∂xη
+

ym − y(k)
m,j

‖pm − p
(k)
m,j‖

·
∂(ym − y(k)

m,j)

∂xη

c ·
∂τ

(k)
m,j

∂yη
=

xm − x(k)
m,j

‖pm − p
(k)
m,j‖

·
∂(xm − x(k)

m,j)

∂yη
+

ym − y(k)
m,j

‖pm − p
(k)
m,j‖

·
∂(ym − y(k)

m,j)

∂yη
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3.2 Spatial Delay Gradient: Preliminary Results

and identify the leading brackets as trigonometric functions (3.2)

c ·
∂τ

(k)
m,j

∂xη
= cos(φ

(k)
m,j) ·

∂(xm − x(k)
m,j)

∂xη
+ sin(φ

(k)
m,j) ·

∂(ym − y(k)
m,j)

∂xη

c ·
∂τ

(k)
m,j

∂yη
= cos(φ

(k)
m,j) ·

∂(xm − x(k)
m,j)

∂yη
+ sin(φ

(k)
m,j) ·

∂(ym − y(k)
m,j)

∂yη
.

The derivatives from the chain rule demand further analysis though. By using linear algebraic
notation and splitting up the subtractions, we decompose the gradient into the Jacobians of the

position parameters and a unit vector in direction φ
(k)
m,j .

c ·
∂τ

(k)
m,j

∂pη
=

∂(xm−x(k)m,j)

∂xη

∂(ym−y(k)m,j)

∂xη

∂(xm−x(k)m,j)

∂yη

∂(ym−y(k)m,j)

∂yη


cos(φ

(k)
m,j)

sin(φ
(k)
m,j)



=


∂xm

∂xη
∂ym
∂xη

∂xm
∂yη

∂ym
∂yη

−
∂x

(k)
m,j

∂xη

∂y
(k)
m,j

∂xη

∂x
(k)
m,j

∂yη

∂y
(k)
m,j

∂yη



cos(φ

(k)
m,j)

sin(φ
(k)
m,j)

 =

(
∂pm
∂pη

−
∂p

(k)
m,j

∂pη

)
e(φ

(k)
m,j)

We take note that Jacobian ∂pm/∂pη becomes either 0 when m 6= η or unity I when m = η.
We use a Kronecker delta δm,η to combine both cases nicely where

δm,j :=

{
1 if m = j
0 if m 6= j

. (3.3)

According to Section 3.1, a VA position p
(k)
m,j is determined by TX position pj and room geometry

and hence is not dependent on RX position pm. Thus, ∂p
(k)
m,j/∂pη vanishes for all cases but

η = j, so we write

∂p
(k)
m,j

∂pη
= δη,j ·

∂p
(k)
m,j

∂pj

in the upcoming result (3.4) to increase intuition and for consistency with the gradient end result
in Section 3.5.

Preliminary Result for the Spatial Gradient of the Propagation Delay

∂τ
(k)
m,j

∂pη
=

1

c

(
δm,η · I− δη,j ·

∂p
(k)
m,j

∂pj

)
e(φ

(k)
m,j) (3.4)

Formula (3.4) is nicely decomposed into the influence of RX position minus the influence of VA
position as a result of TX position. An informal explanation for the subtraction is: When both
RX and VA move in the same direction, the delay will remain constant. When they move in
opposed directions, there will be maximum change to the delay.

In gradients of bistatic cases, either δm,η or δη,j will be active, i.e. either RX or TX positioning
influence will be present. In monostatic cases, both influences will be present simultaneously.
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3 Geometry of Multipath Components

Differentiating the delay of a bistatic transmission w.r.t. to the RX position is easy and the
result is well-known in all of radar and fixed-anchor localization literature, e.g. [4, 6, 12,24]

∂τ
(k)
m,j

∂pm
=

1

c
(1 · I− 0 · 0) e(φ

(k)
m,j) =

1

c
e(φ

(k)
m,j) . (3.5)

The Jacobian ∂p
(k)
m,j/∂pj , the derivative of a VA position w.r.t. to TX agent position, is the most

important term of (3.4) for describing the movement of a TX agent, i.e. of the corresponding
VAs. Its solution requires rigorous mathematical formalization of room geometry and the VA
construction procedure in Section 3.1, which will the agenda for the remainder of this chapter.

3.3 Linear Algebraic Virtual Anchor Construction

In this section, we will formalize the geometric construction procedure of VAs that was in-

troduced in Section 3.1. Our goal is to find an exact expression for VA position p
(k)
m,j and

subsequently the Jacobian ∂p
(k)
m,j/∂pj . Since we can perform all of the following derivations on

a fixed MPC of a fixed TX without loss of generality, we will temporarly drop all m, j, k indices
for the sake of notation. Table 3.1 defines the notation change.

Temporary Notation pTX pVA Q γ(q)

Complete Notation pj p
(k)
m,j Q

(k)
m,j γ

(k,q)
m,j

Table 3.1: Translation table between the complete notation and the temporary notation that will be used by
the derivation in Section 3.3 and 3.4. Some symbols do not have an equivalent in the complete
notation because their usage is limited to the derivations in Section 3.3 and 3.4.

The main quantity of interest is ∂pVA/∂pTX. We are observing an MPC of arbitrary order Q,
i.e. the wave bounces off of walls Q times before it is received. For the VA construction this
means we have to do Q consecutive mirroring operations on the involved walls starting with
position pTX. We will use index q, 1 ≤ q ≤ Q for iterating this procedure. Mirroring pTX on the

first wall yields the first intermediate position denoted by p
(1)
I . We introduce an iterative rule:

Mirroring p
(q−1)
I on the q-th wall yields p

(q)
I . The definitions

p
(0)
I := pTX

p
(Q)
I := pVA

ensure that we can describe the VA construction procedure from Section 3.1 by simply iterating

from p
(0)
I to p

(Q)
I . Next we have to formalize room geometry and VA construction.

Walls are considered as line equation model. The model is complete with knowledge of

the wall angle12 γ(q) ∈ (−π
2 ,+

π
2 ] and an offset vector13 d(q) = (d

(q)
x , d

(q)
y )T that sits on the

wall:

y − d(q)
y = tan(γ(q)) · (x− d(q)

x ) (3.6)

12 The wall angle domain could be extended to γ(q) ∈ (−π,+π] to account for wall orientation, i.e. to answer the
question where the surface and material sides are. This was omitted in favour of the simplest model.
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3.3 Linear Algebraic Virtual Anchor Construction

Wall Mirroring Formula (simplest form) for the q-th Iteration of VA Construction

p
(q)
I =

(
cos(2γ(q)) sin(2γ(q))

sin(2γ(q)) − cos(2γ(q))

)
·
(
p

(q−1)
I − d(q)

)
+ d(q) (3.7)

Proof of (3.7): Figure 3.7 guides the proof by showing a wall-mirroring scenario with all
important quantities. For mathematical description we use short symbols e, d instead of e

(
γ(q)

)
,

d(q) though. Position p⊥ is the orthogonal projection of the initial position p
(q−1)
I on the wall,

and our sketch shows that

p⊥ − d = e · 〈e, p
(q−1)
I −d〉 = eeT (p

(q−1)
I − d)

p⊥ = eeT (p
(q−1)
I − d) + d . (3.8)

p
(q−1)
I

p
(q)
I

p⊥

d(q)

p⊥−d(q)

p
(q−1)
I −d(q)

p
(q−1)
I −p⊥

p
(q)
I −p⊥ =

−(p(q−1)
I −p⊥)

γ
(q)

e(γ (q))

Figure 3.7: This wall-mirroring sketch of the q-th iteration of a VA construction supports the proof of (3.7).

p
(q−1)
I is the given position and p

(q)
I the result, i.e the mirrored point. Wall angle γ(q) and wall

offset d(q) are required within our wall model (3.6).

Figure 3.7 shows that the mirrored point p
(q)
I is constructed by flipping the vector that points

from p⊥ to p
(q−1)
I

p
(q)
I = p⊥ + (p

(q)
I − p⊥) = p⊥ − (p

(q−1)
I − p⊥) = 2p⊥ − p

(q−1)
I

and by further substituting p⊥ by expression (3.8), we can work towards the end result structure

p
(q)
I = 2eeT (p

(q−1)
I − d) + 2d− p

(q−1)
I = 2eeT (p

(q−1)
I − d)− I(p

(q−1)
I − d) + d

= (2eeT − I)(p
(q−1)
I − d) + d .

13 Note that a two-dimensional offset d(q) is required to properly handle both borderline cases: A vertical wall

has γ(q) = π
2

, the line equation becomes y − d(q)y =∞ · (x− d(q)x ) ⇐⇒ y−d(q)y

∞ = x− d(q)x ⇐⇒ x = d
(q)
x . On

the other hand, a horizontal wall has γ(q) = 0, which causes y − d(q)y = 0 · (x− d(q)x ) ⇐⇒ y = d
(q)
y . The extra

dimension makes the choice of d(q) ambiguous: Any point on the wall is just as good as the other.
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3 Geometry of Multipath Components

Matrix 2eeT − I is simplified by recognizing double-angle formulae [32] in the matrix elements

2eeT − I =

(
2 cos2(γ(q))− 1 2 cos(γ(q)) sin(γ(q))

2 sin(γ(q)) cos(γ(q)) 2 sin2(γ(q))− 1

)
=

(
cos(2γ(q)) sin(2γ(q))

sin(2γ(q)) − cos(2γ(q))

)

which concludes the proof.

Alternative View on Mirroring

A more comprehensible view on (3.7) is given by an easy matrix decomposition

p
(q)
I =

(
cos(2γ(q)) − sin(2γ(q))

sin(2γ(q)) cos(2γ(q))

)
·
(

1 0
0 −1

)
·
(
p

(q−1)
I − d(q)

)
+ d(q) (3.9)

︸ ︷︷ ︸
III.

︸ ︷︷ ︸
II.

︸ ︷︷ ︸
I.

︸ ︷︷ ︸
IV.

The steps labeled below (3.9) are shown in Figure 3.8 and process input vector p
(q−1)
I in the

following way:

� I.: Remove wall offset, i.e. move the arrangement so that the wall goes through the
coordinate system origin.

� II.: Invert y-coordinate, i.e. mirror the shifted point p
(q−1)
I about the x-axis.

� III.: Angle 2γ(q) rotation about the origin. The linear map is a rotation matrix (3.17).

� IV.: Add again the offset that was removed in step I.

The mirroring result is invariant against the choice of d(q) as long as it sits on the wall. This
might appear counterintuitive in the light of this procedure but will be shown later in (3.22).

Constructing VAs of arbitrary Order

To obtain the Jacobian ∂pVA/∂pTX, the most suitable form of (3.7) has the p
(q−1)
I -summand

isolated from all other influences.

p
(q)
I = M(γ(q))p

(q−1)
I + (I−M(γ(q)))d(q) (3.10)

The above expression uses a matrix function M : R 7→ [−1, 1]2×2 that we will henceforth call
mirror matrix.

Mirror Matrix

M(γ(q)) :=

(
cos(2γ(q)) sin(2γ(q))

sin(2γ(q)) − cos(2γ(q))

)
(3.11)

We use (3.10) and (3.11) to encapsulate our iteration between intermediate positions p
(q−1)
I and

p
(q)
I in a mirroring function

p
(q)
I = Mir(p

(q−1)
I , γ(q),d(q)) := M(γ(q))p

(q−1)
I + (I−M(γ(q)))d(q) (3.12)
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II.
    Flip    

y−Coordinate

III.
Rot(2γ(q))

Coordinate
System    

I.
IV.

p
(q−1)
I

p
(q)
I

d
(q)

γ
(q)

Figure 3.8: A more comprehensible way of mirroring: A y-coordinate flip and successive 2γ(q) rotation of
p
(q−1)
I produce its mirror image p

(q)
I about the wall when the coordinate origin was moved on

the wall. The four steps are labeled in (3.9). This arrangement is a suitable starting point for
a geometric proof of correctness of mirroring formula (3.7), which was omitted in favour of the
given constructive proof though.

A recursive analysis gives a complicated formula for pVA as a function of pTX and the parameters
of all involved walls

pVA = p
(Q)
I = Mir

(
p

(Q−1)
I , γ(Q),d(Q)

)
= Mir

(
Mir

(
p

(Q−2)
I , γ(Q−1),d(Q−1)

)
, γ(Q),d(Q)

)
= Mir

(
Mir

(
. . .Mir

(
Mir

(
pTX, γ

(1),d(1)
)
, γ(2),d(2)

)
, . . . , γ(Q−1),d(Q−1)

)
, γ(Q),d(Q)

)

Using (3.12), this reads

pVA = M
(
γ(Q)

)
p

(Q−1)
I +

(
I−M(γ(Q))

)
d(Q)

= M(γ(Q))M(γ(Q−1))p
(Q−2)
I + M(γ(Q))

(
I−M(γ(Q−1))

)
d(Q−1) +

(
I−M(γ(Q))

)
d(Q)

= . . .

and when carefully breaking this down until p
(0)
I = pTX, we ultimately obtain a formula14,15 for

the VA position

pVA =

(Q−1∏
q=0

M(γ(Q−q))︸ ︷︷ ︸
= ∂pVA/∂pTX

)
pTX +

Q∑
q=1

(Q−q∏
q̃=1

M(γ(Q+1−q̃))

)(
I−M(γ(q))

)
d(q) . (3.13)
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The above formula is inconvenient but fortunately we have little interest in the exact position
pVA as such, but rather in its derivative w.r.t. pTX, which is simply the tagged factor of pTX in
(3.13). The residual summand does not depend on pTX and thus vanishes during differentiation.

Preliminary result for the Jacobian of VA position w.r.t. TX position

∂pVA

∂pTX

=

Q−1∏
q=0

M(γ(Q−q)) (3.14)

This long product of mirror matrices motivates the next section, where we will study properties
thereof to find further simplifications.

3.4 Mirror Matrix Properties

The goal of this section is finding a mirror matrix property that enables simplification of the mir-
ror matrix product (3.14). The similarities to rotation matrices allow for a homomorphism-style
property that turns such a product into a single mirror matrix whose argument is a combination
of the individual previous arguments. In the course, we analyse some mirroring specifics relevant
to VA understanding.

Basic Properties and Relations to Rotation Matrices

Let us write the mirror matrix definition (3.11) again

M(γ) =

(
cos(2γ) sin(2γ)

sin(2γ) − cos(2γ)

)
.

It is obviously a symmetric matrix

M(γ) = M(γ)T . (3.15)

Some distinctive values are given by

∀m ∈ Z, b ∈ {0, 1} : M
(
mπ + b · π

2

)
= (−1)b

(
1 0
0 −1

)
Earlier in the text near (3.9), we outlined that the linear map represented by the mirror matrix
is equivalent to first flipping the y-coordinate of a vector and then doing a 2γ rotation.16

14 An empty product equals the identity element of multiplication:
∏0
q̃=1 f(q̃) = 1.

15 The cumbersome inverse indexing of the γ(... ) parameters in the products is required for assuring the proper
matrix multiplication order from left to right since we are dealing with non-commutative matrices.

16 Because of the close relation, mirroring is also referred to as improper rotation or rotoinversion in geometry.
Linear maps of proper and improper rotation are isometric (i.e., distance preserving) and therefore important
elements of the well-studied Euclidean group [33]. Results from that mathematical field could be beneficial for
further research on the influence of room geometry on localization performance, especially for the extension to
three-dimensional multipath-assisted anchorless localization.
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A mirror matrix is a composition of a 2γ-rotation and a sign flip in the second dimension

M(γ) = Rot(2γ)

(
1 0
0 −1

)
(3.16)

Rot(2γ) is our notation for a standard angle 2γ rotation matrix [1]

Rot(γ) :=

(
cos(γ) − sin(γ)

sin(γ) cos(γ)

)
which is a homomorphism and an orthogonal matrix [1]

Rot(γ)Rot(β) = Rot(γ + β)

Rot(γ)T = Rot(γ)−1 = Rot(−γ) . (3.17)

The numerical matrix on the right-hand side of (3.16) represents a sign-flip in the y-coordinate.
Mirror matrices are orthogonal and self-inverse

M(γ)TM(γ) = I ⇐⇒ M(γ)T = M(γ)−1 ⇐⇒ M(γ) = M(γ)−1 (3.18)

which is intuitively clear because mirroring twice does not achieve anything, i.e. the composition
of two equal mirror maps equals the identity map.

The numeric sign-flip matrix on the right-hand matrix of (3.16) will often occur in derivations.
It is a mirror matrix as well(

1 0
0 −1

)
= M(0)

and thus has all mirror matrix properties: It is symmetric, orthogonal, and self-inverse as well.

Proof of (3.18):

M(γ)M(γ)T = Rot(2γ)
�������������(

1 0
0 −1

)(
1 0
0 −1

)T
Rot(2γ)T

= Rot(2γ) · I ·Rot(−2γ) = Rot(2γ − 2γ) = Rot(0) = I

and M(γ)2 = M(γ)M(γ)T = I follows from (3.15).

Diagonalization and Eigenvalues

The mirror matrix can be diagonalized [1] via

M(γ) = Rot(γ + γ)

(
1 0
0 −1

)
= Rot(γ)Rot(γ)

(
1 0
0 −1

)
=

(
cos(γ) − sin(γ)

sin(γ) cos(γ)

)(
cos(γ) sin(γ)

sin(γ) − cos(γ)

)
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Mirror Matrix Diagonalization

M(γ) =

(
cos(γ) sin(γ)

sin(γ) − cos(γ)

)T (
1 0
0 −1

)(
cos(γ) sin(γ)

sin(γ) − cos(γ)

)
(3.19)

Diagonalization (3.19) reveals eigenvalues λi (in the diagonal of the center matrix) and eigen-
vectors vi (in the columns of both bordering matrices) of the mirror matrix. We interpret the
two eigenvectors in the following way:

� Eigenvector v1 = (cos(γ), sin(γ))T = e(γ) points alongside the wall and is invariant under
mirroring, thus λ1 = +1.

� Eigenvector v2 = (sin(γ),− cos(γ))T = e(γ − π/2) represents components orthogonal to
the wall. Those will be projected onto the other side of the wall, i.e. its negative vector
value, thus λ2 = −1.

With the gained insights, we can show some characteristic properties of the mirroring function
(3.12) in an elegant fashion:

� Moving a distance l ∈ R parallel to the wall will move the mirror image in the same
direction:

Mir(p + l · e (γ), γ,d) = Mir(p, γ,d) + l · e (γ) (3.20)

� Moving a distance l ∈ R orthogonal to the wall will move the mirror image in the opposite
direction:

Mir (p + l · e(γ − π/2), γ,d) = Mir(p, γ,d) + l · e(γ + π/2) (3.21)

� The choice of wall offset d is ambiguous and any d on the wall is equally suitable:

Mir(p, γ,d + l · e (γ)) = Mir(p, γ,d) (3.22)

Proof of (3.20), (3.21), (3.22): All three statements rely on e (γ) and e(γ − π/2) being eigen-
vectors of M(γ) and thus M(γ) · e(γ) = e(γ) and M(γ) ·e(γ−π/2) = −e(γ−π/2) = e(γ+π/2).
We will give a full proof for (3.20) because the two remaining proofs are alike. We use the sim-
plest mirroring function definition (3.7):

Mir(p + l · e (γ), γ,d) = M(γ) · (p + l · e (γ)− d) + d = M(γ) · (p− d) + d + l ·M(γ) · e (γ)

= M(γ) · (p− d) + d + l · e (γ) = Mir(p, γ,d) + l · e (γ)

Pseudo-Homomorphism Property

Feeding the mirror matrix with a negative argument flips the signs of the off-diagonal sine
functions, which manifests as

M(−γ) =

(
1 0
0 −1

)
M(γ)

(
1 0
0 −1

)
. (3.23)
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Pseudo-homomorphism17 property of mirror matrices

M(γ)M(β) = M(γ − β)

(
1 0
0 −1

)
=

(
1 0
0 −1

)
M(β − γ) = Rot(2(γ − β))

(3.24)

Proof of (3.24): We start with the left-hand expression and transpose M(β) while maintaining
equality because of (3.18) and furthermore use (3.16) and (3.17) to obtain

M(γ)M(β) = M(γ)M(β)T = Rot(2γ)

(
1 0
0 −1

)(
1 0
0 −1

)T
Rot(2β)T

= Rot(2γ) · I ·Rot(−2β) = Rot(2(γ − β))

The remaining conjectures follow from (3.16) and (3.23).

Application to Products occurring in the Jacobian

Result (3.24) is the key property that, when applied repeatedly, allows us to resolve arbitrary
products of mirror matrices like the Jacobian (3.14) in particular. We deduce

∂pVA

∂pTX

=

Q−1∏
q=0

M(γ(Q−q)) = M(γ(Q))M(γ(Q−1)) . . .M(γ(2))M(γ(1))

= M(γ(Q))M(γ(Q−1)) . . .M(γ(2) − γ(1)) ·
(

1 0
0 −1

)
= M

(
γ(Q) − γ(Q−1) + · · ·+ (−1)Q−2γ(2) + (−1)Q−1γ(1)

)
·
(

1 0
0 −1

)Q−1

or in short

∂pVA

∂pTX

= M

 Q∑
q=1

(−1)Q−qγ(q)

 · ( 1 0
0 −1

)Q−1

= M(γeff) ·
(

1 0
0 −1

)Q−1

= Rot(2γeff) ·
(

1 0
0 −1

)Q
where we implicitly defined a symbol γeff for the sign-flipped sum of angles γ(q). From now on,
we will call γeff the effective wall angle of the MPC. We recall the self-inverse property of the
sign-flip matrix and obtain

∂pVA

∂pTX

= Rot(2γeff) ·
(

1 0

0 (−1)Q

)
. (3.25)

The next section will restate result (3.25) and the effective angle in the complete notation and
use them in the preliminary gradient delay result (3.4) to work towards a final result and an
analysis thereof. For brevity and required space for other indices, we will drop the subscript of
γeff.

17 ’Pseudo-homomorphism’ is not an established term. We introduce the term because a functional equation of
the type f(x) · f(y) = f(x − y) · A holds for M, which is similar yet still fundamentally different from the
functional equation f(x) · f(y) = f(x+ y) of a classical group homomorphism like Rot.
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3 Geometry of Multipath Components

3.5 Spatial Delay Gradient: Final Result

We switch back to the complete notation and restate result (3.25).

γ
(k)
m,j is the effective wall angle of an MPC of order Q

(k)
m,j . It is the sum of alternating walls

angles of involved walls

γ
(k)
m,j =

Q
(k)
m,j∑
q=1

(−1)Q
(k)
m,j−q · γ(k,q)

m,j . (3.26)

The Jacobian of a VA position p
(k)
m,j w.r.t. to the position of its TX pj is a rotation by the

effective wall angle and a possible preceding sign flip in the second dimension depending

on the parity of MPC order Q
(k)
m,j

∂p
(k)
m,j

∂pj
= Rot(2γ

(k)
m,j) ·

(
1 0

0 (−1)Q
(k)
m,j

)
. (3.27)

After our long excursus to room geometry and consecutive mirroring, we can finally return to
the spatial delay gradient and use (3.27) to refine our preliminary result (3.4) as

∂τ
(k)
m,j

∂pη
=

1

c

(
δm,η · I− δη,j ·

∂p
(k)
m,j

∂pj

)
e(φ

(k)
m,j)

=
1

c

(
δm,η · I− δη,j ·Rot(2γ

(k)
m,j)

(
1 0

0 (−1)Q
(k)
m,j

))
e(φ

(k)
m,j)

=
1

c

(
δm,η · e(φ

(k)
m,j)− δη,j ·Rot(2γ

(k)
m,j) · e

(
(−1)Q

(k)
m,j · φ(k)

m,j

))
.

Spatial Gradient of Propagation Delay

∂τ
(k)
m,j

∂pη
=

1

c

(
δm,η · e

(
φ

(k)
m,j

)
− δη,j · e

(
(−1)Q

(k)
m,j · φ(k)

m,j + 2γ
(k)
m,j

) )
(3.28)

We analyze and interpret all four cases indicated by the Kronecker deltas. Expression (3.28)
consists of a δm,η-masked unit vector that is a consequence of the propagation delay depending
on RX positioning and a δη,j-masked unit vector reflecting dependence on VA locations and
TX positioning subsequently (MPCs) or TX positioning directly (LOS path). In a thorough
case-by-case analysis thereof we give the specific outcomes of (3.28):

– 28 –



3.5 Spatial Delay Gradient: Final Result

� η 6= m, η 6= j: Unrelated agent case, gradient is zero.

� η 6= m, η = j: Bistatic case w.r.t. TX

∂τ
(k)
m,j

∂pj
= −1

c
e
(
(−1)Q

(k)
m,j · φ(k)

m,j + 2γ
(k)
m,j

)
(3.29)

� η = m, η 6= j: Bistatic case w.r.t. RX

∂τ
(k)
m,j

∂pm
=

1

c
e
(
φ

(k)
m,j

)
(3.30)

� η = m, η = j: Monostatic case

∂τ
(k)
j,j

∂pj
=

1

c

(
e
(
φ

(k)
j,j

)
− e
(
(−1)Q

(k)
j,j · φ(k)

j,j + 2γ
(k)
j,j

) )
(3.31)

=


2
c · sin

(
γ

(k)
j,j

)
· e
(
γ

(k)
j,j + φ

(k)
j,j −

π
2

)
if Q

(k)
j,j is even

2
c · sin

(
γ

(k)
j,j − φ

(k)
j,j

)
· e
(
γ

(k)
j,j −

π
2

)
if Q

(k)
j,j is odd

(3.32)

Expression (3.32) is a sometimes useful magnitude-times-direction result rather than the vector-
minus-vector result (3.31). The proof of (3.32) can be found in Appendix A.2.

Interpretation of bistatic LOS Transmissions

In Section 3.1, we defined that the LOS path of a bistatic transmission is considered as a 0-th
order MPC. The formal consequences are

Q
(k)
m,j = 0 =⇒ p

(k)
m,j = pj ∧ γ

(k)
m,j = 0 (3.33)

where the vanishing effective wall angle is due to (3.26) becoming an empty sum. Hence, the
delay gradient w.r.t. TX (3.29) becomes

∂τ
(k)
m,j

∂pj
= −1

c
e
(
(−1)0 · φ(k)

m,j + 2 · 0
)

= −1

c
e(φ

(k)
m,j) .

In consideration of the similar result (3.30) for bistatic delay gradients w.r.t. RX position (which
was anticipated in (3.5)), we notice that for any unobstructed bistatic LOS transmission, the
equality

∂τ
(k)
m,j

∂pm
= −

∂τ
(k)
m,j

∂pj
=

1

c
e(φ

(k)
m,j) (3.34)

holds. The equality is trivial if you imagine a one-dimensional setup with RX xm and TX xj on
the real number line where xm > xj so that the distance between them is c · τm,j = xm − xj .
Cooperative localization techniques without multipath-assistance [2] focus on the LOS path, so
in CRLB derivations thereof (3.34) solves the geometry influence.
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Performance Bounds of Co-MINT

4
Monostatic Localization

4.1 Monostatic Cramér–Rao Lower Bound

Without loss of generality, we observe a fixed agent j with an a-priori unknown position pj .
The agent is both transmitter (TX) and receiver (RX) and performs a monostatic measurement
rj,j(t) that includes Kj,j multipath components (MPCs). Our goal is to find the Cramér-Rao
lower bound (CRLB) for the variance of an unbiased position estimator p̂j that uses the sampled

observation rj,j .
18 There is no line of sight (LOS) component, i.e. ∀k ∈ {1, . . . ,Kj,j} : Q

(k)
j,j ≥ 1.

4.1.1 Monostatic CRLB Derivation

With the knowledge earned in preceding chapters, the CRLB derivation for multipath-assisted
monostatic indoor localization is straightforward and analogous to the derivations by Witrisal
et.al [6]. The main difference is the Jacobian used in the parameter transformation, but the
contained spatial delay gradients of MPCs already received a thorough examination in Chapter
3 and can be adopted without further effort.

We recall stack vectors (2.7) and (2.8) of all MPC delays and amplitudes within a transmission
and write their monostatic versions

τj,j :=
(
τ

(1)
j,j , . . . , τ

(Kj,j)
j,j

)T
(4.1)

αj,j :=
(
α

(1)
j,j , . . . , α

(Kj,j)
j,j

)T
. (4.2)

For monostatic position estimation, we define a parameter vector θ as in [6]: A stack of the de-
sired agent position plus all MPC amplitudes as nuisance parameters. We use real and imaginary
parts of the latter to avoid complex derivatives.

θ :=
(
pTj ,<αTj,j ,=αj,j

)T ∈ R2+2Kj,j (4.3)

18 The omnipresent �j and �j,j indexing may be confusing, but no actions towards a simpler notation were taken
to maintain consistency with the cooperative notation of Chapter 2, 3, and 5 and because the derivation in
this section is rather short.
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4 Monostatic Localization

As outlined in Section 2.3, we do a transformation to a higher-dimensional parameter ψ. The
corresponding Fisher information matrix (FIM) Jψ was solved in [6] and is simpler than Jθ
because ψ consists of parameters directly used by the signal model (2.3) and the likelihood
function (LHF) (2.5).

ψ :=
(
τTj,j ,<αTj,j ,=αTj,j

)T ∈ R3Kj,j (4.4)

We use the channel model described in Section 2.2, which assumes additive white Gaussian noise
(AWGN) and diffuse multipath (DMP). Thus, rj,j is described by f(rj,j |τj,j ,αj,j) given by the
LHF (2.5) with m = j.19

Furthermore, we adopt a notation from [2] for FIMs (or blocks thereof) of some parameters x,
y evaluated over the monostatic LHF (2.5) f(rj,j |τj,j ,αj,j).

Φj,j(x,y) := Erj,j |τj,j ,αj,j

{
−∂

2lnf(rj,j |τj,j ,αj,j)
∂x∂yT

}
(4.5)

The FIM for the support parameter vector ψ FIM is then

Jψ = Φj,j(ψ,ψ) =

 Φj,j(τj,j , τj,j) Φj,j(τj,j ,<αj,j) Φj,j(τj,j ,=αj,j)
Φj,j(τj,j ,<αj,j)T Φj,j(<αj,j ,<αj,j) 0

Φj,j(τj,j ,=αj,j)T 0 Φj,j(=αj,j ,=αj,j)

 (4.6)

FIM Jψ has a Kj,j × Kj,j block structure of matrices holding Fisher information (FI) within

or among MPC parameters τ
(k)
j,j and α

(k)
j,j . They were derived for our signal model in [6] and

formulas are given in Appendix A.1.
According to [6], FI among real and imaginary parts of two different path amplitudes and even
of one and the same path amplitude is always zero. Hence, the two concerned blocks in (4.6)
(also in (4.7) below) vanished. Furthermore, equality Φj,j(<αj,j ,<αj,j) = Φj,j(=αj,j ,=αj,j)
holds as shown by (A.2) or in [6].

The parameter vector of interest θ gives rise to a FIM

Jθ = Φj,j(θ,θ) =

 Φj,j(pj ,pj) Φj,j(pj ,<αj,j) Φj,j(pj ,=αj,j)
Φj,j(pj ,<αj,j)T Φj,j(<αj,j ,<αj,j) 0

Φj,j(pj ,=αj,j)T 0 Φj,j(=αj,j ,=αj,j)

 (4.7)

which is coupled with Jψ (4.6) through parameter transformation (2.11)

Jθ =
∂ψ

∂θ
· Jψ ·

∂ψ

∂θ

T

(4.8)

where the following Jacobian (same structure as in [6]) arises

∂ψ

∂θ
=

(
∂τj,j/∂pj 02×2Kj,j

02Kj,j×Kj,j I2Kj,j×2Kj,j

)
. (4.9)

19 Actually, estimating parameter θ dictates to use f(rj,j |θ) = f(rj,j |pj ,αj,j) for a CRLB derivation of this

estimation problem. But since the assumed LHF (2.5) incorporates position pj only implicitly via delays τ
(k)
j,j ,

which are functions of pj and the known room geometry, usage of f(rj,j |τj,j ,αj,j) for CRLB derivation is
legitimate. Furthermore, in a well-posed localization problem, a bijection between the set of true delay values
and agent position(s) exists.
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The majority of blocks turns zero or unity due to basic rules of differential calculus. The only
non-trivial block of ∂ψ/∂θ is the Jacobian ∂τj,j/∂pj , which holds the spatial gradients of mono-
static MPC delays. These complicated gradients account for room geometry and were solved
in Chapter 3. Furthermore, FIM Jψ in (4.8) was already broken down in [6], so the rest of the
derivation is straight forward.

A more specific expression for the FIM of θ is obtained through usage of (4.8), (4.9), (4.6) and
matrix multiplication

Jθ =


∂τj,j
∂pj
· Φj,j(τj,j , τj,j) · ∂τj,j∂pj

T ∂τj,j
∂pj
· Φj,j(τj,j ,<αj,j) ∂τj,j

∂pj
· Φj,j(τj,j ,=αj,j)

Φj,j(τj,j ,<αj,j)T · ∂τj,j∂pj

T
Φj,j(<αj,j ,<αj,j) 0

Φj,j(τj,j ,=αj,j)T · ∂τj,j∂pj

T
0 Φj,j(=αj,j ,=αj,j)


(4.10)

To conclude the derivation, we compute the equivalent Fisher information matrix (EFIM)
Jpj ∈ R2×2 of the position vector pj . The EFIM fulfills

[J−1
θ ]2×2 = J−1

pj .

We obtain the EFIM by computing the Schur complement (2.12), which reads

Jpj =
∂τj,j
∂pj

· Φj,j(τj,j , τj,j) ·
∂τj,j
∂pj

T

−
(

∂τj,j
∂pj
· Φj,j(τj,j ,<αj,j) ∂τj,j

∂pj
· Φj,j(τj,j ,=αj,j)

)

·
(

Φj,j(<αj,j ,<αj,j) 0

0 Φj,j(=αj,j ,=αj,j)

)−1

·


(
∂τj,j
∂pj
· Φj,j(τj,j ,<αj,j)

)T
(
∂τj,j
∂pj
· Φj,j(τj,j ,=αj,j)

)T


=
∂τj,j
∂pj

· Φj,j(τj,j , τj,j) ·
∂τj,j
∂pj

T

−
(

∂τj,j
∂pj
· Φj,j(τj,j ,<αj,j) ∂τj,j

∂pj
· Φj,j(τj,j ,=αj,j)

)

·

(
Φj,j(<αj,j ,<αj,j)−1 0

0 Φj,j(=αj,j ,=αj,j)−1

)
·

 Φj,j(τj,j ,<αj,j)T · ∂τj,j∂pj

T

Φj,j(τj,j ,=αj,j)T · ∂τj,j∂pj

T


=
∂τj,j
∂pj

· Φj,j(τj,j , τj,j) ·
∂τj,j
∂pj

T

− ∂τj,j
∂pj

· Φj,j(τj,j ,<αj,j) · Φj,j(<αj,j ,<αj,j)−1 · Φj,j(τj,j ,<αj,j)T ·
∂τj,j
∂pj

T

− ∂τj,j
∂pj

· Φj,j(τj,j ,=αj,j) · Φj,j(=αj,j ,=αj,j)−1 · Φj,j(τj,j ,=αj,j)T ·
∂τj,j
∂pj

T

=
∂τj,j
∂pj

·

(
Φj,j(τj,j , τj,j) ·

∂τj,j
∂pj

T

− Φj,j(τj,j ,<αj,j) · Φj,j(<αj,j ,<αj,j)−1 · Φj,j(τj,j ,<αj,j)T

− Φj,j(τj,j ,=αj,j) · Φj,j(=αj,j ,=αj,j)−1 · Φj,j(τj,j ,=αj,j)T
)
· ∂τj,j
∂pj

T
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4 Monostatic Localization

We used that the inverse of a block-diagonal matrix is a block-diagonal matrix as well and holds
just the inverses of the original blocks [1]. We obtain the CRLB on the variance of x- and y-
components of an unbiased position estimate p̂j from the on-diagonal matrix elements [J−1

pj ]1,1
and [J−1

pj ]2,2 respectively. The position error bound (PEB) is simply a Pythagorean combination
thereof, which is invariant under rotations of the coordinate system [2].

4.1.2 Monostatic CRLB Result

EFIM of Monostatic Indoor Localization

Jpj =
∂τj,j
∂pj

·Λj,j ·
∂τj,j
∂pj

T

(4.11)

Fisher information (FI) among multipath delays, impaired by path overlap

Λj,j = Φj,j(τj,j , τj,j)−Ψ
(<)
j,j −Ψ

(=)
j,j (4.12)

Spatial delay gradient of monostatic MPCs, cf. (3.31) (3.32)[
∂τj,j
∂pj

]
:,k

=
∂τ

(k)
j,j

∂pj
=

1

c

(
e
(
φ

(k)
j,j

)
− e
(
(−1)Q

(k)
j,j · φ(k)

j,j + 2γ
(k)
j,j

))
(4.13)

=


2
c · sin

(
γ

(k)
j,j

)
· e
(
γ

(k)
j,j + φ

(k)
j,j −

π
2

)
if Q

(k)
j,j is even

2
c · sin

(
γ

(k)
j,j − φ

(k)
j,j

)
· e
(
γ

(k)
j,j −

π
2

)
if Q

(k)
j,j is odd

(4.14)

Effective wall angle, cf. (3.26)

γ
(k)
j,j =

Q
(k)
j,j∑

q=1

(−1)Q
(k)
j,j −q · γ(k,q)

j,j

The Squared position error bound (SPEB) and position error bound (PEB) of monostatic lo-
calization are described by

SPEB(pj) = tr{J−1
pj }, PEB(pj) =

√
SPEB(pj) .

The influence of path overlap is given by

Ψ
(<)
j,j := Φj,j(τj,j ,<αj,j) · Φj,j(<αj,j ,<αj,j)−1 · Φj,j(τj,j ,<αj,j)T .

Ψ
(=)
j,j := Φj,j(τj,j ,=αj,j) · Φj,j(=αj,j ,=αj,j)−1 · Φj,j(τj,j ,=αj,j)T .

Matrices Φj,j(. . .) are given in Appendix A.1. FI notation Φ is defined in (4.5). For MPC-related

equations, Q
(k)
j,j is the MPC order, φ

(k)
j,j the angle of arrival (AoA), and γ

(k,q)
j,j are the wall angles

involved in order 1 ≤ q ≤ Q(k)
j,j .

When pulses do not overlap or when we neglect the effect of path overlap (cf. Section 2.4),

i.e. Ψ
(<)
j,j = 0 and Ψ

(=)
j,j = 0, then Λj,j = Φj,j(τj,j , τj,j) and the EFIM is simply Jpj =

∂τj,j
∂pj
·Φj,j(τj,j , τj,j) · ∂τj,j∂pj

T
. This quantity consists of the two key figures of monostatic position
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estimation: Φj,j(τj,j , τj,j) holds FI among MPC delays τ
(k)
j,j while ∂τj,j/∂pj represents room

geometry dependence on the delays.

The subtractive terms −Ψ
(<)
j,j and −Ψ

(=)
j,j in (4.12) describe the influence of estimated amplitude

alpha α̂
(k)
j,j ∈ C on the EFIM. This could lead to an increase in the CRLB, i.e. a degradation of

localization performance caused by poor estimation of the nuisance parameters.

4.2 Analysis of monostatic Virtual Anchors

In this section we investigate the contributions of individual monostatic virtual anchors (VAs)
to localization. We adopt the concept of ranging information (RI) from [2,4, 6, 12] which states
that each VA provides one-dimentional RI along the eigenvector in direction of the AoA to the
VA. In the mentioned literature, contributions always happen in direction of the AoA for reasons
(3.5) (3.34). Our situation is different because of the vastly more intricate spatial delay gradient
(4.13) (4.14) (or earlier (3.31) (3.32)).

Similar to [2, 4, 6, 12], we get a formula for the monostatic EFIM (4.11) as a sum of individual
contributions from MPCs

Jpj = 8π2β2

Kj,j∑
k=1

SINR
(k)
j,j ·

∂τ
(k)
j,j

∂pj
·
∂τ

(k)
j,j

∂pj

T

(4.15)

where β is the effective bandwidth [6,23,24] of pulse s(t) and SINR
(k)
j,j is the signal-to-interference-

plus-noise ratio (SINR) [6] of the MPC in the received signal rj,j(t). The representation is valid
when pulses do not overlap.
We temporarily encapsulate gradient (4.14) in a simpler magnitude-times-direction form

∂τ
(k)
j,j

∂pj
=

1

c
·A(k)

j,j · e
(
µ

(k)
j,j

)
that just covers the even/odd distinction of (4.14) within symbols

A
(k)
j,j :=

 2 · sin(γ
(k)
j,j ) if Q

(k)
j,j is even

2 · sin(γ
(k)
j,j − φ

(k)
j,j ) if Q

(k)
j,j is odd

µ
(k)
j,j :=

 γ
(k)
j,j + φ

(k)
j,j −

π
2 if Q

(k)
j,j is even

γ
(k)
j,j −

π
2 if Q

(k)
j,j is odd

.

Hence, we obtain

Jpj =
8π2β2

c2

Kj,j∑
k=1

SINR
(k)
j,j · (A

(k)
j,j )2 · e

(
µ

(k)
j,j

)
· e
(
µ

(k)
j,j

)T
=

8π2β2

c2

Kj,j∑
k=1

SINR
(k)
j,j · (A

(k)
j,j )2 · Jr(µ(k)

j,j ) . (4.16)

Here, Jr(µ) is the ranging direction matrix [2, 4] which has one non-zero eigenvalue with eigen-

– 35 –



4 Monostatic Localization

vector e (µ).

Jr(µ) :=

(
cos2(µ) cos(µ) sin(µ)

cos(µ) sin(µ) sin2(µ)

)

Thus, any MPC contributes RI in direction µ
(k)
j,j of its delay gradient ∂τ

(k)
j,j /∂pj .

A uniqueness of monostatic localization is that its gradient is a sum of two vector components

(4.13). These components can either cancel out (A
(k)
j,j = 0) or add up (A

(k)
j,j = 2) as shown by the

factor 2 in (4.14). This is due to RX and TX being collocated, which couples agent positioning
and VA positioning. Contributions from monostatic MPCs are ...

� ... in general not aligned with the AoA direction. Their direction depends on the multipath
geometry defined by the effective wall angle (3.26).

� ... scaled by a factor 0 ≤ (A
(k)
j,j )2 ≤ 22, which may amplify or nullify the contribution.

The bottom line of these RI considerations is that we can assess contributions from certain
classes of MPCs to localization by looking at magnitude and direction of their delay gradient

∂τ
(k)
j,j /∂pj . The geometric setup will determine whether (4.13) or (4.14) is the better choice for

investigation. For instance, (4.14) is convenient when the gradient vanishes for even order Q
(k)
j,j

because the magnitude term sin
(
γ

(k)
j,j

)
immediately shows that this happens iff γ

(k)
j,j = lπ, l ∈ Z.

4.2.1 Significant Virtual Anchors

First Order VA

In this simple case, the effective wall angle (3.26) is just the only occurring wall angle, i.e.

γ
(k)
j,j = γ

(k,1)
j,j . We use (4.13) with MPC order Q

(k)
j,j = 1

∂τ
(k)
j,j

∂pj
=

1

c

(
e(φ

(k)
j,j )− e(−φ(k)

j,j + 2γ
(k,1)
j,j )

)
(4.17)

By the definition of wall mirroring, angles φ
(k)
j,j and γ

(k,1)
j,j are orthogonal γ

(k,1)
j,j = φ

(k)
j,j ±

π
2 and

the gradient becomes

∂τ
(k)
j,j

∂pj
=

1

c

(
e(φ

(k)
j,j )− e(−φ(k)

j,j + 2φ
(k)
j,j ± π)

)
=

1

c

(
e(φ

(k)
j,j )− e(φ

(k)
j,j ± π)

)
and thus

∂τ
(k)
j,j

∂pj
=

2

c
e(φ

(k)
j,j ) (4.18)

The resulting magnitude 2/c is twice the magnitude of gradients in fixed anchor localization
[4, 6, 12]. The doubled sensitivity is due to the fact that the virtual anchor is moving in the
opposite direction when the agent moves orthogonal to the wall. The direction reveals that
first-order VAs provide position information exclusively orthogonal to the wall. The setup and
all deduced properties are illustrated in Figure 4.1.
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p
(k)
j,j

pj

γ
(k,1)
j,j = γ

(k)
j,j

∂τ
(k)
j,j /∂pj

Figure 4.1: The sketch shows a monostatic first-order MPC of an agent at varying position pj. The fading

effect indicates agent movement. The VA position p
(k)
j,j is the mirror image of pj w.r.t. to the

wall with angle γ
(k,1)
j,j . The thick blue arrows show the reflection path while the thin line extends

from VA to agent (direct path). The spatial delay gradient field, whose direction is equal to the
RI contribution, is shown in orange and is perpendicular to the wall.

Further insights are provided by the directional derivative of τ
(k)
j,j in direction of an arbitrary

angle ξ.

De(ξ)τ
(k)
j,j =

〈
∂τ

(k)
j,j

∂pj
, e (ξ)

〉
=

2

c
·

〈cos(φ
(k)
j,j )

sin(φ
(k)
j,j )

 ,

cos(ξ)

sin(ξ)

〉

=
2

c
· (cos(φ

(k)
j,j ) cos(ξ) + sin(φ

(k)
j,j ) sin(ξ))

=
2

c
· (cos(−φ(k)

j,j ) cos(ξ)− sin(−φ(k)
j,j ) sin(ξ)) =

2

c
cos(ξ − φ(k)

j,j ) .

The directional derivative result allows to formally show that agent movements in parallel with
the wall do not affect the propagation delay

ξ ∈
{
γ

(k,1)
j,j , γ

(k,1)
j,j + π

}
=⇒ De(ξ)τ

(k)
j,j = 0 .

Movements orthogonal to the wall affect the delay most

ξ = φ
(k)
j,j =⇒ De(ξ)τ

(k)
j,j = +

2

c

ξ = φ
(k)
j,j + π =⇒ De(ξ)τ

(k)
j,j = −2

c
.

These properties explain the constant gradient field in Figure 4.1 and were already addressed
with a different, less graphic approach in (3.20) and (3.21).
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Second-Order Corner VA

Monostatic second-order VAs constituted by a perpendicular wall corner are special for several
reasons:

� Two walls give rise to two second-order MPCs (reflection path pj → wall 1 → wall 2 →
pj and vice versa). The resulting VAs will be in the same position and can be merged,
i.e. considered as a single VA. To emphasize this property, the initial anchors of both
construction sequences were kept in Figure 4.2.

� Physically, only a single reflection takes place and the ray from wall to wall has length
zero (cf. Figure 4.2).

� The effective wall angle γ
(k)
j,j = ±π

2 maximizes the gradient magnitude (4.13), previously

also denoted as A
(k)
j,j , for even Q

(k)
j,j .

� For any corner angle π
2 + ε with ε > 0, the reflection path would be infeasible.

Because of the perpendicularity γ
(k,2)
j,j = γ

(k,1)
j,j ±

π
2 and γ

(k)
j,j = γ

(k,2)
j,j −γ

(k,1)
j,j = ±π

2 . We use (4.13)
and get

∂τ
(k)
j,j

∂pj
=

1

c

(
e(φ

(k)
j,j )− e(φ

(k)
j,j ± π)

)
=

2

c
e(φ

(k)
j,j )

∂τ
(k)
j,j /∂pj

Figure 4.2: A monostatic second-order reflection on a wall corner is shown for two agent positions pj.
Red squares are the respective VAs, blue squares are the intermediate (ambiguous) construction
anchors. The orange, radial gradient field shows the direction of provided RI.

Figure 4.2 shows that direction e(φ
(k)
j,j ) from the VA to the agent is equal to a direction vector

pointing from the corner to the agent. Second-order corner VAs provide position information
exclusively in said direction. The radial gradient fields in Figure 4.2 illustrates this property.
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Third-Order VA between Two Walls

Figure 4.3: Shows a monostatic third-order reflection between two walls. The ray necessarily bounces off the
second wall perpendicularly which causes arrival and departure angles to be equal at the agent.

Figure 4.3 shows the scenario. The ray departs and arrives from the same direction and is always
perpendicular to the q = 2 wall. Section 4.2.4 explains why this is the only class of third-order
VAs spared from severe problems during parameter estimation.

In the case of parallel walls, γ
(k)
j,j = γ

(k,1)
j,j = φ

(k)
j,j ±

π
2 holds and the delay gradient is equal to

gradient (4.18) of a first-order reflection off the wall that is involved twice (via q = 1 and q = 3).

4.2.2 Useless Virtual Anchors

Second Order VA of parallel Walls

The scenario is shown in Figure 4.4. Owing to the parallelism, wall angles γ
(k,2)
j,j = γ

(k,1)
j,j are

equal and the effective wall angle γ
(k)
j,j = γ

(k,2)
j,j − γ(k,1)

j,j = 0 vanishes. Using (4.14)

∂τ
(k)
j,j

∂pj
=

2

c
sin(0)︸ ︷︷ ︸

=0

·e
(
π + φ

(k)
j,j −

π

2

)
= 0

shows that the spatial delay gradient is zero over the entire room. Delays are fundamental quan-
tities in localization though and we cannot utilize measurements with zero sensitivity towards
them. Thus, second order VAs between parallel walls do not provide any position information
and are entirely worthless for localization.20

20 They could be fruitful in a different application though: When an agent explores an unknown indoor en-
vironment, he could move around the room and then extract from the measured signals the MPCs whose
propagation delays were constant while moving. Those delays could then serve in the estimation of the room
size.
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pj

∂τ
(k)
j,j /∂pj = 0

Figure 4.4: A monostatic second-order reflection between parallel walls. No matter where the agent is lo-
cated, the ray always travels twice the distance between the walls, hence the propagation delay
τ
(k)
j,j is constant. The orange dots indicate a nullified gradient field, corresponding to zero RI

contribution of this type of VAs.

Other even-order VAs with vanishing Gradient

The statements about second-order VAs can be generalized to all even-order VAs: The spatial
delay gradient associated with an even-order MPC ...

� ... vanishes iff γ
(k)
j,j = lπ, l ∈ Z.

� ... has maximum magnitude iff γ
(k)
j,j = π

2 + lπ, l ∈ Z.

� ... is very hard to evaluate for all in-between cases because of the RI direction depending
on both AoA and effective angle.

A fourth-order cyclic reflection in a rectangular room is shown in Figure 4.5. The effective angle
of said MPC is

γ
(k)
j,j = γ

(k,4)
j,j − γ(k,3)

j,j + γ
(k,2)
j,j − γ(k,1)

j,j = 0− π

2
+ 0− π

2
= π

and therefore the delay gradient is zero, i.e. the delay is constant. For either agent position, the
propagation distance is

c · τ (k)
j,j = 2 ·

√
room width2 + room height2 = 2 · room diagonal

which can be observed in Figure 4.5 with some geometric thought.

A more general statement is: For all quadrilateral room shapes where the symmetry γ
(k,q)
j,j =

−γ(k,q+2)
j,j holds for all eligible q, all 4n-th order cyclic reflections have constant propagation

delay. In Figure 4.6, we changed the rectangular room from Figure 4.5 in a sense that the wall
angles deviate 5° horizontally and 10° vertically. Although the introduced skewness annihilates
all geometric intuition, the formulas still prevail and in the same easy fashion show that the
MPC delay is constant over the room. The only relevant criterion is a vanishing effective angle
because of given symmetry.
The discussed fourth-order MPCs are nice examples but are practically irrelevant because after
quadruple reflection the transmitted pulse will be attenuated to an extend where it will hardly
be distinguishable from noise [9].
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Figure 4.5: Monostatic cyclic fourth-order reflection in a rectangular room. No matter where the agent is
positioned, the propagtion distance is inherently equal to twice the room diagonal.

Figure 4.6: Monostatic cyclic fourth-order reflection in a quadrilateral room with antiparallel walls. Again,
the propagation delay is invariant against agent positioning, which can easily be shown with the
developed formulae despite the deviant geometry.

Figure 4.7 shows another fancy but purely theoretical example of a honeycomb-shaped room
where the propagation delay of a sixth-order MPC is invariant against agent movements. Again,

the effective angle γ
(k)
j,j = 0 because of the symmetry γ

(k,q)
j,j = −γ(k,q+2)

j,j and here even γ
(k,q)
j,j =

γ
(k,q+3)
j,j .
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Figure 4.7: Monostatic cyclic sixth-order reflection in a honeycomb-shaped room. The room geometry has
even two symmetry properties that qualify for a vanishing effective wall angle and in turn a
constant propagation delay.

4.2.3 Miscellaneous Virtual Anchors

Third Order Side-End-Side VA

We assume parallel side walls with angle γs := γ
(k,1)
j,j = γ

(k,3)
j,j and a perpendicular end wall,

i.e. γe := γ
(k,2)
j,j = γs ∓ π

2 .

γ
(k)
j,j = γ

(k,3)
j,j − γ(k,2)

j,j + γ
(k,1)
j,j = 2γs − γe = γs ±

π

2

∂τ
(k)
j,j

∂pj
=

2

c
sin(γ

(k)
j,j − φ

(k)
j,j )e(γ

(k)
j,j −

π

2
) =

2

c
sin(γs − φ(k)

j,j ±
π

2
)e(γs ±

π

2
− π

2
)

=
2

c
(±1) cos(γs − φ(k)

j,j )(±1)e(γs) =
2

c
cos(γs − φ(k)

j,j )e(γs) (4.19)

Hence, a third order side-end-side VA provides position information along the main direction
e(γs).

Figure 4.8 shows such a VA by means of a long corridor. For very long corridors, ray and side

wall are approximately parallel and thus φ
(k)
j,j ≈ γs±π0 depending on the orientation of the end

wall. The magnitude in (4.19) is then maximum because cos(γs − φ(k)
j,j ) ≈ cos(0±0

π) = ±1 and

∂τ
(k)
j,j

∂pj
≈ ±2

c
e(γs) .
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The delay gradient is approximately equal to the case of a first-order reflection off the far end

Figure 4.8: Monostatic third-order side-end-side reflection. This MPC provides RI along the main direction
of the corridor. The gradient (and therefore RI) magnitude is maximum for a very long corridor

where the AoA approaches φ
(k)
j,j → γs, i.e. becomes parallel to the main direction.

wall, cf. (4.18).

Third Order End-Side-Side VA of a crooked Corridor

Figure (4.9) shows the setup. The q = 2 and q = 3 walls are parallel, i.e. γ
(k,3)
j,j = γ

(k,2)
j,j , so these

angles cancel out in the effective angle formula (3.26) and we get γ
(k)
j,j = γ

(k,1)
j,j . The spatial delay

gradient is then

∂τ
(k)
j,j

∂pj
=

2

c
sin(γ

(k,1)
j,j − φ(k)

j,j )e(γ
(k,1)
j,j − π

2
) .

Thus, the RI is directed perpendicular to the q = 1 wall. In the shown scenario, this amounts
to purely horizontal position information. The contribution is attenuated by a factor 0 <

sin(γ
(k,1)
j,j −φ

(k)
j,j ) < 1. A more particular expression thereof, e.g. by expressing φ

(k)
j,j as a function

of pj and wall angles γ
(k,q)
j,j would, be extremely involved though.

φ
(k)
j,j

γ
(k,2)
j,j

∂τ
(k)
j,j /∂pjp

(k)
j,j

pj

Figure 4.9: A monostatic third-order reflection where the second and third involved walls are parallel. The
VA provides RI directed orthogonal to the first wall.
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Third Order Reflection around an Obstacle

Figure 4.10 shows an example where a monostatic high-order reflection is essential for obtaining
RI in a certain direction. All other eligible reflection paths are obstructed.

Figure 4.10: An obstacle is present in the room but unregistered in the floorplan. The third-order reflection
around the obstacle is the only reasonable means of obtaining horizontal position information
for the agent. The first-order reflection path on the right-side wall and the corner reflections
are obstructed.

4.2.4 Inherent Path-Overlap Problem

Figure 4.11 illustrates a problem that, without special handling, renders most higher-order MPCs
useless or at least problematic for monostatic localization: A given MPC has a particular AoA.
Now you can always launch a ray in direction of the aforementioned AoA and the ray will travel
exactly the reverse path. The two paths thus will have exactly the same propagation delay and
will inherently and always result in exact path overlap.

Figure 4.11: Opposite directions of otherwise equal reflection paths. The propagation delay is equal, which
inherently causes maximum path overlap.

Equality of delays τ
(k)
j,j = τ

(k′)
j,j of opposite paths causes an illposed estimation problem. The

CRLB (4.11) will not be evaluable because of a singular matrix Φj,j(αj,j ,αj,j), which informally
means infinite impairment through path overlap.
An MPC is spared from this problem if and only if AoA and angle of departure are equal.
This includes first-order reflections, second-order corner reflections and third-order reflections
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between two walls.

A means to avoid this problem is discarding all problematic pairs of MPCs from the estimation
model. One could argue that this is the best solution, because most problematic MPCs are
either inherently worthless for localization (e.g., second-order parallel wall reflection) or have
poor signal-to-noise ratio (SNR) due to a high number of reflections on their path. On the other
hand, there are very well problematic MPCs with a non-negligible contribution, Figure 4.10
shows an extreme case.
A more sensitive approach would be discarding one VA of each problematic pair from the model,
but the practicability thereof is left as an open question. Yet another not fully developed
approach is shown in Figure 4.12, where the same pair of third-order side-end-side corridor MPCs
as before fully overlaps. We learned in (4.19) that such VAs provide localization information
perpendicular to the end wall (here: horizontal). We substitute the pair of third-order VAs with
a single first-order VA with equal distance and position information and that way obtained an
equivalent description.
All mentioned approaches pose a hard challenge to implementations when we expect them to
robustly detect and handle pairs of opposite multipaths.

Figure 4.12: A pair of VAs of opposite and thus inherently overlapping multipaths is getting substituted by
a first-order VA. This alternative description has equivalent distance and localization contribu-
tion.

4.3 Monostatic Numerical Results

4.3.1 Matlab Approach

Using Matlab, we compute the PEB given by EFIM (4.11) over an exemplary room in the fash-
ion of [6, 16]. The setup with a single mobile agent at pj in an indoor environment is shown in
Figure 4.13.

For each position, we compute the set of monostatic VAs and their visibilities, which forms a

basis for the computation of all MPC parameters: Delays τ
(k)
j,j are a result of the distance between

agent and VAs, see (3.1). The amplitudes α
(k)
j,j are computed using a free-space pathloss model

[29], assuming a carrier frequency of fc = 7 GHz and adding 3 dB of attenuation for each
reflection at a wall. We neglect second-order VAs between parallel walls and other useless or
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Figure 4.13: Mobile agent at pj in a simple indoor environment. For the current position, all first-order
VAs are shown in blue and second-order corner VAs are shown in red. Invisible, infeasible, or
useless VAs were discarded.

problematic VAs for reasons explained in Section 4.2.2 and 4.2.4.
We use an ultra-wideband (UWB) raised cosine pulse [29] s(t) with pulse duration Ts = 1 ns
and roll-off factor β = 0.6. We assume the same propagation channel model as the Matlab code
of Witrisal et al. that generated the numerical results of [6]. Thus, we use the delay power
spectrum [6,28] of DMP, given by [5] as

Sν(τ) = Ω1
γ1 + γrise

γ1(γ1 + γrise(1− χ))

(
1− χ · e−τ/γrise

)
e−τ/γ1 . (4.20)

We choose shape parameters γrise = 5 ns, γ1 = 20 ns, χ = 0.98 and normalized power Ω1 =
1
10 · (

c
4πfc

)2. The power spectral density (PSD) of AWGN is set to N0 = 10−8 1
Hz . Figure 4.14

shows the received signal composed of MPCs and DMP for the setup in Figure 4.13.

VA positions are obtained by (consecutive) wall mirroring, cf. Chapter 3. Answering the vis-
ibility question requires execution of the ray tracing operation outlined in Section 3.1. In the
course, we check for any obstruction by uninvolved walls and verify the feasibility of the ray,
which is computationally expensive.

There already exist a optical ray-tracking tool (MATLAB) for bistatic situated RX and TX,
which was adapted to the monostatic setup. The PEB of the monostatic setup was evaluted for
640000 position pj over a grid with 1 cm spacing.

4.3.2 Results neglecting Path Overlap

Figure 4.15, 4.16, and 4.17 show the monostatic PEB for VAs up to the first, second, and
third order respectively. The results neglect the adverse effect of path overlap. Positioning
works well when balanced horizontal and vertical RI is available, i.e. when the agent is close
to a corner. Otherwise free-space pathloss over reflection paths decreases the SNR of MPC
and impairs performance. Adding second-order VAs yields a significant performance boost, but
furthermore going up to the third order barely changes anything. This is also evident in the
cumulative distribution function of the PEB in Figure 4.25, where distributions of orders 2 and
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Figure 4.14: Power of MPCs and DMP in a received signal rj,j(t) for the monostatic setup given in Figure
4.13. DMP attunes after the earliest MPC.

3 are almost identical. A result of Shen and Win [31] explains this PEB convergence: Any MPC

α
(k)
j,j · s(t − τ

(k)
j,j ) beyond the fifth (k > 5) is completely irrelevant to localization performance

as long as MPCs 1 ≤ k ≤ 5 have decent SINR and some directional diversity. In fact compo-
nents k > 3 barely contribute anything. Furthermore, third-order VAs are especially irrelevant
within our chosen parameters because of their low SNR due to −9 dB reflection damping. The
bottom line is that in the absence of path overlap, adding higher-order VAs strictly improves
performance but the gain beyond second order is neglectable.

Figure 4.18 and 4.19 show the relative performance gain when adding higher-order VAs. The
biggest gains occurs in areas distant from the corner diagonals. In said diagonals, the perfor-
mance is excellent for order 1 already, so there is not much room for improvement.

Figure 4.20 and 4.21 show error ellipses at many positions for VA orders up to first and third
respectively. The half-axis diameters correspond to the minimum and maximum directional
position error bound (DPEB) which is explained in detail in [2]. We define the monostatic
DPEB in direction of a unit vector e as

DPEB(pj ; e) =
√

eT · [J−1
θ ]2×2 · e =

√
eT · J−1

pj · e .

All ellipses are aligned with the main coordinate axes, which is due to first-order VAs of vertical
and horizontal walls providing horizontal and vertical RI respectively. When going from order
1 to 3, ellipses visibly shrink. This amounts to the performance gain described earlier.
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Figure 4.15: PEB of monostatic indoor localization neglecting path overlap over a simple room. VAs of order
up to 1 enable multipath-assisted localization.

Figure 4.16: PEB of monostatic indoor localization neglecting path overlap over a simple room. VAs of order
up to 2 enable multipath-assisted localization.
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Figure 4.17: PEB of monostatic indoor localization neglecting path overlap over a simple room. VAs of order
up to 3 enable multipath-assisted localization.
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Figure 4.18: Relative PEB decline when adding second-order VAs to a monostatic indoor localization model.
Path overlap is neglected.

Figure 4.19: Relative PEB decline when adding third-order VAs to a monostatic indoor localization model.
Path overlap is neglected. Take note that the scale is vastly smaller than in Figure 4.18.
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Figure 4.20: Error ellipses show the directivity of the PEB during first-order monostatic localization.
Path overlap is neglected. Half-axes were enlarged by a factor of 18 for illustration purposes.

Figure 4.21: Error ellipses show the directivity of the PEB during third-order monostatic localization.
Path overlap is neglected. Half-axes were enlarged by a factor of 18 for illustration purposes.
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4.3.3 Results considering Path Overlap

Figure 4.22, 4.23, and 4.24 show the monostatic PEB over our exemplary room when considering
path overlap for VAs up to order 1, 2, 3 respectively.

Figure 4.22: PEB of monostatic localization considering path overlap. First-order VAs are being used.

Figure 4.23: PEB of monostatic localization considering path overlap. VAs of order ≤ 2 are being used.
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Figure 4.24: PEB of monostatic localization considering path overlap. VAs of order ≤ 3 are being used.
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Figure 4.25: Cumulative distribution functions of the PEB for different monostatic localization assumptions.

The localization performance is on a large-scale similar to earlier results, although outage regions
or at least regions of poor performance arise in areas of overlapping pulses. Pulses of single wall
reflections overlap on the major symmetry axes of the room, best seen in Figure 4.22 and the
3D plot in Figure 4.27. The manifolds of path overlap from the addition of higher-order VAs
are trickier though.
In Figure 4.23 and 4.24, we see a massive PEB increase close to walls. This is due to overlapping
pulses from a second-order corner reflection and a first-order reflection on one of the corner

walls. Let us calculate such a case: p = (x, y)T is the agent position. p
(kc)
j,j = (−x,−y)T is the

second-order VA about the lower-left corner at (0, 0)T . p
(kf )
j,j = (x,−y)T is the first-order VA

about the lower wall. The distances between VAs and the agent are ‖p(kf )
j,j − p‖ = 2 · y and

‖p(kc)
j,j − p‖ = 2 ·

√
x2 + y2 respectively. No path overlap occurs when those distances are at
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least the pulse width apart:

‖p(kc)
j,j − p‖ ≥ ‖p(kf )

j,j − p‖+ c · Ts√
x2 + y2 ≥ y +

c · Ts
2

x ≥

√
c · Ts ·

(
c · Ts

4
+ y

)
(4.21)

With Ts = 1 ns, we get c · Ts = 0.3 m. Let us compute some values

y = 0 =⇒ x ≥ c · Ts
2

= 0.15 m

y = 3 =⇒ x ≥
√

0.3 m · (0.075 m + 4 m) ≈ 0.96 m . (4.22)

The red lines in Figure 4.26 show all occuring parabolas of type (4.21) for our exemplary room.
The pattern matches the numerical results in Figure 4.23 and 4.24. Statement (4.22) is in ac-
cordance with the plots too, p = (3 m, 0.96 m)T sits at the border between the path-overlap
outage region to the left and the normal operation region to the right.
In Figure 4.23 and 4.24, the fine patterns close to the big outage regions are just as well a
result of the glancing intersection between corner reflection and wall reflection and depend on
the characteristics of the used pulse. The side lobes of the autocorrelation of the raised-cosine
pulse are the reason for the observable pattern.

Figure 4.23 suggests that second-order corner VAs cause even more complex patterns due to
path overlap. We have a look at manifolds where the distance between a corner VA and a
first-order VA of a non-neighboring wall are equal. As an example, we use the lower left corner

VA at p
(kc)
j,j = (−x,−y)T once more, but now paired with the upper wall single reflection

p
(kf )
j,j = (x, 8 + (8− y))T .

‖p(kc)
j,j − p‖ = ‖p(kf )

j,j − p‖√
(x− (−x))2 + (y − (−y))2 =

√
(x− x)2 + (16− y − y))2

�4 · x2 +�
�4y2 = �4 · 82 − �4 · 16y +���4 · y2

y = 4−
(x

4

)2
(4.23)

This exemplary strong path-overlap is observeable in Figure 4.23 and is best seen in Figure
4.28: The parabola starts on the left wall at (0, 4)T (in the near-wall outage region), extends
to (3, 3.44)T and ends on the lower-middle wall at (6, 1.75)T . Figure 4.26 shows all manifolds
of that kind as green lines. There, equations like (4.23) were used to predict the curves on
their respective intervals of given VA visibility. The predictions are in full accordance with the
numerical results. The numerical results also show that the practical impact of these tricky
patterns is minor compared to the problematic outage regions near walls.

The described outage regions along walls are responsible for unexpected effects: In contrary to
the neglected path overlap results, addition of third-order VAs now has a significant contribution
to localization. This is explained by the overlap of first- and second-order reflections, making
them useless near walls. There, non-neighbouring VAs of that kind usually provide minor
RI, so whats left are the third-order VAs which now provide important cues in these areas.
This results in an unexpected outcome when ranking the three different assumptions with the
cumulative distribution function in Figure 4.25: Considering first-order MPCs results in the best
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performance explained by smaller outage regions. An interesting observation is that third-order
MPCs partly compensate the effect of path overlap, induced by second-order MPCs, even though
third-order MPCs introduce further path overlap. This leads to a (slightly) better performance.
Second and third are almost identical for PEBs ≤ 4 cm, but beyond that third-order is clearly
superior.
The bottom line is that the consideration of higher-order VAs, on the one hand, introduces
severe problems in some regions because of additional path overlap, but on the other hand may
improve performance in previous outage regions.

Figure 4.26: Predictions of all non-trivial path-overlap patterns during monostatic localization with VAs of
order ≤ 2. Red parabolas show boundaries of major outage regions close to walls because of
a corner VA and a neighbouring first-order VA having similar delays there, cf. (4.21). Green
parabolas show the center of path overlap grooves, they are owing to a corner VA and a non-
neighboring first-order VA having equal delays, cf. (4.23). Blue lines show the non-trivial path
overlap grooves stemming from two overlapping, non-neighboring corner VAs. The predictions
accurately match the outcome in Figure 4.23 and the difference plot in Figure 4.28. We observe
that central regions are especially prone to clusters of complex path-overlap patterns.

Figure 4.27: 3D plot of monostatic third-order PEB, cf. Figure 4.24.
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Figures 4.28 and 4.29 show the relative change in PEB caused by the addition of second- and
third-order VAs respectively and give visualizations of the introduced path-overlap patterns.

Figure 4.28: Relative PEB change when adding second-order VAs to a monostatic indoor localization model.
Values close to walls go up to ≈ 500% and are not properly considered by the color range. The
path overlap patterns match the predictions in Figure 4.26.

Figure 4.29: Relative PEB change when adding third-order VAs to a monostatic indoor localization model.
Performance mostly improves, especially in the problematic wall-near regions. Merely some
small strips suffer from performance impairment due to overlapping higher-order reflections.
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Ellipses in Figure 4.30 and 4.31 illustrate directivity of the PEB. In comparison to the neglected
path-overlap case in Figure 4.20 and 4.21, ellipses in central regions did not change significantly
but got vastly deteriorated in positions where path overlap is an issue.

Figure 4.30: Error ellipses show the directivity of the PEB during first-order monostatic localization.
Path overlap is considered. Half-axes were enlarged by a factor of 18 for illustration purposes.

Figure 4.31: Error ellipses show the directivity of the PEB during third-order monostatic localization.
Path overlap is considered. Half-axes were enlarged by a factor of 18 for illustration purposes.
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5
Cooperative Localization

In this chapter, we examine the cooperative scenario that was outlined in Section 2.1. A total of
M mobile agents are located in an indoor environment and perform all monostatic and bistatic
measurements. pm and pj are the receiver (RX) and transmitter (TX) agent positions of the
current transmission, where 1 ≤ m, j ≤ M . The cooperative idea is to estimate all agent posi-
tions p1, . . . ,pM jointly from the entirety of measurements. Due to diffuse multipath (DMP)
and noisy measurements, the joint position estimate is subject to uncertainty. Therefore, we
derive the Cramér-Rao lower bound (CRLB) as a means to quantify and study this uncertainty.

5.1 Cooperative CRLB Derivation

As a prerequisite, we define a stack vector of all received signals

r :=
(
rT1,1, r

T
1,2, . . . , rT1,M , r

T
2,1, . . . , rTM,M−1, r

T
M,M

)T
(5.1)

that serves as observation for estimating θ. We recall stack vectors (2.7) (2.8) of all delays and
amplitudes within one transmission from the j-th to the m-th agent

τm,j :=
(
τ

(1)
m,j , . . . , τ

(Km,j)
m,j

)T
αm,j :=

(
α

(1)
m,j , . . . , α

(Km,j)
m,j

)T
with dimensionality τm,j ∈ RKm,j+ , αm,j ∈ CKm,j . Additionally, we define ”global” stack vectors

p :=
(
pT1 , . . . ,pTM

)T
(5.2)

τ :=
(
τT1,1, τ

T
1,2, . . . , τT1,M , τ

T
2,1, . . . , τTM,M−1, τ

T
M,M

)T
(5.3)

α :=
(
αT1,1,α

T
1,2, . . . ,αT1,M ,α

T
2,1, . . . ,αTM,M−1,α

T
M,M

)T
(5.4)

where p ∈ R2M , τ ∈ RK+ , α ∈ CK and K :=
∑

m

∑
jKm,j is the total number of multipath

components (MPCs).

The cooperative parameter vector θ is composed of all agent positions (obviously our main
interest in a localization problem) and the MPC amplitudes of all transmissions as nuisance
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parameters.

θ :=
(
pT ,<αT ,=αT

)T
(5.5)

Like in Section 4.1, we transform the estimation problem to a signal parameter space

ψ :=
(
τT ,<αT ,=αT

)T
(5.6)

with dimensionality dimψ = 3K > dimθ = 2M + 2K.

We account for the distribution of observation r with a joint log-likelihood function lnf(r|θ).
Conditioned on θ, measurements rm,j are independent [2], so

lnf(r|θ) = ln
M∏
m=1

M∏
j=1

f(rm,j |θ) =
M∑
m=1

M∑
j=1

lnf(rm,j |θ) .

Conditioned on the involved agent positions pm, pj and amplitudes αm,j of the transmission
in question, the single transmission likelihood function (LHF) is furthermore independent [2]
of all other parameters in θ, i.e. f(rm,j |θ) = f(rm,j |pm,pj ,αm,j). For reasons explained
in Footnote 19 of Section 4.1, we write f(rm,j |τm,j ,αm,j) instead and use LHF (2.5), which
describes all monostatically or bistatically received signals within our model of the DMP channel
and measurements impaired by additive white Gaussian noise (AWGN). Our ultimately used
version of the joint log-LHF is

lnf(r|ψ) =
M∑
m=1

M∑
j=1

lnf(rm,j |τm,j ,αm,j) . (5.7)

5.1.1 FIM, Parameter Transformation and EFIM

Like in Section 4.1, we adopt the notation from [2] for Fisher information (FI) among some
parameters x, y over the single transmission LHF (2.5)

Φm,j(x,y) := Erm,j |τm,j ,αm,j

{
−∂

2lnf(rm,j |τm,j ,αm,j)
∂x∂yT

}
.

We further adopt an equivalent notation for use in cooperative derivations. We write

Φ(x,y) := Er|ψ

{
−∂

2lnf(r|ψ)

∂x∂yT

}
. (5.8)

for FI evaluated over the joint LHF (5.7). With the above notation, we can write Fisher in-
formation matrices (FIMs) for our parameter spaces θ, ψ as Jθ = Φ(θ,θ) and Jψ = Φ(ψ,ψ).
These matrices are coupled by the parameter transformation rule (2.11)

Jθ =
∂ψ

∂θ
· Jψ ·

∂ψ

∂θ

T

(5.9)

where the Jacobian matrices21 have the structure (cf. Section 4.1)

∂ψ

∂θ
=

(
∂τ/∂p 02M×2K

02K×K I2K×2K

)
. (5.10)
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Again, the influence of room geometry is given by the Jacobian ∂τ/∂p with structure

∂τ

∂p
=


∂τ1,1
∂p1

∂τ1,2
∂p1

· · · ∂τM,M
∂p1

...
...

∂τ1,1
∂pM

∂τ1,2
∂pM

· · · ∂τM,M
∂pM

 ∈ R2M×K .

This matrix holds all spatial delay gradients in its large block structure. This is yet another
reason why the analysis of these gradients was much needed in Chapter 3 to pave the way for
CRLB derivations.

FIM Jψ has a K ×K block structure

Jψ = Φ(ψ,ψ) =

 Φ(τ , τ ) Φ(τ ,<α) Φ(τ ,=α)

Φ(τ ,<α)T Φ(<α,<α) 0

Φ(τ ,=α)T 0 Φ(=α,=α)

 . (5.11)

For the same reasons as in Section 4.1 and [6], we have Φ(<α,=α) = Φ(=α,<α) = 0 and
furthermore Φ(<α,<α) = Φ(=α,=α) holds.
We use block structures (5.10) and (5.11) in (5.9) and perform the matrix multiplications. This
yields

Jθ =


∂τ
∂p · Φ(τ , τ ) · ∂τ∂p

T ∂τ
∂p · Φ(τ ,<α) ∂τ

∂p · Φ(τ ,=α)

Φ(τ ,<α)T · ∂τ∂p
T

Φ(<α,<α) 0

Φ(τ ,=α)T · ∂τ∂p
T

0 Φ(=α,=α)

 . (5.12)

By the definition of θ, the upper left block of Jθ is Φ(p,p) ∈ R2M×2M . Thus, we calculate
the equivalent Fisher information matrix (EFIM) Jp in the same fashion as in Section 4.1. The
EFIM fulfills[

J−1
θ

]
2M×2M

= J−1
p

so we can use the diagonal of the EFIM inverse J−1
p to obtain the position error bound (PEB)

of the individual agent positions. Applying the Schur complement (2.12) yields

Jp =
∂τ

∂p
· Φ(τ , τ ) · ∂τ

∂p

T

− ∂τ

∂p
· Φ(τ ,<α) · Φ(<α,<α)−1 · Φ(τ ,<α)T · ∂τ

∂p

T

− ∂τ

∂p
· Φ(τ ,=α) · Φ(=α,=α)−1 · Φ(τ ,=α)T · ∂τ

∂p

T

.

21 Again, keep in mind that the Jacobian notation used in this thesis and in most of localization and radar
literature is a transposed version of Jacobians defined in most basic mathematics texts.
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Preliminary result for the EFIM of cooperative localization

Jp =
∂τ

∂p
·
(

Φ(τ , τ )−Ψ(<) −Ψ(=)
)
· ∂τ
∂p

T

(5.13)

Ψ(<) := Φ(τ ,<α) · Φ(<α,<α)−1 · Φ(τ ,<α)T

Ψ(=) := Φ(τ ,=α) · Φ(=α,=α)−1 · Φ(τ ,=α)T

5.1.2 Simplifications for Dimensionality Reduction

When evaluating a block Φ(τm,j , τm′,j′) of Φ(τ , τ ), the following second-order derivative arises
due to the definition of Φ in (5.8).

Φ(τm,j , τm′,j′) = −Er|ψ

{
∂2lnf(r|ψ)

∂τm′,j′∂τ
T
m,j

}

= −Er|ψ

 ∂

∂τm′,j′

 ∂

∂τTm,j

M∑
m̃=1

M∑
j̃=1

lnf(rm̃,j̃ |τm̃,j̃ ,αm̃,j̃)


= −Er|ψ

{
∂

∂τm′,j′

(
∂

∂τTm,j
lnf(rm,j |τm,j ,αm,j)

)}

= −Er|ψ

{
δm,m′ · δj,j′ ·

∂2lnf(rm,j |τm,j ,αm,j)
∂τm,j∂τTm,j

}
= δm,m′ · δj,j′ · Φm,j(τm,j , τm,j)

The above expression is non-zero if and only if m = m′ ∧ j = j′. Hence, FI over the joint LHF
among measurement-specific quantities (given by m, j) either becomes zero if the quantities are
from different measurements or reduces to FI over the single-measurement LHF (expressed by
Φm,j).
The equivalent simplifications hold for Φ(τm,j ,αm′,j′) and Φ(αm,j ,αm′,j′). Thus, all blocks of
Jψ in (5.11) have a block-diagonal structure

Φ(τ , τ ) = diag
(
Φ1,1(τ1,1, τ1,1), . . . ,Φ1,M (τ1,M , τ1,M ),Φ2,1(τ2,1, τ2,1), . . .

. . . ,ΦM,M−1(τM,M−1, τM,M−1),ΦM,M (τM,M , τM,M )
)

Φ(τ ,<α) = diag (Φ1,1(τ1,1,<α1,1), . . . ,ΦM,M (τM,M ,<αM,M ))

Φ(<α,<α)−1 = diag
(
Φ1,1(<α1,1,<α1,1)−1, . . . ,ΦM,M (<αM,M ,<αM,M )−1

)
where each diagonal block corresponds to a measurement rm,j . Statements made about <α
hold for =α analogously. The product of three block-diagonal matrices Ψ(<) = Φ(τ ,<α) ·
Φ(<α,<α)−1 ·Φ(τ ,<α) is block-diagonal as well, hence this also holds for Φ(τ , τ )−Ψ(<)−Ψ(=).
We define

Ψ
(<)
m,j := Φm,j(τm,j ,<αm,j) · Φm,j(<α,<αm,j)−1 · Φm,j(τm,j ,<αm,j)T

Ψ
(=)
m,j := Φm,j(τm,j ,=αm,j) · Φm,j(=α,=αm,j)−1 · Φm,j(τm,j ,=αm,j)T

Λm,j := Φm,j(τm,j , τm,j)−Ψ
(<)
m,j −Ψ

(=)
m,j

– 62 –



5.1 Cooperative CRLB Derivation

and write the EFIM like

Jp =
∂τ

∂p
· diag (Λ1,1, . . . ,ΛM,M ) · ∂τ

∂p

T

=
(

∂τ1,1
∂p , . . . ,

∂τM,M
∂p

)
·

 Λ1,1 0

. . .

0 ΛM,M

 ·


∂τ1,1
∂p

T

...

∂τM,M
∂p

T


which reduces to a sum of contributions from individual measurements rm,j .

EFIM summation structure

Jp =

M∑
m=1

M∑
j=1

∂τm,j
∂p

·Λm,j ·
∂τm,j
∂p

T

. (5.14)

The Jacobian ∂τm,j/∂p is sparse because the only agent positions that τm,j depends on are pm
and pj . The remaing M−2 agent positions do not influence τm,j and hence result in a vanishing
derivative (for details see Chapter 3).22

∂τm,j
∂p

=

(
0, . . . , 0,

∂τm,j
∂pm

T

, 0, . . . , 0,
∂τm,j
∂pj

T

, 0, . . . , 0

)T
(5.15)

Only them-th and j-th row blocks (dimension 2×Km,j blocks) are non-zero. Thus, all summands
of (5.14) are sparse as well. For convenience, we define a symbol for EFIM (5.14) summands

Sm,j :=
∂τm,j
∂p

·Λm,j ·
∂τm,j
∂p

T

.

The only non-zero blocks and thus contributions to EFIM Jp of bistatic summands Sm,j , m 6= j
are, on the one hand, the two off-diagonal blocks

[Sm,j ]2×2,m,j =
∂τm,j
∂pm

·Λm,j ·
∂τm,j
∂pj

T

, [Sm,j ]2×2,j,m =
∂τm,j
∂pj

·Λm,j ·
∂τm,j
∂pm

T

(5.16)

and on the other hand, the two on-diagonal blocks

[Sm,j ]2×2,m,m =
∂τm,j
∂pm

·Λm,j ·
∂τm,j
∂pm

T

, [Sm,j ]2×2,j,j =
∂τm,j
∂pj

·Λm,j ·
∂τm,j
∂pj

T

. (5.17)

Monostatic summands Sj,j contribute exclusively to on-diagonal EFIM blocks

[Sj,j ]2×2,j,j =
∂τj,j
∂pj

·Λj,j ·
∂τj,j
∂pj

T

. (5.18)

This yields M monostatic and 4M(M − 1) bistatic contributions, so a total of 4M(M − 1) +M .

The reverse question is: Which summands contribute to a given EFIM block? For off-diagonal

22 Equation (5.15) indicates m < j, but this is an arbitrary choice. Cases m = j and m > j occur as well.
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result blocks m 6= j, we get

[Jp]2×2,m,j = f (Sm,j ,Sj,m) = [Sm,j + Sj,m]2×2,m,j = [Sm,j ]2×2,m,j + [Sj,m]2×2,m,j .

We apply (5.16) on the summands and get the following result.23

Off-diagonal m, j-th EFIM block

[Jp]2×2,m,j =
∂τm,j
∂pm

·Λm,j ·
∂τm,j
∂pj

T

+
∂τj,m
∂pm

·Λj,m ·
∂τj,m
∂pj

T

(5.19)

On-diagonal EFIM blocks on the other hand get contributions from all summands that involve
agent j in some way.

[Jp]2×2,j,j =
[

Sj,j︸︷︷︸
Monostatic

+ S1,j + . . .+ Sj−1,j + Sj+1,j + . . .+ SM,j︸ ︷︷ ︸
Agent j was bistatic TX

+ Sj,1 + . . .+ Sj,j−1 + Sj,j+1 + . . .+ Sj,M︸ ︷︷ ︸
Agent j was bistatic RX

]
2×2,j,j

By proceeding in our established fashion and carefully substituting (5.17) and (5.18), we obtain
an on-diagonal result.

On-diagonal j, j-th EFIM block

[Jp]2×2,j,j =
∂τj,j
∂pj

·Λj,j ·
∂τj,j
∂pj

T

+
M∑
m=1
m6=j

∂τm,j
∂pj

·Λm,j ·
∂τm,j
∂pj

T

+

M∑
m′=1
m′ 6=j

∂τj,m′

∂pj
·Λj,m′ ·

∂τj,m′

∂pj

T

(5.20)

The M on-diagonal blocks get 1 + 2(M −1) contributions each while the M(M −1) off-diagonal
blocks get 2 each. That is a total of M + 2M(M − 1) + 2M(M − 1), which is equal to the
4M(M − 1) +M “produced” contributions calculated earlier. Production and consumption are
necessarily balanced.

5.1.3 Alternative Representation

In Chapter 3 we learned about spatial delay gradients. The Jacobian is given by (3.28)[
∂τm,j
∂pη

]
:,k

=
∂τ

(k)
m,j

∂pη
=

1

c

(
δm,η · e

(
φ

(k)
m,j

)
− δη,j · e

(
(−1)Q

(k)
m,j · φ(k)

m,j + 2γ
(k)
m,j

) )
(5.21)

We define two matrices Rm,j ,Tm,j ∈ R2×Km,j that hold the RX and TX dependent portions of

23 When subscripts like j,m or j,m′ occur in summations, we violate our own conventions by referring to a RX
agent via index j. We accept this infringement for the sake of avoiding an introduction of further indices.
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(5.21) respectively

∂τm,j
∂pη

= δm,η ·Rm,j − δη,j ·Tm,j

[Rm,j ]:,k :=
1

c
e(φ

(k)
m,j) (5.22)

[Tm,j ]:,k :=
1

c
e((−1)Q

(k)
m,j · φ(k)

m,j + 2γ
(k)
m,j) (5.23)

This turns off-diagonal EFIM blocks (5.19) into

[Jp]2×2,m,j = −Rm,j ·Λm,j ·TT
m,j −Tj,m ·Λj,m ·RT

j,m =: −Cm,j .

where we defined a matrix symbol Cm,j . By inspection of the first summand of an on-diagonal
EFIM block (5.20), we realize

∂τj,j
∂pj

·Λj,j ·
∂τj,j
∂pj

T

= (Rj,j −Tj,j) ·Λj,j · (Rj,j −Tj,j)
T

= Rj,j ·Λj,j ·RT
j,j + Tj,j ·Λj,j ·TT

j,j︸ ︷︷ ︸
Combinable with summations

−Rj,j ·Λj,j ·TT
j,j −Tj,j ·Λj,j ·RT

j,j︸ ︷︷ ︸
=−Cj,j

.

The on-diagonal EFIM blocks (5.20) then become

[Jp]2×2,j,j = −Cj,j +
M∑

m′=1

Tm′,j ·Λm′,j ·TT
m′,j +

M∑
j′=1

Rj,j′ ·Λj,j′ ·RT
j,j′ . (5.24)

All EFIM blocks are now entirely broken down and our desired figures of merit for assessment
of localization performance, the CRLB of agent positions pj for all 1 ≤ j ≤ M , can readily be
obtained from on-diagonal elements of J−1

p . The following section gives a compact version of
the CRLB results.
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5.2 Cooperative Cramér–Rao Lower Bound

5.2.1 Result

PEB and squared position error bound (SPEB) [2] of the j-th agent

SPEB(pj) = tr
{[

J−1
p

]
2×2,j,j

}
, PEB(pj) =

√
SPEB(pj) . (5.25)

Equivalent Fisher Information Matrix (EFIM)

Jp =


FRX

1 + FTX
1 −C1,1 −C1,2 · · · −C1,M

−C2,1 FRX
2 + FTX

2 −C2,2 −C2,M

...
. . .

−CM,1 −CM,2 FRX
M + FTX

M −CM,M


(5.26)

Accumulated ranging information (RI)

FRX
m =

M∑
j=1

Rm,j ·Λm,j ·RT
m,j (5.27)

FTX
j =

M∑
m=1

Tm,j ·Λm,j ·TT
m,j (5.28)

Cm,j = Rm,j ·Λm,j ·TT
m,j + Tj,m ·Λj,m ·RT

j,m .

FI of MPC delays, impaired by path overlap

Λm,j = Φ(τm,j , τm,j)−Ψ
(<)
m,j −Ψ

(=)
m,j

Ψ
(<)
m,j = Φm,j(τm,j ,<αm,j) · Φm,j(<αm,j ,<αm,j)−1 · Φm,j(τm,j ,<αm,j)T

Ψ
(=)
m,j = Φm,j(τm,j ,=αm,j) · Φm,j(=αm,j ,=αm,j)−1 · Φm,j(τm,j ,=αm,j)T .

Quantities Φm,j(τm,j , τm,j), Φm,j(τm,j ,<αm,j), Φm,j(τm,j ,=αm,j) and Φm,j(<αm,j ,<αm,j) =
Φm,j(=αm,j ,=αm,j) contain FI among signal model parameters of a particular measurement
rm,j(t). They are adopted from [6] where the same signal and channel model are employed.
Formulas are given in (A.1), (A.2), (A.4) of Appendix A.1.

RX and TX dependent components (5.22), (5.23) of the spatial gradient of MPC delays τm,j

[Rm,j ]:,k =
1

c
e
(
φ

(k)
m,j

)
[Tm,j ]:,k =

1

c
e
(
(−1)Q

(k)
m,j · φ(k)

m,j + 2γ
(k)
m,j

)
.
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Effective wall angle (3.26) of an MPC of order Q
(k)
m,j with wall angles γ

(k,q)
m,j

γ
(k)
m,j =

Q
(k)
m,j∑
q=1

(−1)Q
(k)
m,j−q · γ(k,q)

m,j .

Q
(k)
m,j is the MPC order, i.e. number of reflections. φ

(k)
m,j is the angle of arrival (AoA).

5.2.2 Discussion

To the best of our knowledge, the occuring block matrices have, from a communications engi-
neering point-of-view, the following contributions to EFIM (5.26).

� FRX
m holds RI about pm from all transmissions where agent m was the RX. This implicitly

includes the monostatic transmission. The structure of FRX
m (5.27) is equal to results

from [2, 6] where fixed anchor nodes were assumed. This suggests that FRX
m holds ideal

positioning information in a sense that agent m allegedly received pulses from perfectly
known TX positions pj .

� FTX
j is a direct benefit of cooperation: A pulse sent from j to m does not only help the

RX estimate its position pm, but additionally the joint position estimation of cooperative
localization passes back the information to pj . All such information drawn from measure-
ments rm,j at any RX m but transmitted from this particular agent j is collected in FTX

j .

The similarity between the structure of FTX
j (5.28) and FRX

m (5.27) implies that pj and
pm attain equivalent positioning information from a half-duplex transmission pj → pm in
our cooperative framework.

� Cj,j (on-diagonal) is a monostatic cross term. Together with the j-th summands of FRX
j

and FTX
j , it forms a monostatic contribution, cf. derivation steps (5.20) and (5.24). Equa-

tion (5.20) may often be a more intuitive expression for on-diagonal EFIM result blocks.

� Cm,j (off-diagonal) represents an important effect in anchorless localization that is not
accounted for in FRX

m and FTX
j : The uncertainty about the TX position pj when drawing

positioning information from a bistatic measurement rm,j and also the uncertainty about
RX position when returning the favour through cooperation. This obviously has a negative
effect on localization performance, which will be examined in the numerical results below.

� Λm,j is the available Fisher information about MPC delays of transmission pj → pm.

When no path overlap occurs, i.e. when ∀k 6= k′ : |τ (k)
m,j − τ

(k′)
m,j | > Ts with effective pulse

duration Ts, then Λm,j ≈ Φ(τm,j , τm,j) [4]. When however pulses overlap, the information

is considerably decreased by Ψ
(<)
m,j and Ψ

(=)
m,j , which represent the impact of uncertainties

in nuisance parameter estimation α̂
(k)
m,j on the crucial delay estimation τ̂

(k)
m,j . For details

see Section 2.4 and [31].

A fine property of EFIM structure (5.26) is that it does not distinguish between monostatic
and bistatic transmissions: Every agent transmits to and receives from M agents. The fact
that in M − 1 of M times RX and TX are physically different agents and one time they are
colocated is secondary in our result. This shows that the contributions from monostatic and
bistatic measurements are fundamentally equal, just the geometry matrices and the technical
parameters deep within the EFIM structure determine their individual contributions to position
estimation. Those technical parameters include the lack of monostatic line of sight (LOS) paths
with typically high signal-to-interference-plus-noise ratio (SINR) as well as the potentially am-
plified or damped RI contribution from monostatic MPCs due to the geometry-dependent agent
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position sensitivity of MPC delays, cf. (4.16). Likewise, as shown in Section 4.2, many types
of monostatic MPCs are worthless for localization while bistatic MPCs are not known to suffer
from such problems [6, 17].

The monostatic EFIM (4.11) is actually just a corollary of the cooperative EFIM (5.26): Let
the number of agents M = 1, then 1 ≤ j ≤ M =⇒ j = 1, pj = p, and Jpj = Jp ∈ R2×2 . We
use the preliminary cooperative EFIM expression (5.20) and get

Jpj = Jp = [Jp]2×2,j,j =
∂τj,j
∂pj

·Λj,j ·
∂τj,j
∂pj

T

+

M∑
m=1
m6=j

. . . +

M∑
m′=1
m′ 6=j

. . .

=
∂τj,j
∂pj

·Λj,j ·
∂τj,j
∂pj

T

+

1∑
m=1
m 6=1

. . . +

1∑
m′=1
m′ 6=1

. . . .

The sums are empty and thus zero. The remaining term is exactly the EFIM of monostatic
localization (4.11).

Assuming channel reciprocity and consistent k-indexing of MPCs, we could argue that Λm,j =
Λj,m. This does not pave the way for immediate simplifications though, since there is no simple
relation between the AoAs and angles of departure (AoDs) of two reverse high-order MPCs.
Thus, the bordering geometry matrices T and R in (5.27) and (5.28) are not combinable and
FTX
j and FRX

m are inherently different. In localization schemes without multipath-assistance and
a focus on the LOS component [2], such simplifications are possible due to the simple reciprocity
property (3.34) of LOS path delay gradients.

EFIM (5.26) can be written as RI (non-interrelated between agents) minus the influence of
bistatic TX and (because of cooperation) RX position uncertainties.

Jp = diag
(
FRX

1 + FTX
1 −C1,1, . . . ,F

RX
M + FTX

M −CM,M

)
−COffdiag

where COffdiag ∈ R2M×2M is defined as [COffdiag]2×2,m,j := (1− δm,j) ·Cm,j . We define a naive
EFIM that ignores the adverse effect of COffdiag on the localization performance

JNaive := diag
(
FRX

1 + FTX
1 −C1,1, . . . ,F

RX
M + FTX

M −CM,M

)
which informally24 results in a loose, overly optimistic bound

PEB(pj) ≥
√

tr
{

[J−1
p ]2×2,j,j

}
≥
√

tr
{

[J−1
Naive]2×2,j,j

}
=
√

tr{(FRX
j + FTX

j −Cj,j)−1} .
(5.29)

While this loose bound is too ignorant towards important influences to qualify as a performance
bound for engineering, it still is an interesting figure that can easily be computed on-the-fly for
the study of the influence of bistatic uncertainties Cm,j on the PEB. In the numerical results
below, we will observe in which situations the loose bound is close or radically different to the
CRLB (5.25).

24 We do not give a proof that EFIM JNaive results in a strict lower bound that is more loose than the CRLB,
but numerical results strongly suggest so for all numerically stable positions. A formal proof could be done by
showing J−1

p ≥ J−1
Naive, i.e. J−1

p − J−1
Naive is a positive semidefinite matrix, cf. [2, 4, 12].
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5.3 Cooperative Numerical Results

In this section, we compute meaningful numerical results of cooperative localization using Mat-
lab. The approach is vastly similar to Section 4.3, so we do not explain all the details here.
We assume the same channel and pulse, with the restriction to 1st and 2nd order VAs. In each
scenario, there is a specified number of cooperating agents of which one is moving and the others
are temporarily resting. For every position of the moving agent, we compute the cooperative
PEB given by EFIM (5.26), the naive cooperative bound (5.29), the monostatic PEB given
by EFIM (4.11) (i.e. the monostatic portion of (5.20)), and the bistatic PEB assuming fixed
anchors at the resting nodes. The EFIM for this bistatic situation is given by the bistatic RX
part of (5.20), or in detail

JBistatic
pm =

M∑
j=1
j 6=m

Rm,j ·Λm,j ·RT
m,j .

For all plots other than the monostatic ones, the resting agent positions are illustrated as green
dots.

5.3.1 M = 3 Cooperation over a simple Room

We look at a scenario with two resting nodes at p2 = (9 m, 4.5 m)T and p3 = (5.6 m, 0.75 m)T

while agent p1 moves around the room. All nodes have a-priori unknown position. Even though
Co-MINT estimates all positions p = (pT1 ,p

T
2 ,p

T
3 )T , we only observe the position estimate p̂1

of the moving agent.
Figure 5.1 shows the monostatic PEB, which is equivalent to an earlier result in Figure 4.23.
Figure 5.2 is the bistatic PEB assuming anchors, whose outcome complies with numerical results
in [6]. The cooperative PEB in Figure 5.4 is a very pleasant result: All over the room, cooperative
position estimation performs very well. It beats the monostatic and bistatic approaches and
combines the advantages to compensate for their individual weaknesses. The area of poorest
performance is close to the left wall, where a well-studied path overlap pattern heavily impairs
monostatic localization and the far distance to the resting nodes dampens bistatic contributions
due to free-space path loss.
Figure 5.3 shows the spatial evolution of the naive cooperative PEB. For most positions, it is
indistinguishable to the CRLB in 5.4, although areas close to the resting nodes have a lower naive
bound. Also, the naive bound does not suffer from the fine pattern of reduced performance that
the CRLB plot shows in the close vicinity of resting nodes. Figure 5.5 illustrates the relative
difference and shows that CRLB and naive bounds are of the same order of magnitude, the
biggest difference in our example being only about 25%. With the exception of numerically
instable positions, the naive bound is always smaller than the CRLB.
Figure 5.6 gives the cumulative distribution function of the different PEBs and shows how
cooperative localization outperforms its monostatic and bistatic equivalents with flying colours.
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Figure 5.1: PEB of second-order monostatic localization, cf. Figure 4.23.

Figure 5.2: PEB of second-order bistatic multipath-assisted localization assuming anchors at the positions
of the shown resting nodes.
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Figure 5.3: Naive cooperative PEB as defined in (5.29). This results is vastly similar to Figure 5.4, merely
some areas close to the resting nodes visibly show better performance.

Figure 5.4: Cooperative PEB of a mobile agent in a simple room with two shown resting agents.
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Figure 5.5: Relative difference between actual and naive cooperative PEBs from Figure 5.4 and 5.3. The blue
regions show areas where the RX and TX position uncertainties during bistatic measurements
have a significant impact. The red regions on the other hand show where said influence is
irrelevant.
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Figure 5.6: Cumulative distribution function of the different PEBs for the shown M = 3 cooperative local-
ization scenario.
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5.3.2 M = 2 Cooperation over a contorted Room

This example is similar to the previous, but now we deal with just a single resting node p2 =
(2 m, 1.5 m)T and a slightly more complex room layout with a bistatic outage region at the
lower right. Figure 5.7 and 5.8 show the monostatic and bistatic performances. Figure 5.9 gives
the cooperative PEB. Cooperative and monostatic performances are equal at bistatic outage
positions. Figure 5.10 shows the deviations in the naive bound due to bistatic uncertainties.

Figure 5.7: Monostatic PEB of a mobile agent in a contorted room.

Figure 5.8: Bistatic PEB assuming an anchor at the resting agent position in a contorted room.

– 73 –



5 Cooperative Localization

Figure 5.9: Cooperative PEB of a mobile agent and a shown resting agent in a contorted room.

Figure 5.10: Relative difference between actual and naive cooperative PEBs. The blue regions are areas of
significant bistatic uncertainty impact, while the bistatic outage region on the lower right is not
affected at all.
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5.3.3 M = 3 Cooperation over an involved Trajectory

In this example, we investigate an involved room with two resting nodes p2 = (8 m, 18.5 m)T

and p3 = (12 m, 10.5 m)T and an agent p1 that moves along a trajectory. Figure 5.11 gives a
detailed sketch of the arrangement where some distinct trajectory positions are marked. Again,
all three agent positions are unknown a-priori.
Figure 5.12 shows enlarged error ellipses at many points of the trajectory. The ellipses nicely
illustrate influences of monostatic and bistatic contributions on PEB directivity.
The different PEBs for cooperative p̂1 estimation are shown in Figure 5.13. The cooperative
PEB is at all times smaller than the monostatic and bistatic ones while the naive cooperative
PEB is smaller than the actual cooperative PEB. The difference between the latter two is largest
at positions of significant bistatic contributions.
Figure 5.14 shows the evolution of CRLBs of cooperative p̂1, p̂2, p̂3 estimation in the same plot.
Both resting nodes settle at a stationary PEB when p̂1 is out of reach and thus not involved in
any significant bistatic transmissions. When p̂1 is close to a resting node though, the perfor-
mances of the moving and the resting node improve. What is especially interesting is that their
PEBs are almost equal when the nodes are in close vicinity of each other.

As p1 moves along the trajectory, the following situations arise:

� A-B: Not a single bistatic MPC reaches the mobile agent p1, localization is purely mono-
static. Cooperative, naive cooperative, and monostatic bounds are identical.

� B-C: Bistatic non line of sight (NLOS) paths between p2 and p1 occur, but it is only
shortly before reaching C that the signal-to-noise ratio (SNR) of these paths becomes
sufficient for meaningful contribution. This effect is best seen in the plot of error ellipses,
whose major half-axes are smaller in the middle of B-D compared to the middle of A-B.

� C-F: p1 has LOS connection to p2. The bistatic PEB performs rather poorly because of
a lack of directional diversity in its relevant MPCs. Yet the bistatic contributions provide
valuable horizontal position information, which monostatic contributions lack because of
significant free-space path loss on the long line between D and E. The cooperative PEB
has a local maximum when p1 is closest to p2 because relevant bistatic contributions are
purely vertical there.

� F: LOS connection between p1 and p3 suddenly sets in and causes a vast drop in the
bistatic PEB and thus also a slight increase of cooperative localization performance.

� G: LOS between p1 and p2 is lost and causes a jump in the bistatic PEB, but the co-
operative PEB is barely affected because of said bistatic connection was already heavily
damped by free-space path loss.

� G-I: This passage is similar to the C-F situation.
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Figure 5.11: Agent p1 travels through a complex indoor environment on a given trajectory. Resting nodes
p2 and p3 allow for cooperative anchorless localization. Distinct trajectory points are marked
with letters.
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Figure 5.12: Enlarged (factor 50) error ellipses show directivity of the cooperative PEB.
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Figure 5.13: Several lower bounds for the position estimate p̂1 of the moving agent.
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Figure 5.14: CRLBs of cooperative position estimates p̂1, p̂2, p̂3 according to EFIM (5.26).
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6
Conclusions

6.1 Summary

This thesis gives a thorough analysis of the performance limits of the cooperative multipath-
assisted indoor navigation and tracking (Co-MINT) approach and all of its building blocks and
intricacies.

� We introduced a notational framework that enables a mathematical treatment of multipath-
assisted cooperative localization in diffuse multipath (DMP) and additive white Gaussian
noise (AWGN).

� Gradients of multipath delays w.r.t. receiver (RX) and transmitter (TX) positions were
identified as the central figures of room geometry influence on localization performance.
Therefore, we developed a linear algebraic theory of virtual anchors (VAs) and introduced
the notion of effective wall angle of a multipath component (MPC), a simple quantity that
accounts for the influence of all walls involved in the reflection path of said MPC. Using
the effective wall angle, we gave a concise general formula for spatial delay gradients.

� Because of its significance for Co-MINT, we obtained the Cramér-Rao lower bound (CRLB)
for monostatic localization by deriving the corresponding equivalent Fisher information
matrix (EFIM). The result is decomposed into the influence of room geometry via spatial
delay gradients and Fisher information (FI) between signal model quantities estimated
from the received signal. The latter is heavily impaired when pulses overlap.

� Since monostatic MPCs have very specific properties, we analytically investigated the
contributions to localization for several arrangements and reflection orders.

� Numerical results of the monostatic position error bound (PEB) show that the approach
has the potential to perform well but often suffers from severe path overlap problems.

� After a lengthy derivation, we obtained the CRLB of Co-MINT, which was the ultimate
goal of this thesis. A well-structed EFIM shows the monostatic and bistatic contributions
and the performance decrease due to position uncertainties during bistatic measurements.
For a single agent, the result becomes equivalent to the monostatic EFIM.
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� Numerical results of cooperative localization demonstrate how Co-MINT incorporates the
benefits of monostatic and bistatic localization to compensate for their individual disadvan-
tages. Results of three exemplary indoor arrangements shed light on many characteristics
of the approach. CRLB values show that Co-MINT, despite being a very flexible approach,
definitely has potential for accurate performance.

6.2 Outlook

The theoretical capabilities of Co-MINT are evident due to this thesis and the practicability
was shown by Fröhle [16], but it is a long and winding road to a robust system that actually
comes close to the derived CRLB. Implementation raises a lot of issues like node synchronisation,
cooperation, data exchange, information loss due to unavoidably working with signal metrics
rather than ideal continuous-time signals, feasibility and convergence of estimation algorithms,
multimodal likelihood functions (LHFs), association of received signal peaks to the MPC model
and tracking via Kalman filters. All of these problems are topics of ongoing research in several
branches of information and communication technology, so at this point in time it is very hard to
judge the feasibility of flexible and affordable Co-MINT implementations that perform robustly
in the various fields of application.
Further theoretical progress could be possible within the presented mathematical framework of
the Co-MINT CRLB. For instance, applying results from the algebraic field of the Euclidean
group to the VA construction process could yield further insights and would probably enable a
straightforward extension to three-dimensional case. Additionally, studying reciprocity proper-
ties of bistatic multipaths could allow for simplifications in the cooperative EFIM.
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A
Appendix

A.1 Fisher Information among Signal Model Parameters

The following formulas denote matrices containing Fisher information (FI) among signal model
parameters of a particular received signal rm,j(t). They are taken from [6] where the same signal
model was used.

FI among propagation delays of multipath components (MPCs):

[Φm,j(τm,j , τm,j)]k,k′ = Er|θ

{
−∂

2lnf(rm,j |τm,j ,αm,j)
∂τ

(k)
m,j∂τ

(k′)
m,j

}

=
2

N0
· <
(
α

(k)
m,j(α

(k′)
m,j)

∗
)
· w(k)

m,jw
(k′)
m,j ·

∂2Rs(τ
(k)
m,j − τ

(k′)
m,j )

∂τ
(k)
m,j∂τ

(k′)
m,j

(A.1)

FI among path amplitudes of MPCs (equal for < and =):

[Φm,j(<αm,j ,<αm,j)]k,k′ = [Φm,j(=αm,j ,=αm,j)]k,k′

= Er|θ

{
−∂

2lnf(rm,j |τm,j ,αm,j)
∂<α(k)

m,j∂<α
(k′)
m,j

}
=

2

N0
· w(k)

m,jw
(k′)
m,j ·Rs(τ

(k)
m,j − τ

(k′)
m,j ) (A.2)

FI among propagation delay and path amplitude of MPCs:

[Φm,j(τm,j ,<αm,j)]k,k′ = Er|θ

{
−∂

2lnf(rm,j |τm,j ,αm,j)
∂τ

(k)
m,j∂<α

(k′)
m,j

}

=
2

N0
· <α(k)

m,j · w
(k)
m,jw

(k′)
m,j ·

∂Rs(τ
(k)
m,j − τ

(k′)
m,j )

∂τ
(k)
m,j

(A.3)

[Φm,j(τm,j ,=αm,j)]k,k′ =
2

N0
· =α(k)

m,j · w
(k)
m,jw

(k′)
m,j ·

∂Rs(τ
(k)
m,j − τ

(k′)
m,j )

∂τ
(k)
m,j
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We used the autocorrelation function Rs(τ) of the transmitted signal pulse [6]

Rs(τ) =

∫
R
s(t)s(t− τ)dt . (A.4)

A.2 Proof: Magnitude times Direction Form of Monostatic Gradient
(3.32)

We can transform the initial formula

∂τ
(k)
j,j

∂pj
=

1

c

(
e
(
φ

(k)
j,j

)
− e

(
(−1)L

(k)
j,j · φ(k)

j,j + 2γ
(k)
j,j

) )
into a form that gives a product of magnitude times unity vector as result. We are observing

one fixed MPC and therefore temporarly drop the �(k)
j,j indexing for clarity:

∂τ

∂pj
=

1

c

(
e
(
φ
)
− e
(
(−1)L · φ+ 2γ

) )
By applying the basic theorems [32] for subtraction of trigonometric functions

cos(u)− cos(v) = 2sin

(
v + u

2

)
sin

(
v − u

2

)
sin(u)− sin(v) = 2cos

(
u+ v

2

)
sin

(
u− v

2

)
to each dimension, we can further transform this to

∂τ

∂pj
=

1

c

(
cos(φ)− cos

(
(−1)Lφ+ 2γ

)
sin(φ)− sin

(
(−1)Lφ+ 2γ
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=
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c
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1
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(

1
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(
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2
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)
where we used indicator functions to distinguish between even and odd orders L. An obvious
case-by-case analysis yields the convenient formula (in full notation again)
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c sin

(
γ

(k)
j,j

)
· e
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2
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(k)
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· e
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π
2

)
if L
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.
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