
Master Thesis

Circular microphone array based
beamforming and source localization

on reconfigurable hardware.

Performed at:
Signal Processing and Speech Communications Laboratory,

Graz University of Technology.

Author:
Boris Clénet.

Supervisor:
Dr. Harald Romsdorfer.

Graz, September 2010.

Abstract

Source localization and beamforming using microphone arrays are common
strategies for speech enhancement and source separation in various applica-
tions related to voice capturing. This thesis focuses on their implementation
on hardware with real time constraints. Several algorithms are used and the
idea is to increase performances as much as possible. Therefore, mathemat-
ical and physical optimizations are considered, as well as improvements due
to the board’s specificities. Nevertheless, the work focuses more on handling
of basic solutions by the hardware features. A hybrid plateform is at dis-
posal; it puts a reprogrammable computation unit and a more classical cpu
together. The improvements are significant and the real-time constraints are
achieved notwithstanding the fact that hardware capacities and ressources
are limited regarding this application that deals with multiple microphone
outputs.

Acknowledgements

I first want to thank Harald Romsdorfer and Gernot Kubin that made
this master thesis possible by welcoming me at the Signal Processing and
Speech Communication Laboratory, respectively in their capacity as super-
visor and head of the laboratory.

Then, Manfred Mücke and Thang Viet Huynh for helping me with the
board and Tania Habib who helped me to learn more about beamforming.
Wolfgang Jäger and I had very close work together on this project and we
gave each other advice and hints: I am really grateful to him for all this.

I also want to thank all the workers at the SPSC laboratory, the admin-
istration members, administrators, and Ph.D students whom have ever been
kind to me. Finally, all the master students with whom I have been work-
ing during these six months are to acknowledge, especially Florian Krebs,
Martin Schickbichler, Susanne Rexeis, Niklaus Hammler, and Anna Fuchs.

Contents

Introduction. 8

1 Introduction to the board. 10
1.1 Overview of the board. 10
1.2 The Xtensa processor. 10
1.3 The pipeline structure. 11

1.3.1 Issue Rate. 12
1.4 Use of software. 13

1.4.1 Defining and using EIs. 13
1.4.2 Handling the wide registers. 14
1.4.3 Handling the IRAM. 14
1.4.4 The BIOS. 15

1.5 Development environment. 16
1.5.1 Report files. 18
1.5.2 Pipeline View. 19
1.5.3 Profiling. 19

2 Introduction to the application. 20
2.1 Application purpose. 20
2.2 Microphone arrays theory. 21
2.3 Source localization. 21
2.4 Beamforming. 23
2.5 Important notions. 23

2.5.1 Spatial aliasing. 23
2.5.2 Near and far field assumptions. 24

3 Managing audio inputs. 25
3.1 Simulating audio inputs. 25
3.2 The frame mechanism. 27
3.3 DMA transfers and resolution. 27

4 The cross correlation computation. 29
4.1 Theory of cross correlation. 29

4.1.1 Motivations. 29

1

CONTENTS 2

4.1.2 Mathematical description of the cross correlation. . . . 29
4.2 Cross correlation implementation in Matlab R©. 35

4.2.1 Comparison of two audio files in Matlab R©. 36
4.2.2 The cross correlation operation in Matlab R©. 36

4.3 Cross correlation implementation on the board. 36
4.3.1 Simple implementation without the ISEF. 37
4.3.2 Using the ISEF and WRs. 37
4.3.3 Using the IRAM. 39

5 The beamforming implementation. 41
5.1 Theory of beamforming. 41

5.1.1 Precisions and measurements specifications. 41
5.1.2 Delay and sum beamforming. 42
5.1.3 Generalized sidelobe cancelling. 45

5.2 Beamforming implementation in Matlab R©. 47
5.2.1 The DSB algorithm. 47
5.2.2 The GSC algorithm. 48
5.2.3 Audio comparisons. 49

5.3 Beamforming implementation on the board. 49
5.3.1 DSB implementation. 49
5.3.2 GSC implementation. 51

6 Performance analyses. 53
6.1 Performances of cross correlation. 53

6.1.1 ISEF’s ressources usage. 53
6.1.2 Cycles count and execution time. 54
6.1.3 Real time considerations. 55
6.1.4 ISEF’s capacity analysis. 56
6.1.5 The routing ressources problem. 56

6.2 Performances of beamforming. 57
6.2.1 The addition operation optimization. 57
6.2.2 Results of the DSB implementation. 58
6.2.3 Audio considerations. 59

6.3 Conclusions on performances. 60
6.3.1 Conclusions on the cross correlation performances. . . 60
6.3.2 Conclusions on the beamforming performances. 60

Conclusion. 62

A Source code. 64

B Figures. 65

Bibliography 72

List of Figures

1.1 Organization of the Xtensa. 11
1.2 The extended pipeline structure. 12
1.3 Building Process of an isef configuration. 17

2.1 Description of the application’s process. 20
2.2 Scheme of the microphone array. 21
2.3 Simple case of source localization. 22
2.4 Cross correlation between two microphone outputs. 22
2.5 Simple case of near field configuration. 24

3.1 The frame mechanism. 27

4.1 The cross correlation algorithm. 30
4.2 Principle of square decomposition. 31
4.3 Principle of the merging algorithm for square decomposition. 32
4.4 Principle of diagonal decomposition. 33
4.5 Diagonal decomposition, border case. 33
4.6 Principle of linewise decomposition. 34
4.7 Merging algorithm for the linewise decomposition. 35
4.8 Data flow in the case of wrs use. 37
4.9 Data flow in the case of iram use. 40

5.1 The toa difference in far field. 42
5.2 Values of the toa difference in far field. 43
5.3 The delay and sum beamformer. 44
5.4 Directivity pattern of the circular array. 44
5.5 Effect of input frequency on directivity pattern. 45
5.6 The gsc beamformer. 45
5.7 Mathematical description of the gsc beamformer. 46
5.8 Multiple input canceler for the nlms algorithm. 47

6.1 Number of cycles needed by the addition implementations. . . 58

B.1 Picture of the VRC6016 card. 65
B.2 VRC6016 board layout. 65

3

LIST OF FIGURES 4

B.3 VRC6016 board block diagram. 66
B.4 Architecture of the Xtensa processor. 66
B.5 Pipeline view of the Stretch ide. 67
B.6 The profiling functionality. 67
B.7 Data flow in the case of isef use with square decomposition. 68
B.8 Data flow in the case of isef use with diagonal decomposition. 68
B.9 Data flow in the case of isef use with linewise decomposition. 69
B.10 Data flow in the case of iram use. 69
B.11 Room organization for the recordings. 70
B.12 Configuration with two sources. 70
B.13 The DSB “alignment” principle. 71
B.14 Data flow of the dsb implementation. 72
B.15 Data flow of the gsc implementation. 72

5

List of abbreviations.

alu Arithmetic Logic Unit.

ar alu’s associated register.

au Arithmetic Units.
bm Blocking Matrix.

cc Cross Correlation.
cpu Central Processing Unit.

d-cache Data-Cache.
dataram Dual Port RAM.
dma Direct Memory Access.

doa Direction Of Arrival.
dsb Delay and Sum Beamforming.

ei Extension Instruction.
emac Ethernet Media Access Controller.
er Extension Register.

eu Extension Unit cycles.

fpga Field-Programmable Gate Array.

fpu Floating Point Unit.

fr fpu’s associated register.

gib Generic Interface Bus.
gsc Generalized Sidelobe Cancelling.

ide Integrated Development Environment.

iram Inherent isef’s RAM.
ir Issue Rate.
isef Instruction Set Extension Fabric.

6

LIST OF FIGURES 7

mc Multiple input Canceler.

mu Multiplication Units.

nlms Normalized Least Mean Square.

pa Processor Array.

pe Processor Entities.
sbios Stretch BIOS.
scc Stretch-C Compiler.

scp Software Configurable Processor.

sir Source to Interferences Ratio.
snr Signal to Noise Ratio.

toa Time Of Arrival.
wr Wide Register.

Introduction.

Beamforming is of essential importance for a large number of current works
in application fields such as telephony, telecommunications, teleconferenc-
ing, speech enhancement, and many others. In order to perform properly, all
these applications also require precise source localization. It is furthermore
well known that microphone arrays can carry out both source localization
and beamforming. Many algorithms using sets of microphones have already
been developed to perform these operations. The principle of basic algo-
rithms are described in this thesis.

Besides theory of beamforming and source localization, this thesis deals
especially with the implementation of these algorithms in real conditions on
a hardware plateform. Therefore it explains the porting process between
mathematical definitions of the algorithms and their final implementation
on a board.

In order to make the computations gain performance, the chosen board
(from Stretch R© Inc.) is dedicated to multimedia applications: it was de-
signed to process audio and video data. Moreover, it contains a specific
calculation unit which is comparable to Field-Programmable Gate Arrays
(fpga) in the way it works. It is also close-connected to the Central Pro-
cessing Unit (cpu) of the board so that they can interact efficiently. Hence,
the flexibility of a cpu and the high computation potential of programable
hardware are brought together.

Goals.
The initial aim of this work is to show the reader how to port computation
algorithms from their mathematical definition to their implementation on
the Stretch R© board; Matlab R© is used as a link. The main avantages and
constraints of the board in terms of optimization, as well as the problems
to avoid are described.

The algorithms are related to source localization and beamforming with
circular microphone arrays as this is a current field of research of the spsc
laboratory. The idea is to optimize the routines as much as possible. Real
time considerations have therefore to be taken into account.

8

LIST OF FIGURES 9

Scope of this work.
In oder to make the reader become familiar with the Stretch R© board, an
introduction-chapter is first going to be made about it (cf. chapter 1). An
introduction to the project and its important notions is made as well (cf.
chapter 2).

In a second time, chapter 3 describes the handling of audio content for
the application. Then, for each algorithm, a chapter describes the porting
process from the mathematical and physical definitions to the implementa-
tions on the board (cf. chapters 4 and 5). Finally, chapter 6 gathers all the
performance results and the general thoughts about the implementations
efficiency.

Chapter 1

Introduction to the board.

1.1 Overview of the board.
This section describes the Stretch R© S6 PCIe DVR Add-in VRC6416 card
that was used for the project. Figure B.1 shows a picture of a similar
VRC6016. Figure B.2 additionally lists chip identification numbers. Figure
B.3 gives the block diagram of the board with the previous numbered ref-
erences. The core of the board is the Processor Array (pa). It consists in
three S6105 and one S6100 Processor Entities (pe). The S6100 processor
has extended features compared to the S6105 which makes it the master of
the processor array.

On the left side of processor entities in figure B.3, a/d converters (Techwell R©

TW2864) are connected to each processor. The a/d converters are for video
and audio purposes but only the audio paths is needed in the application.

The main memory of each processor entity appears on their right side
in figure B.3. Each pe has 128MBytes of main memory. Figure B.4 focuses
on the processor. The main blocks that were used for the application are
the ddr2 controller and the S6SCP Engine. The Quad Dataport—which
is for video applications only—, the Low-Speed Peripherals, the Enhanced
Generic Interface Bus (egib), and the Ethernet Media Access Controller
(emac) were not used.

1.2 The Xtensa processor.
The Xtensa LX Dual-Issue VLIW processor consists in three calculation
devices as figure 1.1 shows. The Floating Point Unit (fpu) with its corre-
sponding register (fr) and the Arithmetic Logic Unit (alu) with its register
(ar) are the two “classical” ones.

The Instruction Set Extension Fabric (isef) with the inherent isef RAM
(iram) and the Wide Registers (wrs) is the reprogrammable part of the chip
that was referred in the introduction.

10

CHAPTER 1. INTRODUCTION TO THE BOARD. 11

Normal C functions are executed either on the alu or on the fpu whereas
time critical or costly parts of the code can be outsourced to the isef, where
specific calculations are performed in parallel. This

Figure 1.1: Organization of the Xtensa.

There are several possibilities to provide data from the main memory to
the calculation devices.

• When using the alu, data can be transfered over the Data-Cache (d-
cache) or over the Dual Port RAM (dataram).

• When using the isef, data can be transfered over d-cache, dataram,
or iram.

Direct Memory Access (dma) enables the iram to be filled directly from the
main memory. Otherwise it has to be done over the wrs. It is also possible
to use the Extension Register (er) from inside the isef. Intermediate results
can be stored there, but no access from outside the isef is possible.

1.3 The pipeline structure.
The Xtensa processor uses a five stages hardware pipeline. It is possible to
launch at most one instruction in the pipeline per cpu cycle. Every stage
takes one cycle and the pipeline mechanism enables to output one result per
cycle. The stages are listed in the following. Figure 1.2 shows the schedule
of the pipeline.

An isef configuration results in n extra cycles known as Extension Unit
cycles (eus). These cycles are depicted on the right side of figure 1.2. The
isef configuration gives rise to a pipeline extension. It is possible to add up
to 31 eus to the normal pipeline stages.

CHAPTER 1. INTRODUCTION TO THE BOARD. 12

I Instruction fetch.
R Register file read and instruction decode.
E Execute.
M Data cache read.
W Register file write.
EUn Extension Unit cycles.

If dependencies between consecutive instructions happend, stalls appear
in the pipeline. Avoiding these time-consuming stalls requires careful pro-
gramming. Figure B.5 illustrates the effect of dependencies. At address
0x4001c0db, the instruction wraputi needs the result of the isef’s Extension
Instruction (ei) at 0x4001c0cd. The ei is not finished when its result would
be needed by the wraputi instruction and therefore, the whole pipeline is
stalled for 13 cycles.

︸ ︷︷ ︸
Xtensa’s classic instructions

︸ ︷︷ ︸
isef’s instructions (eis)

Figure 1.2: The extended pipeline structure.

1.3.1 Issue Rate.

In the previous sections, cpu cycles are often mentioned. It is important to
notice that the actual cpu and the isef do not run necessarily at the same
frequency. The cycles of the alu and the ones of the isef are linked by the
“Issue Rate” (ir). It is a number that gives the ratio between the Xtensa’s
running frequency and the isef’s one.

For example, an ir of 1 means that isef issues an instruction every time
the alu issues one. An ir of 3 means that isef issues an instruction at the

CHAPTER 1. INTRODUCTION TO THE BOARD. 13

beginning of every group of three instructions from the alu. The default
value for the ir is 1:1. It the compiler can not reach the target frequency, it
indicates the achieved frequency in a report file (cf. section 1.5). The ir has
then to be increased so that the target frequency for the isef is achievable.

1.4 Use of software.
The Stretch R© Software Configurable Processor (scp) is programmable in
ANSI-C. Although there are special hardware-related parts of the code (i.e.,
especially those that command the isef) which have to be programmed in
Stretch-C. Stretch-C varies from ANSI-C; there are additional, more width-
flexible data types and certain hardware-related functions, definitions, and
intrinsics.

1.4.1 Defining and using EIs.

Apart from the standard ANSI-C files (∗.c), Stretch-C files (∗.xc) are used
to define ei. The following code example demonstrates the construction of
an ei.

1 # include <stretch .h>
2 static se_sint <64 > sumver [4];
3 SE_FUNC void CROSSONISEF
4 (SE_INST CC_MAC , SE_INST CC_INIT_MAC , SE_INST CC_FIN_MAC ,
5 WRA A, WRB B, WRA *Y_1 , WRB *Y_2)
6 {
7 se_sint <16 > b;
8
9 *Y_1 = (sumver [1] , sumver [0]);
10 }

In line 1, the preprocessor includes the standard stretch library for
Stretch-C files. It is necessary to use the wr data type and all the spe-
cific instructions. Line 2 defines a static array. If a variable is defined as
static, it is stored in the ers. The data type se_sint<64> defines a signed
integer with a width of 64bits.

Lines 3, 4, and 5 define an ei. The keyword SE_FUNC identifies the function
as ei and SE_INST gives it its name (i.e., how the function can be called from
ordinary C code). Common parts of several eis can share the same hardware
resources of the isef. In our case, the instructions CC_MAC, CC_INIT_MAC and
CC_FIN_MAC differ slightly from each other but the main part is nevertheless
the same. Therefore, all three instructions are outlined in one function.

In total, each ei call can transfer data from 3 wrs to the isef and output
data to 2 wrs. Line 5 defines four variables, located in the wrs (2 input
values, 2 output values). It is possible to tell the compiler which wr (A
or B) should be used. Line 7 defines a local signed integer with a width
of 16bits. Data types se_sint<n> and se_uint<n> refer respectively signed and

CHAPTER 1. INTRODUCTION TO THE BOARD. 14

unsigned integers with a bit-width of n. In line 9, the two return values (of
width 64bits) are stored in one wr (of width 128bits).

1.4.2 Handling the wide registers.

Figure 1.1 shows that the isef is accessible over the wrs and the over the
later-discussed iram via dma. To load the wrs with data to be processed
on the isef, it is necessary to use a couple of special functions within the
∗.c file.

1
2 WRGETINIT (0, p_x2);
3 WRGET0I (& wr_x1 , 1);
4
5 WRPUTINIT (0, p_acc);
6 WRAPUTI (wr_y_1 , 4);
7 WRPUTFLUSH0 ();
8 WRPUTFLUSH1 ();
9

Line 2 and 3 enable data transfer to the wrs. Line 2 initializes the
transfer from a memory place in the dataram to the wrs. The zero declares,
that the source pointer should be incremented after each access. Line 3
copies the data (1 byte) to the wr. Line 5 to 8 retrieve data from the wrs.
Line 5 initializes the transfer from the wr to the destination located in the
dataram. Again, the destination pointer should be incremented after each
access. Line 6 copies 4 bytes of data from the wr to the destination. Line
7 and 8 are additionally necessary to complete the data transfer.

1.4.3 Handling the IRAM.

Figure 1.1 shows the isef inherent location of the iram. Two data paths
to the iram are possible. The first one, over the wrs is not efficient. The
second one is more direct and to prefer: it uses dma to transfer data from
the main memory to the iram.

1 *.c file:
2 se_iram_handle *hA;
3 hA = se_iram_get_handle (crossisef , A, SE_IRAM_ROW_MAJOR , 0);

The iram handle hA is an “access gate” to array A (line 3) in the iram
(crossisef is the name of the isef configuration). If the array as several
dimensions, one should specify along which dimension the increment is done
first (with arguments SE_IRAM_ROW_MAJOR or SE_IRAM_COL_MAJOR). In total, there are
32 banks of iram, each bank should be accessed only once per isef cycle,
otherwise stalls of many cycles may occur. Therefore the distribution of
variables has to be wide spread over the banks. The following code example
shows the possibilities defining variables within the iram structure.

1 *. xc file:
2 static se_sint <16 > A [1024][8];
3 SE_MEM (A);

CHAPTER 1. INTRODUCTION TO THE BOARD. 15

4 static se_sint <32 > B [1024][4];
5 SE_MEM (B);
6 static se_sint <64 > C [1024][2];
7 SE_MEM_LOCAL (C);
8 static se_sint <128 > D [1024][1];
9 SE_MEM_LOCAL (D);

The maximum depth of an array is 1024 and only sizes that are powers of
two are possible. A group of 8 banks can be used in four different ways: the
width of the data type can vary between 16, 32, 64 and 128bits. Increasing
the width of the data type decreases the second dimension of the array.
After the desired array has been defined, it has to be mapped into the iram
by using the intrinsic SE_MEM or SE_MEM_LOCAL. It is not possible to access the
array over dma with the latter.

1.4.4 The BIOS.

The Stretch R© BIOS (sbios) provides the foundations for application running
on the S6000 family of processors. It important parts regarding the project’s
applications are the dma, the memory management, clock routines, some
utility functions, and the data types. The used sbios functions are going to
be demonstrated with an example.

1 # include <sx -misc.h>
2 # include <sx -mm.h>
3 # include <sx - mmdma .h>
4 # include <sx - timer .h>
5 // create memory pools
6 static sx_int8 ddr_pool_space [567] SX_DDR ;
7 static sx_int8 dram_pool_space [567] SX_DATARAM ;
8 sx_mm_pool * ddr_pool ;
9 sx_mm_pool * dram_pool ;
10 ddr_pool = sx_mm_create (ddr_pool_space , sizeof (ddr_pool_space));
11 dram_pool = sx_mm_create (dram_pool_space , sizeof (dram_pool_space));
12 // allocate memory
13 p_samples_1 = sx_mm_zalloc (ddr_pool , framesize_100ms_inbytes);
14 p_frame_1 = sx_mm_zalloc (dram_pool , framesize_100ms_inbytes);
15 // initialize dma channel
16 sx_mmdma_chan * p_channel_1 ;
17 sx_mmdma_chan_config * p_ch1_conf ;
18 p_ch1_conf = (sx_mmdma_chan_config *) sx_mm_zalloc (ddr_pool ,
19 sizeof (sx_mmdma_chan_config));
20 (* p_ch1_conf). chan_num = 5;
21 (* p_ch1_conf). priority = 2;
22 (* p_ch1_conf). src_stride = 0;
23 (* p_ch1_conf). src_skip = 0;
24 (* p_ch1_conf). dst_stride = 0;
25 (* p_ch1_conf). dst_skip = 0;
26 init_ch1_error = sx_mmdma_chan_init (p_ch1_conf , & p_channel_1);
27 // count cycles , copy data
28 count1 = sx_get_ccount ();
29 memcpy_ch1_error = sx_mmdma_memcpy (p_channel_1 ,
30 p_frame_1 , p_samples_1 , framesize_100ms_inbytes , 1);
31 while (sx_mmdma_get_num_pending (p_channel_1) != 0);
32 count2 = sx_get_ccount ();
33 cycles1 = count2 - count1 ;
34 // close dma channel , free memory

CHAPTER 1. INTRODUCTION TO THE BOARD. 16

35 close_ch1_error = sx_mmdma_chan_close (p_channel_1);
36 sx_mm_free (ddr_pool , p_samples_1);
37 sx_mm_free (dram_pool , p_frame_1);

The four necessary sbios .h files are listed below.

sx-misc.h includes intrinsics, stretch data types are also declared here.
sx-mm.h manages memory allocation.
sx-mmdma.h handles dma.
sx-timer.h counts cycles in order to evaluate performance.

The available stretch data types are: sx_int8, sx_uint8, sx_int16, sx_uint16,
sx_int32, sx_uint32, sx_int64, and sx_uint64. The numbers specify the bit width
of the data type and “u” means that the data type is unsigned. In lines 6
and 7, the memory for two memory pools is reserved. Arrays of sx_int8 are
located in the main memory (SX_DDR) and in the dataram (SX_DATARAM). The
intrinsics SX_DDR and SX_DATARAM are provided by the file sx-misc.h.

After generating pointers to pools in lines 8 and 9, the memory pools have
to be created in lines 10 and 11. Functions that create memory pools are
defined in sx-mm.h. In lines 13 and 14 two variables of a certain length, each
located in one pool, are initialized (zalloc() allocates memory and initializes
it with zeros).

The dma channel has now to be initialized. At first, the necessary point-
ers (lines 16–18) and the configuration’s specifications (lines 20–25) are cre-
ated. The dma channel-number can be chosen between 0 and 11 for the
programmer’s use (line 20). Line 21 sets the priority of each channel be-
tween 0 and 3 (0 is the highest one). The stride-skip mechanism in lines
22–25 provides the possibility to skip bytes in a recurrent pattern at the
source or at the destination (see also chapter 3).

In line 26, the channel is initialized and line 29 realizes the data transfer.
While the dma transfer is pending (line 31), a waiting period is imposed.
Afterwards, line 35 closes the dma channel. The processor cycles are counted
between line 28 and line 32 and calculated in line 33. Finally, the reserved
data pools have to be freed (line 37).

1.5 Development environment.
Stretch R©, Inc. provides a graphical Integrated Development Environment
(ide) for code development. The ide is a conglomeration of development
tools; this chapter gives a short overview of them. Figure 1.3 shows the
building process for an isef configuration. There are two files: the isef
configuration file (fir8.xc) and the corresponding (fir8.c) file from where the
isef configuration is called.

The ∗.xc file needs the inclusion of stretch.h in order to use Stretch R©

intrinsics. From the isef’s configuration, the Stretch-C Compiler (scc) gen-

CHAPTER 1. INTRODUCTION TO THE BOARD. 17

Figure 1.3: Building Process of an isef configuration.

erated several files. The compilation process creates an ∗.xo object file and
a ∗.xr report file.

1 scc -c -ms6100 -3- iss fir.xc
2 scc -ms6100 -3- iss -stretch -link - config fir8.xo

In a second step, the linker creates two additional files. libei.h—different
names are possible by specifying the option -o calling scc—has to be included
in the ∗.c file, where the isef feis are called from. The file libei.a is an archive
file and it is used for the linking process of the isef configuration and the
∗.c file. The linking process also needs the object code from the ∗.c file. It
is generated by the scc compiler.

1 scc -c -ms6100 -3- iss fir8.c

The arising executable file can be started with the command st-run. Further
compilation options are possible. The most important ones are listed in the
following.

First, several compilation modes are available they are called native,
simulation and remote.

-ms6-native compiles the eis into native code for the host machine. Useful
for executing and debugging ei quickly before compiling them
for the isef.

-ms6100-3-iss targets the S6SCP Instruction Set simulator for C/C++ and
Stretch-C code.

-ms6100 targets the S6100 and S6105 SCP processor for C/C++ and
Stretch-C code.

CHAPTER 1. INTRODUCTION TO THE BOARD. 18

The following commands ask for changes in default modes specificities.

-stretch-
effort[0-10]

sets the effort level for compiling ei into bitstreams. This af-
fects compilation of Stretch-C files only. In general, a higher
effort level takes more time, but produces better isef re-
source usage.

-stretch-freq sets target frequency (in MHz). Default value is 300.
-stretch-issue-
rate

sets ir. Default value is 1.

-stretch-nobits compiles ei with no bit-file generation (cf. next section): only
informations required by the iss to run the eis are produced.
Note that this switch can only be used in combination with
-ms6-iss.

The following commands control optimizations for advanced compilation
handling.

-OPT:alias =
disjoint

Assume that memory references through different named
pointers do not alias with each other, nor with any direct
memory references.

-OPT:Olimit =
size

Do not optimize functions that exceed the specified size.

-OPT:unroll =
times

Do not unroll any loop more than the specified number of
times. The default is 8, and unroll=1 disables loop unrolling.

1.5.1 Report files.

The size of the isef is limited. There are 4096 units of Arithmetic Units (au)
and 8192 units of Multiplication Units (mu). The iram has 32 banks, each
with 2048 bytes of memory. The resource usage report of a configuration is
located in the ∗.xr file. The final version of the report can be found at the
end of this file.

1 /* ***\
2 * Final resource usage report *
3 *--*
4 * Configuration cross16 :
5 * Total AUs = 3512 out of 4096
6 * Total MUs = 5120 out of 8192
7 * Total SHIFTs = 0
8 * Total IRAMs = 0 out of 32
9 * Total PRIENC bits = 0 out of 256
10 * Target Issue Rate = 1
11 * Target chip frequency = 300.0 Mhz
12 * Target ISEF frequency = 300.0 Mhz
13 * Achieved ISEF frequency = 176.1 Mhz

CHAPTER 1. INTRODUCTION TO THE BOARD. 19

14 * Maximum output write cycle = 11
15 * Warning : ISEF cannot run at the required frequency .
16 * Compile time = 3263 seconds
17 *** */

Besides the resources, the ir, the target chip and isef frequencies, and
the execution cycles of the configuration are listed. If the configured isef
frequency could not meet the required frequency, a warning occurs and the
achieved frequency is given instead. The informations are available only if a
“bit-file” generation was requested. This term designs the computation by
the compiler of the isef setup as it would really be on the board. Without
this bit-file, the values of the report file are rough approximations and there
is absolutely no certification that the designed configuration will actually fit
the isef.

1.5.2 Pipeline View.

Information about possible stalls produced by an isef configuration could
be found with the pipeline view (cf. figure B.5). The lines of code in
question are executed step by step by the debugger after the pipeline view
of these lines is generated. If stalls occur, redesigning parts of the code or
of the whole underlying model are a solution. Reducing stalls improves the
execution speed of an isef configuration.

1.5.3 Profiling.

Execution speed is the main information about configurations’s performances.
The process that measures the execution speed is called profiling (cf. figure
B.6). Performing profiling lists particular functions of the code with the
number of taken cycles for each of them. Functions with a great amount of
cycles are preferred candidates to be implemented on the isef.

Chapter 2

Introduction to the
application.

This chapter is intended to give the reader an overview of the project. It first
describes the application goals and the microphone arrays. Then informa-
tions on source localization and beamforming are given. Finally, important
notions are explained in order to make the project more understandable.

2.1 Application purpose.
The system lies in a conference room where several speakers talk either alone
or together. Ideally, it localizes the dominant speaker (e.g., the one who has
the floor) and returns an audio output in which all the signals coming from
other sources are vanished.

In order to do so, the system disposes of a microphone array. The first
step of the process is called source localization and is intended to derive the
position of the speaker. Then, this information is given to the beamforming
operation that derive the desired audio data from it. Figure 2.1 summarizes
the process.

Circular
microphone

array.

Localization. Beamforming.
M

Microphone outputs.

Speaker
position. Audio

output.

Loudspeaker.Speaker.

Noise.

Noise.

Figure 2.1: Description of the application’s process.

More precisely, the aims of the system is to isolate and amplify the
dominant speaker in the case of multispeakers. For a single speaker, it

20

CHAPTER 2. INTRODUCTION TO THE APPLICATION. 21

should enhance the speech by removing ambient noises. Note that one of
the main advantage of this solution is that no personal microphone is needed:
all the classical means of amplification no longer bother the orators.

2.2 Microphone arrays theory.
A microphone array is defined as an arrangement of multiple spatially sepa-
rated microphones. Several configurations exist; they are divided into three
groups: linear, planar and volumetric arrays. Each of these groups has its
own limitations regarding the spatial range that it covers (i.e., the places
that array processing can reach). For example, a linear array covers a range
of 180◦azimuth while a planar array covers a range of 360◦azimuth.

The array that was used is a planar one. As figure 2.2 shows, 24 equally-
spaced microphones compose its circular shape of radius r = 27.5cm. The
main advantages of this array are that it covers a range of 360◦azimuth and
that it is less affected by spatial aliasing than linear arrays (cf. section 2.5).

1

2

3

4

5
678

9

10

11

12

13

14

15

16

17
18 19 20

21

22

23

24

5
5
 c

m 15°
0°180°

Figure 2.2: Scheme of the microphone array.

2.3 Source localization.
Microphone arrays can be used to estimate the position of a sound source
relatively to the array’s position, especially when a dominant source and
several interfering sources overlap. The cross correlation operation is the
heart of this source localization algorithm.

In order to understand the basic concepts of source localization and why
the cross correlation operation is important for it, let us assume a simple
situation. Two microphones receive the signal coming from a single source
in far field of the array (cf. 2.5); no other source is present. Figure 2.3
sketches this case.

Depending on the speaker’s position, the Time Of Arrival (toa) of his
speech to each microphone is likely to be different because his relative dis-
tance to each microphone is not the same.

CHAPTER 2. INTRODUCTION TO THE APPLICATION. 22

d

Source.

θ

M13 M1

DOA

Figure 2.3: Simple case of source localization.

From the toa difference between microphones m1 and m13 (τm1,m13),
one can derive the angular Direction Of Arrival (doa) (θ) of the speech
according to (2.1). If m1 is fixed as the reference: the wavefront arrives at
m13 with a relative time delay. Therefore τm1,m13 has a negative value and
τ1,13 = −d

c cos(θ), hence (2.1). The notations of figure 2.3 are used, c is the
sound of speed in the environment of the array (c ≈ 343m.s−1).

θ = arccos
(
−τm1,m13

c

d

)
(2.1)

It is well known that the cross correlation indicates the likeness of two
signals. It reaches its maximum when the signals match the most. Left-hand
side graph of figure 2.3 shows the cross correlation between the outputs of
microphones m1 and m13 (in this order) when only one speaker is present.
Right-hand side graph zooms in the range ±80.

Figure 2.4: Cross correlation between m1 and m13. Analysis time ≈ 1s,
sampling frequency = 48kHz.

The position of the maximum nmax and τm1,m13 are linked by (2.2).

τm1,m13 = nmax
fs

(2.2)

fs is the sampling frequency. Combining 2.1 and 2.2, the doa can easily
be derivable from nmax. In figure 2.3, nmax ≈ 50, which means a doa of
θ ≈ 130◦.

CHAPTER 2. INTRODUCTION TO THE APPLICATION. 23

Because τm1,m13 can not be greater than d
c , the values among which

looking for a maximum is relevant are in [−d fs
c ; d fsc]. Depending on the sign

of nmax, one can say if the speaker is closer to m1 or m13 (i.e, if θ < 90◦or
θ > 90◦). Indeed, if θ < 90◦, as figure 2.3 shows, the signal has a time
advance at M1. Therefore, the cross correlation between the outputs of M1
and M13 (in this order) has a maximum that is retarded (nmax > 0).

With a linear microphone array, θ can be derived if ti belongs to [0;π].
It is nevertheless impossible to know if θ or −θ is actually detected because
these source’s position would return the same cross correlation. In the case
of a circular array, it is indispensable to widen the range to [0; 2π]. Therefore,
one computes the cross correlation between another pair of microphones who
is perpendicularly-oriented to the first one.

2.4 Beamforming.
Microphone arrays can be also used to balance signals in a sound field by
steering at their incoming direction. This processing technique is referred
as beamforming. It is well known that a single microphone has a certain
directivity pattern. This directivity enhances the signal emitted by a source
and attenuates signals arriving from other directions in the same time, by
aiming the beam at the desired source.

Microphone arrays have a significant advantage compared to a single
microphone because the output signals of the microphones can be combined
to form a beam in any desired direction without moving the array. The
theory and the mechanisms of beamforming are explained more into details
in section 5.1 as it is one of the algorithms that were implemented on the
board.

2.5 Important notions.

2.5.1 Spatial aliasing.

Similarly to the Nyquist criterion in temporal sampling—which has to be ful-
filled in order to avoid temporal aliasing—there are restrictions for spatial
sampling. Let us consider the studied case of section 2.3 with a planar-
wavefront signal of maximal frequency fmax. In order to avoid spatial alias-
ing, the phase difference between the two microphones has to stay in the
range ±π. Otherwise, it is no longer possible to know if the calculated
τm1,m13 was induced by the actual phase shift or from a modulo π version
of it. The criterion 2πfmax × d

c cos(θ) ≤ π summarizes this constraint.
From this criterion, (2.3) gives the maximal distance between micro-

phones dmax that is will not lead to aliasing for a known fmax. This equation
assumes the case θ = 0◦, which is the worst one.

CHAPTER 2. INTRODUCTION TO THE APPLICATION. 24

dmax ≤
c

2 fmax
(2.3)

From (2.3), a maximal frequency of 1000Hz would lead to dmax ≤ 0.17cm.
One can easily see that even for the human speech range of fundamental
frequencies (about 100-1500Hz), it is hard to design an array with M mi-
crophones so that the distance between each pair is smaller than this dmax.
Therefore, the microphone array that is used for this application is very
likely to be constrainted to spatial aliasing.

Let us assume first a linear array impinged by a signal which has a
maximal frequency that is higher than the aliasing frequency. Each pair of
microphone is affected by aliasing because distance between them is always
greater or equals d. In the case of a circular array, the doas are different for
each microphone. The toa differences between each pair are not the same,
which means that for a frequency higher than the critical frequency, some
pairs are affected by spatial aliasing while other pairs are not.

Hence, it is more efficient to face spatial aliasing with a circular array
than with a linear one.

2.5.2 Near and far field assumptions.

If the distance between a source and the microphone array is significantly
greater than the dimensions of the array, the source is said to be in far field
of the array. In this case, the curvature of the arriving wavefront is negligible
with respect to the aperture size. The wavefront appears to be planar when
arriving at the microphones.

Inversely, the source is said in near field of the microphone array when
it is so close to it that the curvature has to be considered. Therefore, the
signal arrives at each microphone with a different doa as shown on figure
2.5.

d

Source.

M13 M1

DOA (M1) DOA (M2)

r1
r2

Figure 2.5: Simple case of near field configuration.

The far field assumption is the easiest to handle because there is only one
doa to derive for all the microphones (cf. figure 2.3). Near field assumption
leads to harder calculations but it enables also to estimate the distance of
the speaker. This thesis only reports implementations that use the far field
assumption because of simplicity and lower computational cost.

Chapter 3

Managing audio inputs.

3.1 Simulating audio inputs.
Audio inputs were simulated by audio RIFF-WAVE files during all the im-
plementations testing. Their samples were coded with a 8bits, 16bits, or
24bits resolution. Their possible sampling frequencies are 8kHz, 16kHz,
32kHz, or 48kHz.

From byte 0x00, a RIFF-WAVE file begins with a header. This is in-
tended to describe the file contents on a size of 44bytes; it is composed of
three chunks. The elements of each one of them are listed below in the order
they appear in the file.

• RIFF chunk (declaration of the RIFF-WAVE format).

Name Bytes Description
FileTypeChunkID 4 “RIFF” (0x52,0x49,0x46,0x46).
FileSize 4 size of the file in bytes (minus 8B).
FileFormatID 4 “WAVE” (0x57,0x41,0x56,0x45).

• Audio format chunk.

FormatChunkID 4 “fmt” (0x66,0x6D, 0x74,0x20).
BlocSize 4 chunk size in bytes minus 8 (0x10).
AudioFormat 2 storage format (1 for PCM, . . .).
Channels 2 nb. of channels (0 for Mono, 1 for Stereo).
Frequency 4 sampling frequency (Hz).
BytePerSec 4 nb. of bytes per second.
BytePerSample 2 nb. of bytes per sample (among all channels).
BitsPerSample 2 nb. of bits per channel’s sample (8, 16, or 24).

• Data chunk.

25

CHAPTER 3. MANAGING AUDIO INPUTS. 26

DataBlocID 4 “data” (0x64,0x61,0x74,0x61).
DataSize 4 nb. of bytes of data.

Then, the data is stored in little endian sample after sample (i.e., the
kth sample of channel n is written before the k+1th of channel n-1).

In order to handle RIFF-WAVE files and to retrieve the data that are in
the header, a structure was created.

1 struct wavefile
2 {
3 // RIFF - CHUNK
4 char riff_name [4];
5 long riff_length ;
6 char riff_type [4];
7 // FMT - CHUNK
8 char fmt_name [4];
9 long fmt_length ;
10 short formattyp ;
11 short canalnb ;
12 long samplerate ;
13 long b_per_sec ;
14 short b_per_sample ;
15 short Bits_per_sample ;
16 // DATA - CHUNK
17 char data_name [4];
18 long data_length ;
19 }

These informations can further be useful to extract a desired number
of sample. The following extract from the source code gives an example of
how this structure can be used. It stores a frame of 100ms in the data pool
ddr_pool at the address given by p_samples_1.

1 struct wavefile wf1;
2 FILE * p_file1 ;
3 void * p_samples_1 ; // pointer to the frame
4
5 p_file1 = fopen ("file.wav", "rb");
6 fread ((void *) &wf1 , sizeof (wf1), 1, pwfile1); // reads the header
7
8 // number of bytes in the frame (corresponds to 100 ms)
9 frame_length_in_bytes = (int)(0.1 * wf1. samplerate * wf1.

bytes_per_sample);
10
11 // allocates memory
12 p_samples_1 = sx_mm_zalloc (ddr_pool , frame_length_in_bytes);
13 fread (p_samples_1 , 1, vefile1 . data_length , pwfile1); // store the frame

It is a bit different when the samples are coded with 8 bits in the RIFF-
WAVE file. In this case, retrieved samples are unsigned integers with values
in the range 0–255. The process retrieves these exact values even though
they might represent negative or positive values from a physical point of
view. In order to find out the exact meaning of the signal, one can subtract
128 to all the values of the frame. Because 128 corresponds to 0 in unsigned
8bits coding, one obtains signed integers between -128 and 127.

CHAPTER 3. MANAGING AUDIO INPUTS. 27

3.2 The frame mechanism.
In order to deal with the real purpose of the application, the cross correlation
has to be calculated as soon as a certain amount of data (referred as frame
length) is available at the microphones outputs.

It is useless to compute a cross correlation when the frame length is too
small because then the maximum (cf. section 2.3) might not be detected.
But the frame shall not be too long either because the computation has to
run in real time (e.g., it can not last longer than the frame duration).

The specifications also impose that each new frame starts a certain time
after the calculations for the previous one began. This time is called frame
shift. The frame length and frame shift are given as time values: therefore
the constraints that the frame mechanism sets also depends on the sample
frequency.

frame n+2

E
x
t
r
a
c
t
i
o
n

o
r
d
e
r
.

frame n

frame n+1

frame n+k

Time.

Frame shift.

Frame length

input data.

Figure 3.1: The frame mechanism.

Figure 3.1 shows the principle of the frame mechanism. The same is used
for the two input data streams. Then, a cross correlation or any other com-
putation of size N equaling the frame length can be done. In the case of the
cross correlation, the output frames give directly the searched information
so there is no need to do any further operation on them.

3.3 DMA transfers and resolution.
When using dma, the resolution of audio data in the file can be a problem
because iram can not handle 8bits and 24bits datatypes (cf. section 1.4):
16bits and 32bits tables are respectively used instead. Indeed, dma transfers
always consider amounts of bytes (i.e., no information about datatypes can
be filled in). Thus, it is impossible to cast datatypes in a normal way.

In order to cast the 8bits files’s data into iram’s 16bits tables when using
the dma, the skip and stride mechanism is used (cf. section 1.4). In iram,
a byte is skipped between each data-byte coming from the main memory.
This is achieved with the following setup of the dma channel.

CHAPTER 3. MANAGING AUDIO INPUTS. 28

1 (* p_ch1_conf). src_stride = 1;
2 (* p_ch1_conf). src_skip = 0;
3 (* p_ch1_conf). dst_stride = 1;
4 (* p_ch1_conf). dst_skip = 1;

src_stride and dst_stride have to be equal: they represent the number of data-
bytes that dma actually transfer. Line 2 means that all the bytes in the main
memory will be transfered. Line 4 means that one byte will be skipped in
the destination memory place. Hence each block of 2bytes in the iram can
be considered as a 16bits-casted value.

The configuration would be slightly different regarding the second prob-
lem (24bits). Here, data has to be casted into 32bits values. Therefore, a
byte is skipped between each group of three bytes coming from the source.

1 (* p_ch1_conf). src_stride = 3;
2 (* p_ch1_conf). src_skip = 0;
3 (* p_ch1_conf). dst_stride = 3;
4 (* p_ch1_conf). dst_skip = 1;

dst_skip still makes skip one byte in the destination memory place but this
time, 3bytes are stridden.

Chapter 4

The cross correlation
computation.

4.1 Theory of cross correlation.

4.1.1 Motivations.

One usually uses the cross correlation operation to detect similarities be-
tween two signals and give the time at which they match the most. As seen
previously in section 2.3, this operation is really helpful in source localization
systems. Knowing the relative position of two microphones and computing
the cross correlation between their outputs, it is straightforward to derive
the toa difference between them. Then one can calculate exactly the de-
tected speaker’s direction of emission; this is the result of the localization
system. The beamforming process will also need this information further
on.

For these reasons, a survey of the cross correlation algorithm as well as
its optimization was the starting point for the project.

4.1.2 Mathematical description of the cross correlation.

For two discrete signals x and y defined ∀n ∈ Z, the cross correlation [4] is
defined as:

(x ? y)[n] ∆=
+∞∑

m=−∞
x∗[m] y[n+m] (4.1)

∗ is the complex conjugate operator.
In the case of real, finite, and discrete signals of size N (0 ≤ n ≤ N − 1),

the right part of (4.1) becomes a sum betweenm = 0 andm = N−1. In this
case, the cross correlation does not exist for n < −(N − 1) and n > N − 1;
its size is 2×N − 1. From now, n will always refer to the index of the cross
correlation elements.

29

CHAPTER 4. THE CROSS CORRELATION COMPUTATION. 30

In order to have a better view of what happens during this computation,
figure 4.1 depicts it from a multiplication point of view in the case N = 32.

x

y

R

S
E

N-1
0

N-1

0

Figure 4.1: The cross correlation algorithm.

Each dot of the grid is a product between one element of x and one of
y. The sum of the dots over a diagonal represents one element of (x ? y) as
it is given by (4.1). For example, the longest diagonal in figure 4.1 refers to
(4.2) that is the result of the cross correlation for n = 0.

(x ? y)[0] =
m=N−1∑
m=0

x[m]y[m] (4.2)

In our case, the sum (4.1) was subdivided in order to deal with the
specific hardware architecture that is going to be explained in section 4.3. In
the following, the terms “square decomposition”, “diagonal decomposition”,
and “linewise decomposition” refer to the algorithms that were founded out
to do this splitting. They are going to be described in the two next sections.

Square decomposition.

The subdivision in small blocks (squares) is the principle of the algorithm.
Figure 4.2 (N = 32) describes this algorithm with b = 4 as block size. b
samples per frame are needed in order to compute all the multiplications
that are included in a square.

Furthermore, one can see that a square also represents the cross corre-
lation between b samples from x and b samples from y (let us call ci,j this
function).

CHAPTER 4. THE CROSS CORRELATION COMPUTATION. 31

x

y

R

S
E

0 N- 1

N- 1

0

bß=0 ß=1

Figure 4.2: Principle of square decomposition.

ci,j [n] =
m=3∑
m=0

xi[m]× yi[n+m] = (xi ? yj)[n] (4.3)

xi[m] =
{
x[m] if i ≤ m < i+ b

0 otherwise

yj [m] =
{
y[m] if j ≤ m < j + b

0 otherwise

Let us introduce α =
⌊
|n|
b

⌋
and β = |n| mod b, respectively the quotient

and the remainder of the division of |n| by b. α can be interpreted as a block
index and β as an offset in this block.

A diagonal (i.e., an element of x ? y) goes through a certain amount of
squares depending on n. When β = 0, n is a multiple of b and the diagonal
is the assembly of the main diagonals of the squares it crosses. Only one
square per square-line is crossed. The expression of the cross correlation for
the square decomposition and β = 0 can be written as:(x ? y)[n] =

∑N
b
−1

i=α ci,i−α[β] ∀n < 0

(x ? y)[n] =
∑N
b
−1

j=α cj−α,j [β] ∀n ≥ 0
(4.4)

Otherwise, for β 6= 0, the diagonal is a combination of small diagonals
with two possible lengths that are α and b− α. Two square per square-line

CHAPTER 4. THE CROSS CORRELATION COMPUTATION. 32

are crossed. It adds terms to the sums in (4.4) in order to take into account
all the extra squares that are crossed. The expression of the cross correlation
for the square decomposition and β 6= 0 is:(x ? y)[n] =

∑N
b
−1

i=α ci,i−α[β] + ci+1,i−α[−(b− β)] ∀n < 0

(x ? y)[n] =
∑N
b
−1

j=α cj−α,j [−β] + cj−α,j+1[b− β] ∀n ≥ 0
(4.5)

In order to show the diagonals and the squares they cross for different
values of β, two diagonals are pointed on figure 4.2. They represent the
cases β = 0 and β = 1 (β 6= 0).

In (4.4) and (4.5), one can notice that i for n < 0 and j for n ≥ 0 have
the same role and inversely. This comes from the property (4.6) of the cross
correlation.

(x ? y)[n] = (y ? x)∗[−n] (4.6)

Figure 4.3 shows the principle of the merging algorithm in the case N =
32 and b = 4. Each “i cc j” rectangle represents the result of the cross
correlation between the ith b-samples group of the first frame and the jth
b-samples group of the second frame. In other words, it depicts the non-zero
results of ci,j .

4 samples

7 samples

32x32 Cross Correlation (63 samples).

+
+

+
+

+
+

+
+

+

+

+
+

+
+

+
+

1 cc 8

1 cc 7

1 cc 6

1 cc 5

1 cc 4

1 cc 3

1 cc 2

1 cc 1

2 cc 8

2 cc 7

2 cc 6

2 cc 1

3 cc 8

3 cc 1

8 cc 8

8 cc 7

8 cc 6

3 cc 7

3 cc 6

8 cc 1

Figure 4.3: Principle of the merging algorithm for square decomposition.

Diagonal decomposition.

The diagonal decomposition is similar to the previous one. In this case the
squares are angled so that the merging of a block needs less access to the
final result. Figure 4.4 depicts this algorithm for a frame of N = 32 and
b = 4.

CHAPTER 4. THE CROSS CORRELATION COMPUTATION. 33

x

y

R

S
E

N-1

0

N-1

0

Figure 4.4: Principle of diagonal decomposition.

Merging the blocks into the final result is simpler here because each
diagonal of a block belongs to only one diagonal of the final grid. Suppose
a block-size of b × b where N is a multiple of b; (4.7) gives the diagonal
decomposition of the cross correlation.

(x ? y)[n] =
N
b
−1∑

m=0

b−1∑
k=0

x[m× b+ k] y[m× b+ k + n]. (4.7)

One can notice that the whole frame can not be filled completely with
blocks that have a rhomboid shape. The side blocks have a triangular shape
and they compute less multiplications than the others. It is interesting to
replace these triangular blocks in order to always compute the same number
of products per block. To do so, multiplications that are intended to the
opposite side of the frame can be computed in the same block as suggested
in figure 4.5. This side effect is going to be discussed in section 4.3.

︸ ︷︷ ︸
right side

︸ ︷︷ ︸
left side

Figure 4.5: Diagonal decomposition, border case.

CHAPTER 4. THE CROSS CORRELATION COMPUTATION. 34

Linewise decomposition.

The linewise decomposition differs from the two previous approaches. Al-
though the block’s shape is linear here, it still computes the same number
of multiplications. A segment of length b represents the multiplications be-
tween one element of x and b elements of y. Figure 4.6 depicts this algorithm
for a frame of N = 32 and b = 16.

x

y

R

S
E

N-1
0

N-1

0

b

Figure 4.6: Principle of linewise decomposition.

The merging of the blocks is rather simpler than for the other decompo-
sitions. Indeed, one can notice that the contribution of a block to the final
result takes place on b diagonals (i.e., b final elements of the cross correla-
tion frame) but only two of them differ from the previous block. Therefore
one needs to add the blocks to the final cross correlation frame with a shift
of one sample between them as figure 4.7 shows for the case N = 32 and
b = 16.

On this figure, “block 1” refers to the bottom-left block of figure 4.6,
“block 2” to the top-left one, “block 3” to the second in the bottom-left,
and so on. . . “block 32” would refer the top-right one.

One can also notice that a b× b cross correlation is easily derivable from
b linear blocks. Similarly to the square decomposition case, let us call li,j
the function that gives the expression of such blocks.

li,j [m] =
{
x[i]y[j +m] if 0 ≤ m < b

0 otherwise
(4.8)

CHAPTER 4. THE CROSS CORRELATION COMPUTATION. 35

C
a
l
c
u
l
a
t
i
o
n

o
r
d
e
r
. block 1

Samples.1 16

CC frame.

block 2

block 3 block 4

block 5 block 6

+ +

block 31 block 32

block 29 block 30

0

+

Figure 4.7: Merging algorithm for the linewise decomposition.

(4.9) gives the expression of a the cross of a b× b block as a function of
(4.8). The ci,j function is used as it was defined in (4.3).

ci,j [n] =
k=b−1∑
k=0

li+k,j [k − n] (4.9)

Finally, replacing the ci,j from (4.9) in (4.4) and (4.5) gives the final
expression of the whole cross correlation frame of size 2N −1 as it was done
for the square decomposition case.

In this case, all the multiplications are done in the same way they are
in (4.1). Only their order of computation changes; section 4.3 details it.
Note also that for linewise decomposition, b is generally greater than the b
of other decomposition algorithms.

4.2 Cross correlation implementation in Matlab R©.
Although this thesis mainly describes the ways how to port computation
algorithms from Matlab R© to the studied Stretch R© board, this is not what
is developed in this section. In Matlab R©, indeed, the cross correlation code
is straightforward.

In this application the Matlab R© implementation is used for verifications
purpose and therefore no optimization attempt was given on it. The idea is
to compare the outputs from the Matlab R© process and from the Stretch R©

board process.
To do so, the Matlab R© algorithm has to run the same way as the one on

the board does and it need to be accurate enough to behave like a reference
(i.e., the frame length/frame shift mechanism has to be implemented as
well).

CHAPTER 4. THE CROSS CORRELATION COMPUTATION. 36

4.2.1 Comparison of two audio files in MatlabR©.

The loading of audio. wave files is simplified in Matlab R© compared to the
usual C method.

The function
1 [Y,FS , NBITS]= WAVREAD (FILE ,N,FMT);

enables to get the data samples in a “native” or “double” format (FMT). It
also returns the sampling frequency (FS) and the number of bits per sample
(NBITS). The native formats are integers of the same resolution that the one of
the file’s samples. In the double case, the data is a double which represents
the value normalized between −1 and 1.

Once the frames to compare are in two vectors, one can for example
derive the mean difference between the samples in order to have an idea of
the solution accuracy.

4.2.2 The cross correlation operation in MatlabR©.

Having the input frames in vectors A and B, the cross correlation vector C
can be computed with the following function.

1 C = XCORR (A,B);

The function uses formula (4.10) to compute the cross correlation. There-
fore, the order of the results is inverted compared with the one given by
(4.1).

(x ? y)[n] =
+∞∑

m=−∞
x∗[m] y[n−m] (4.10)

The function in line 1 below can be used to give the right order to the frame
so that it is comparable with the board’s output (note that x ? y 6= y ? x in
the general case). The lines 2 and 3 would return the same result.

1 FLIPLR (X);
2 XCORR (A,B) ’;
3 FLIPLR (XCORR (B,A) ’);

In order to be sure of the comparisons that were made, the cross corre-
lation function was further rewritten in the exact same way as it is done by
the simplest implementation on the Stretch R© board. The Matlab R© inner
function was not used anymore since then.

4.3 Cross correlation implementation on the board.
This section describes objectively the different solutions that were set up to
make the Cross Correlation (cc) run on the board. Appendix B provides
schemes that explain data flow and memory management of the solutions.
Appendix A reports their source code notice. Section 6.1 gives comparisons
and puts figures on the results of these implementations.

CHAPTER 4. THE CROSS CORRELATION COMPUTATION. 37

4.3.1 Simple implementation without the ISEF.

This implementation gives a reference for the following versions of the algo-
rithm. It uses the Xtensa as a normal C code would do it: with no use of
the extra capabilities given by the board. It is the slowest version but it is
the easiest to verify. Therefore the speed improvement quantifications and
the results can always be compared to it.

The data to work on is placed in the main memory. No use of dma or
dataram is requested explicitly. The actual signal processing part takes
place in the alu. It computes the cc as (4.1) and figure 4.1 describe it.

Several pointers handle the memory places where the data circulate.

• p_samples (1 & 2) - point on the data of audio files in main memory.

• p_corr - points on result the vector in main memory.

4.3.2 Using the ISEF and WRs.

The best way to improve the performances of the basic solution described in
section 4.3.1 is to move some computations to the isef. One way of feeding
the isef with data is to do it over the wrs.

As figure 1.1 shows, there is a possible close connection between wrs
and dataram. Furthermore, the dataram size of 64KB enables to store
the whole frames. Hence the first step is to make the data transfer from the
main memory of the board to the dataram. This operation is achievable
either with or without dma. Both approaches were used and compared (cf.
section 6.1) but the main differences between the implementations appear
in the way they compute the data once it is in the dataram.

Figure 4.8 shows the flow of data for all the solutions that use the isef
with the wrs. Depending on the implementation version, the dashed arrows
may represent dma transfers or classical transfers.

MAIN MEMORY

ISEF

WR (input) WR (output)

DATARAM

CC

Figure 4.8: Data flow in the case of wrs use.

CHAPTER 4. THE CROSS CORRELATION COMPUTATION. 38

This version needs some more pointers than the previous one in order to
handle the added features.

• p_frame (1 & 2) - point on audio data frames in dataram.

• p_channel (1, 2, & 3) - point on dma channels (when needed). Usually,
one channel was dedicated to each input frame and another one to the
output stream.

Once the data is in the dataram, there are several ways to proceed.
As announced in section 4.1, some decompositions of the cc were found so
that isef can compute it. For each ei the correct set of samples has to be
provided to the isef via the wrs. The choice of this set makes the main
difference between the algorithms. Then, the way to merge the ei’s outputs
into the N ×N differs also.

Using ISEF with the square decomposition.

Figure B.7 shows memory management for this implementation.
In the square decomposition case, the isef runs a b × b cc in one ei

cross_isef(). It means that each ei receives b × b inputs via the wrs and
outputs 2b− 1 samples also via the wrs. The operation is repeated (N/b)2
times so that each block is computed. The merging of a block is done just
after its calculation, after it is issued from the wrs.

The handling of the current positions in the input frames (i.e., the in-
dexes i and j of a “i cc j” rectangle in figure 4.3) is done outside the isef
by pointers. The same principle is used to point the right place in the result
frame (i.e., where the current block has to be added).

Using ISEF with the diagonal decomposition.

Figure B.8 shows the data flow in memory of this implementation.
For the diagonal decomposition, the computation of a block needs 2b−1

samples from the first frame x and b from the second frame y. For the blocks
that are not border cases, cc_mac() is called. It needs the following set of
samples from x:

• b−1 “old” samples that the previous block also needed1. They can be
found in olda[], in the ers.

• b “new” samples that are in wra. b−1 of them are immediately stored
in olda[] for the next ei.

1As the blocks overlap along the x dimension, several input samples can be used from
one ei to another.

CHAPTER 4. THE CROSS CORRELATION COMPUTATION. 39

The b samples from y are in wrb and they stay the same for all the
blocks of a block-line. Each time that one of these samples is loaded into
the isef, a horizontal set of multiplications is done and they are added to
the right diagonal. sumhor[] is a table of size b in the ers that stores each
diagonal of a block. When the computation of a block is finished, the value
of the current position indicator run is incremented of b.

Once run equals the input frame length, it means that a border is reached.
In this case, b − 1 new samples of x come from the beginning of the frame
and 1 is the last one of the frame. The elements of sumhor[] are calculated
only with the b − 1 new samples and they represent the diagonals of the
left-side triangles of figure 4.5. sumver[] stores the computations involving
the old samples and the last sample. They represent the right-side triangles;
they can be retrieved by the ei getfromer().

run is previously reset by cc_fin_mac() before changing of block and
cc_init_mac() is called to reset the table sumhor[].

Using ISEF with the linewise decomposition.

Figure B.9 gives an overview of memory management for this implementa-
tion.

Concerning data flow in memory, the approach here is different. The
first step is to transmit a whole input block from the first frame into the
ers of the isef over the wrs. Then, samples from the second frame are
transfered one by one into the isef. Each ei receives one sample; after b
iterations, a b× b cc is performed. Note that in this case, b is greater than
for the previous decompositions (cf. section 6.1).

In the same time, after each ei, one sample of the b × b cc is ready.
Therefore its storage is handled just after the ei. That is b−1 stored output
samples after b − 1 iterations. b samples remain uncomputed in order to
reach the 2b − 1 normal output frame size of a b × b cc. These samples
are stored back into the result vector over the wrs after the bth iteration.
Storing back is done alternately over wra and wrb, due to performance
reasons2.

4.3.3 Using the IRAM.

In these solutions, the wrs mechanisms are removed completely. They make
use of the iram, a memory space which was created to be close to the isef’s
eis and also accessible from outside the isef. In fact, each occurrence of
an ei can process data from and to the iram, thus it is a good alternative
to the previous processing via the wrs. Furthermore, this memory space
reaches 64KB, what enables the storage of a large amount of samples (e.g.,
entire frames).

2Figure B.9 refers to this alternation with dashed arrows

CHAPTER 4. THE CROSS CORRELATION COMPUTATION. 40

Figure 4.9 shows the flow of data for all the solutions that use the iram.
The data is directly transfered from the main memory to the iram via dma.
The dashed arrows represent these transfers. It is important to notice that
iram can not handle 8bits datatypes (cf. chapter 1): 16bits tables are used
instead. Chapter 3 explained the skip-stride mechanism that one needs to
cast 8bits audio-file’s data into 16bits values when using dma.

MAIN MEMORY

ISEF
IRAM

CC()

Figure 4.9: Data flow in the case of iram use.

The implementations are very similar regarding data flow. Therefore,
only one explanation is going to be done but it is valid for both square and
diagonal decompositions. As shown on figure B.10, the extension instruction
cross_calc() gets data from the frames in the iram and issues a result in the
ers (buffer). Then, several calls of the extension instruction add_cross() do
the merging operation: they add the buffer to the final result.

In order to perform the calculations and the merging between the right
elements, the exact places (ranks of the tables) have to be known and update
after every iteration of these extension instructions. For all these matters,
several tables are needed.

• frames1, frames2 and res. As the place dedicated to frames and to the
final result has to be accessible from inside and outside the isef, it is
stored in the iram.

• xcorr1. The intermediate result does not need to be accessible from
outside the isef, hence it is stored in the ers.

• rank. This table gives the current places in the previous tables. It
is also stored in the ers as all the ranks updates are made in isef’s
extensions instructions. Its elements are:

– rank[0] - offset from the beginning of frames1
– rank[1] - offset from the beginning of frames2
– rank[2] - offset from the beginning of res
– rank[3] - offset from the beginning of xcorr1

Chapter 5

The beamforming
implementation.

5.1 Theory of beamforming.
A short introduction to beamforming was given in chapter 2. This sec-
tion intends to present the theory of several algorithms that were used for
beamforming. It also relates the space configuration during the test files
recording.

5.1.1 Precisions and measurements specifications.

Notations.

Since now and for the next sections, the following notations are going to be
used. Bold font refers to vectors and capital versions of the signal’s names
point out their Fourier transform. The spatial origin is the center of the
array.

M number of microphones of the array (M = 24).
r radius of the array (0.275m).
c speed of sound (343m.s−1).
x cartesian coordinates of the aimed source.
mi name of microphone i.
mi cartesian coordinates of microphone i.
{ρi, θi} polar coordinates of microphone i. (ρi = r, ∀i).
θ source’s direction of emission.
θs direction of steering of the array.
τmi time delay from the source to the microphone i.
τmi,mj relative time delay between microphones i and j.
xi(t) signal at output of microphone i.

41

CHAPTER 5. THE BEAMFORMING IMPLEMENTATION. 42

Sources layout for test files recording.

Figure B.11 shows the sources’s organization relatively to the array. The
sources surround the array and they are all at a distance of 200cm. The
inner stars represent the microphones and the outer stars the sources.

5.1.2 Delay and sum beamforming.

Delay and Sum Beamforming (dsb) [1], [2], [12], [13] and [19] is a widely
used algorithm because of its simplicity. Its principle is similar to source
localization in the way it uses the likeness of the signals coming from the
different outputs of the microphones. The aim is to shift the signals at each
microphone output so that the dominant source’s signal in each output is
aligned (i.e., it has the same phase shift from a reference time). In order
to do so, the source position has to be formerly known: this is why source
localization happends earlier in the global process of figure 2.1.

Knowing the source position, the first task is to derive the toa of its
emitted signal at each microphone. In the near field of the array, (5.1) gives
the value of the toa (τmi) at each microphone i from mi and x.

τmi = |x−mi|
c

0 ≤ i ≤M (5.1)

xT := [x y z] mi
T := [xi yi zi]

Under the far field assumption, the exact position of the source is not
known exactly in the space. Indeed, source localization returns only the
direction of emission of the source signal θ. In this case, the closest micro-
phone to the source (mc) and its azimuth (θc) are derived from θ. From this
microphone, all the relative toa delays (τmc,mi) to the other microphones
are computable as figure 5.1 shows. (5.2) gives the expression of these delays
in our case of circular array with equally-spaced microphones.

mc

mi

θs

θi

θc
0°

Source.

r

τmc,mi

τmc,m1

Figure 5.1: Highlighting of τmc,mi under the far field assumption.

τmc,mi = 2 r

c
sin

(
θi − θc

2

)
sin

(
θi − θc

2
+ θc − θs

)
(5.2)

CHAPTER 5. THE BEAMFORMING IMPLEMENTATION. 43

Figure 5.2 plots the time delays τmc,mi (in s.) as a function the micro-
phone’s angles θi (in ◦). The angle of steering θs = 25◦ was used. Hence the
closest microphone angle is θc = 30◦ (m3); therefore τmc,m3 = τm3,m3 = 0.

Figure 5.2: Values of τmc,mi under the far field assumption, with and θs =
25◦.

Once all the τmc,mi are known, the dsb algorithm takes place. Complex
weights are applied on each microphone output according to figure 5.3. The
weight at each microphone equals wi = ejωτmi in the frequency domain.
Indeed, if one considers that each microphone output contains a shifted
version of the desired source signal s(t) as (5.3) shows, applying the weights
leads to (5.4a) or, in the frequency domain, (5.4b).

xi(t) = s(t− τmi)︸ ︷︷ ︸
desired signal

+ η(t)︸︷︷︸
noise and interferences

(5.3)

xi(t)δ(t+ τmi) = s(t− τmi)δ(t+ τmi) + η(t)
= s(t) + ηi(t) (5.4a)

Xi(f)× wi =
(
S(f)e−jωτmi

)
ejωτmi + η(f)

= S(f) + ηi(f) (5.4b)

It is visible that applying the weights enables the desired signal to be
“aligned” in all the microphone outputs: this is what is referred as “steering
the array”.

In a second time, the sum over all the shifted outputs is done so that
the desired signal is added constructively while the interferences are likely
to be added destructively.

Figure B.12 shows a configuration with two sources: one emits the
desired signal (bold sinewave) and the other adds interferences (dashed
sinewave). Figure B.13 shows how each source is processed by the dsb
algorithm. Although the dashed and bold signals are mixed together by
the array, they are displayed separately for a better understanding of the
principle.

Figure 5.3 summarizes the dsb algorithm as a block diagram. Note that
it is possible to normalize the output by the number of microphones M so
that the output has the same order of magnitude than the inputs.

CHAPTER 5. THE BEAMFORMING IMPLEMENTATION. 44

+
+

+

y(k)

x1(k)

x2(k)

xM(k)

w1*

w2*

wM*

1/M

Figure 5.3: The delay and sum beamformer.

Directivity pattern of the DSB algorithm.

For a given steering direction θs and when using the dsb algorithm, the
general expression of beamforming in time domain is given by (5.5a). In
frequency domain, it becomes (5.5b).

ydsb(t) =
M∑
i=1

x(t)δ(t− τmi)δ(t+ τs) (5.5a)

Ydsb(f) =
M∑
i=1

X(f)e−jωτmiejωτs (5.5b)

τmi is the relative time delay that is due to the distance between each
microphone and the source depending on its actual position θ: it is given by
(5.1) for any possible value of θ. τs is the delay that the weight wi causes
at mi: it is fixed for each microphone depending on θs. It is also given by
(5.1) but this time, with θ = θs.

Hence, the impulse response of the array is modeled as (5.6). Note that
this function has θ as a parameter.

Hdsb(jω, θ) =
M∑
i=1

ejω(τs−τmi) (5.6)

Figure 5.4: Directivity pattern of the circular array for an input frequency
f = 1500Hz and θs = 180◦.

CHAPTER 5. THE BEAMFORMING IMPLEMENTATION. 45

Figure 5.4 plots Hdsb(jω, θ)|dB for a constant input frequency and θ ∈
[0, 2π]. It is called the directivity pattern of the array at this frequency for
a given steering angle. On this figure, a polar plot of the same function is
also available in order to picture clearly how dsb acts over space.

As discussed earlier in chapter 2, spatial aliasing is a problem when
space filtering. In order to notice the influence of the maximal frequency of
a narrowband signal on spatial aliasing for this array, figure 5.5 shows the
comportment of circular array’s directivity pattern over frequency.

Figure 5.5: Effect of input frequency on directivity pattern, θs = 180◦.

For low frequencies, the directivity pattern is very bad because there
is almost no spatial selectivity. As frequency increases, the main lobe at
θs becomes narrower. But when the frequency is too high, spatial aliasing
causes the apparition of extra side lobes that are impeding.

5.1.3 Generalized sidelobe cancelling.

In section 5.1.2, dsb was detected as problematic regarding sidelobes caused
by spatial aliasing. Indeed, these lobes amplify unwanted zones for high
frequencies. The Generalized Sidelobe Cancelling (gsc) algorithm [7], [8],
[17], [21] can encounter this problem. Figure 5.6 shows the global block
diagram of a gsc beamformer. The different blocks of this diagram are
going to be explained in this section.

DSB

BM

MC

x1(k)

x2(k)

xM(k)

z(k)d(k)

y1(k)

y2(k)

yM-1 (k)

Figure 5.6: The gsc beamformer.

CHAPTER 5. THE BEAMFORMING IMPLEMENTATION. 46

The algorithm is based on the dsb algorithm as it is intended to ame-
liorate it. Therefore, the first block (dsb) refers to a classic delay and sum
beamforming as it was introduced in section 5.1.2. In the same time, the
Blocking Matrix (bm) also processes the microphones outputs. The goal is
to isolate the interferences (i.e., every signal that is not coming from the
steering direction). Finally, the Multiple input Canceler (mc) removes the
resultant noise to the (already purified) dsb-beamformer’s output.

From a mathematical point of view, [1] and [17] describe the gsc beam-
former as on figure 5.7. (5.7) is the equivalent expression in matrix notations.

X(ω) Z(ω)
wq

H

wa
H

B
H

-

+

Figure 5.7: Mathematical description of the gsc beamformer.

Y = (wq −Bwa)HX (5.7)

In (5.7), wq refers to the quiescent weights wi of section 5.1.2 and wa are
constrainted active weights that varies throughout the algorithm execution.
B is the blocking matrix and .H refers to the Hermitian transpose. The
instantaneous output y(t) acts like a command for the weights wa. Therefore
gsc is an adaptive algorithm.

[1] simplifies the expressions of B and wq when the input X on figure 5.7
is pre-steered (i.e., the weights of section 5.1.2 have already been applied to
it).

BT :=

1 −1 0 · · · 0

0
... 0
0 · · · 0 1 −1

 wq :=

1
...
1

B is a M × (M − 1) that is defined so that the elements of B ∗X reads

(5.8).

yj(t) = xi(t+ τmi)− xi+1(t+ τmi+1) (5.8)

Then, each weight of wa balances one of the M −1 results. As the input
is pre-steered, the weights wq become ones.

[18] and [21] replace each weight of wa by an adaptive L-taps filter
whose coefficients are given by a Normalized Least Mean Square (nlms)
algorithm. Let us call Wm(k) the coefficient vector for the mth output’s
filter (m = 0, 1, · · · ,M − 1) and ym(k) a vector of L elements from this
output.

CHAPTER 5. THE BEAMFORMING IMPLEMENTATION. 47

Wm(k) := [wm,0(k), wm,1(k), · · · , wm,L−1(k)]T

ym(k) := [ym(k), ym(k − 1), · · · , ym(k − L− 1)]T

(5.10) is the function of the nlms algorithm that enables coefficients
renewing at each step. α is the step size for coefficient adaptation (0 < α <
2) and ‖.‖ is the Euclidean norm. K is a threshold for the total squared-
norm of the weight vectors Wm(k). The resulting new mc is depicted on
figure 5.8.

W′
m = Wm(k) + α

z(k)∑M−1
j=0 ‖yj(k)‖2

ym(k)

Ω =
M−1∑
m=0
‖W′

m‖2

Wm(k + 1) =

√

K
Ω W′

m for Ω > K

W′
m otherwise

(5.10)

z(k)d(k)

y1(k)

y2(k)

yM-1 (k)

+
+

-

+

++

+

W1

W2

WM-1

z
-L

Figure 5.8: Multiple input canceler for the nlms algorithm.

5.2 Beamforming implementation in Matlab R©.
It is important to notice that Matlab R©’s weak point is the computation
of loops. Meanwhile, it is much more performant to use vector an matrix
operations. Therefore, the implementations use these features instead of
loops each time it is possible.

5.2.1 The DSB algorithm.

The first input information of the beamforming process is the θs (s). From
this angle, the closest microphone to the source has first to be derived.

CHAPTER 5. THE BEAMFORMING IMPLEMENTATION. 48

alphas is a vector that stores the θi in ascending order and alpha is 2 π
M . Line

1 gives the position in alphas of the angle that is immediately lower than
the speaker’s one. Then, by calculating the angle difference from the two
closest microphones’s angles to θs, the lines 2–5 derive the actual closest
microphone.

1 nb_prev = floor (s/ alpha)+1;
2 nb_clos = nb_prev ;
3 if(abs(alphas (nb_prev)-s) > mod(abs(alphas (nb_prev +1) -s),alpha))
4 nb_clos = mod(nb_clos + 1, nb_mics);
5 end
6 thosteer = 2*r/c*sin(alphas /2) .* sin(alphas (nb_clos) - s + alphas /2);
7 thosteer = [thosteer (24 - nb_clos +1:24) , thosteer (1:24 - nb_clos)];
8 delays = round (thosteer *fs);

Then, the calculations of the delays is done according to (5.2). The term
(θi−θc) is replaced by the vector alphas as it is inevitably one of its elements
for all i. Therefore, line 6 calculates a 1×M vector that represents the τmc,mi
values. Nevertheless, this vector stores the values in the wrong oder. Indeed
τmc,mc is always the first element as alphas represents the relative angles (θi−
θc). Line 7 shifts the result vector the position of each element corresponds
to its associated-microphone number. The delays are later rounded so that
they can be used as a number of samples (line 8).

In order to obtain input data, the handling of audio files can be done as
in 4.2. The input data frames of size n are stored in a n ×M matrix (x).
The delays are applied by inserting zeros at the beginning of each line of the
matrix.

1 for k=1: nb_mics
2 xShift (:,k) = [zeros (delays (k) ,1); x(1: end - delays (k), k)];
3 end

The sum of xShift along its lines gives the result of the dsb beamformer.
Note that applying the delays is made completely in the time domain.

5.2.2 The GSC algorithm.

After that the dsb algorithm is done, the gsc program computes the bm with
a matrix multiplication on x. bm is defined as in section 5.1 and therefore
inter is a (M − 1) × n matrix that represents the bm outputs (i.e., the
interferences).

1 bm = [diag (ones (1, nb_mics -1) ,0) zeros (nb_mics -1 ,1)] + [zeros (nb_mics
-1 ,1) diag (-ones (1, nb_mics -1) ,0)];

2 inter = bm*x ’;

From now, the algorithm becomes adaptive and therefore it has to run
step by step; there no choice but to set up a loop. At each step k, the
computation of the filters as well as the sum over the filtered-lines can be
done as described below. w is a L × (M − 1) vector which columns are the
Wm(k).

1 z(k) = y(k-Q) - sum(sum(inter (:,k-L+1:k) ’.*w));

CHAPTER 5. THE BEAMFORMING IMPLEMENTATION. 49

z(k) is the gsc beamformer’s output. This value is further needed in
the weights renewing algorithm. At each step, a new matrix is calculated
according to (5.10).

5.2.3 Audio comparisons.

In order to compare several implementations from an audio enhancement
point of view, their outputs can be normalized to the same references. An
energy normalization of the signal can be done. The energy of a real, dis-
crete, and finite signal is given by (5.11).

Exi =
N−1∑
n=0
|xi(n)|2 (5.11)

One can easily see the normalization of the signal’s samples by
√

1/Exi
provides a signal with an unitary energy. Applying this normalization to
each implementation result enables, for example, to compare their noise
levels directly.

5.3 Beamforming implementation on the board.
This section describes the different algorithms of beamforming that were
tried on the board. Appendix B provides schemes that explain data flow
and memory management of the solutions. Appendix A reports their source
code notice. Section 6.2 gives the achieved performance results of these
implementations. These implementations deal with 16bits integers audio
inputs and a sampling rate of 48kHz.

5.3.1 DSB implementation.

Analyzes on the addition operation with ISEF.

The main advantage of the dsb algorithm regarding implementation on
hardware is its simplicity. Indeed it only comes down to an addition when
the 1

M normalization is not performed. On the other hand, this simplicity
raises the questions of the usefulness of optimization for this part of the
application. Knowing that every beamforming algorithm needs a source lo-
calizer upstream from it—and that this part is generally costly in therms of
ressources consumption—the latter has to have priority to the access of the
board’s fast computation areas.

Nevertheless, taking into account the apparently low computational cost
of the dsb beamforming, it is interesting to know if it can fit the isef’s
units that a cross correlation implementation left for free. Furthermore,
as no connexion between these two implementations are needed, the lack
of routing ressources due to excessive use of isef (cf. section 6.1) is not

CHAPTER 5. THE BEAMFORMING IMPLEMENTATION. 50

a problem. The idea is therefore to strike a balance between ressources
usage and algorithm performance for the beamforming implementation on
the isef. In fact, if it requires too much computation units one can consider
that ressources are somehow wasted in regards to the others (more costly)
operations.

The comparison between alu’s and isef’s addition operation was made
for a reduced sum calculation. Two implementations on the isef were tested
and each one of them has a reference implementation that is completely
executed on alu. These classical additions between two frames of n-samples
use loops.

For the first implementation that uses the isef, groups of samples are
loaded in two wrs and the direct sum between the wrs is made and stored
in one output wr. It puts the samples side by side in the 128bits-wide wrs.
Therefore 8 samples can fit the whole capacity of a wr. Then, a loop over
these groups retrieves the n-samples result.

This implementation is however dangerous considering the possible over-
flows of the additions. Because there are 24 microphones in the array, 24
times 16bits-samples are added to obtain the dsb output. An overflow of at
most dlog2(24)e = 5bits can happend. Therefore, the output result should
be coded with at least 5bits more than the inputs.

The second implementation avoids overflows completely by casting the
result samples on 32bits and by outputting them via 2 wrs. It means
also that the data has to be manipulated outside the wrs and that more
operations are needed to retrieve the output samples from the two wrs.

Section 6.2 gives the results of these analyzes in terms of execution speed
and isef usage.

Concerning the normalization, which is a division operation (or a floating
point multiplication), isef can not achieve any optimization. Indeed, it can
neither handle division nor floating point operations. The normalization has
therefore to be done by the fpu with no possible optimization.

The global DSB algorithm.

Concerning the complete computation of the dsb algorithm over the 24
channels, figure B.14 shows the data flow and the structures that are used
for this implementation.

As for the cross correlation, the data is initially stored in the main mem-
ory and each frame1 that has to be computed by the isef is first transfered
to the dataram. The result frame always stays in the dataram whereas
the input frames are loaded one after another at the same address. The
function compute_dsb() extracts the current groups of samples that p_dsb
and p_frame point (respectively to the result and the input frames). The

1NB: the frame mechanism (cf. chapter 3) is not used here. The frames do not overlap;
they represent contiguous blocks of data in the input file.

CHAPTER 5. THE BEAMFORMING IMPLEMENTATION. 51

samples are loaded into the wrs and the ei dsb_isef operates. The result is
stored back so that it is reused during the addition of the next channel.

Note that the calculation of the delays is done by the cpu in the alu
and the fpu. Then, as in Matlab R©, the values are casted to integers so that
they can be added to the value of the pointer p_frame. Therefore, a shifting
of the beginning of the frame is applied depending on the current channel
number and its associated delay.

5.3.2 GSC implementation.

The work on gsc on the stretch was limited in time and no working imple-
mentation is currently available. Nevertheless, this section gives the prin-
ciple of the gsc algorithm that was set up and possible optimizations for
it. Figure B.15 summarizes the data flow for this solution. On this figure,
the links that are referred by numbers are supposed to be transfers of small
amount of data over the wrs. The reader has to imagine that these groups
of samples come from the right place as the mechanism of pointers would
have been to complex to depict.

Arithmetic operations.

The first principle of the gsc optimization is to run the upper and lower
branches of figure 5.7—respectively the dsb the bm algorithms—in parallel.

If one wants to use the isef for it, the arithmetic operations of both
algorithms can be computed by the same ei in the isef. Indeed, as the
same data is needed for both algorithm, the number of loadings to the wrs
would be reduced.

For a further use of the bm outputs by the filters—that are also supposed
to run on the isef in a second time—the frame results are stored temporarily
in the ers.

The following memory places have to be allocated in the ers.

• prev_frame, a table that keeps the previously added frame in order to
compute one output of the bm.

• res_bm, a two dimensional table to store the bm outputs.

The adaptive filters.

Several filters have to be applied on the bm outputs. The filters has the
priority to be implemented in the isef because they use more ressources
than the other calculations. The coefficients renewing is not an expensive
calculation but it is beneficial to compute it in the isef too so that its result
can be easily reachable by the filtering operations. For these reasons, the
current weights for each filter are stored in the ers. The major problem of

CHAPTER 5. THE BEAMFORMING IMPLEMENTATION. 52

the renewing operation is that for each step, the previous result of the gsc
beamformer has to be available.

The filters needs several tables in order to work properly.

• res_bm, the two dimensional table that stores the bm outputs.

• weights, a two dimensional table for the filter weights (it represents
the Wm(k)).

One of the main problems of the adaptive filter algorithm is that (5.10)
returns floating points values. These values cannot be directly used in isef
because it is now well known that it can not handle such formats. Further-
more, it is part of the algorithm that the values of the weights stay so low
that casting them to integers would destroy their physical meaning. The
values have first to be scaled up to preserve the desired number of signifi-
cant digits and then a cast can be operated. It affects the filter’s output by
the same scaling factor. Therefore, the inverse scaling has to be performed
by the fpu as soon as the data leaves the isef.

Chapter 6

Performance analyses.

6.1 Performances of cross correlation.
This section gives a complete report of the performance achievements for
the different algorithms of cross correlation that were described in section
4.3. It also discusses the drawbacks and the advantages of each solution.

In order to refer to the cross correlation solutions easily, the following
references are given:

i. straightforward implementation for which the isef is not used.

ii. square decomposition (b = 4) with isef and wrs.

iii. diagonal decomposition (b = 4) with isef and wrs.

iv. linear decomposition (b = 40) with isef and wrs.

v. square decomposition (b = 4, 6, and 8) with isef and iram.

vi. diagonal decomposition (b = 4) with isef and iram.

For each solution that uses the isef, the memory transfers between the
main memory and the dataram can be done with or without dma. These
cases are going to be reported separately.

6.1.1 ISEF’s ressources usage.

Tables 6.1 and 6.2 respectively report the isef’s usage of implementations
that use the wrs (ii, iii, and iv) and the iram (v1) for the 8bit resolution
case.

1In implementation v, the extension instruction add_cross() merges 3 output samples
in the b = 8 and b = 6 cases. For b = 4, either 2 or 7 samples are merged; both versions
are referred in the tables respectively as (1) and (2).

53

CHAPTER 6. PERFORMANCE ANALYSES. 54

f always refers to the simulated achieved isef’s frequency for an issue
rate of 1; the issue rate (ir) is derived from it. Max. cycles refer to the
maximum output write cycles of the ei.

In the second table, 10 banks of the iram over 32 were used for each
implementation. Note that there is no difference in isef’s usage whether
dma is used or not.

ei b mus/8192 aus/4096 f(MHz) ers/4096 ir Max. cycles
ii 4 2048(25%) 180(55%) 300 0(0%) 1 14
iii 4 4096(50%) 2448(55%) 232 574(14%) 2 20
iv 40 5120(63%) 2216(86%) 154 1552(37%) 2 8

Table 6.1: isef’s usage of the extension instructions for cross correlation
with wrs.

ei b mus/8192 aus/4096 f(MHz) ers/4096 ir Max. cycles
v 8 8192(100%) 3533(86%) - 339(8.3%) - -
v 6 4608(56%) 2926(71%) 185.2 273(6.7%) 2 10
v 4(1) 2048(25%) 2951(72%) 234.5 52(1.3%) 2 16
v 4(2) 2048(25%) 3400(83%) 105 172(4.2%) 3 14
vi 4 2048(25%) 3464(84%) 128 53(1.3%) 3 17

Table 6.2: isef’s usage of the extension instructions for cross correlation
with iram.

6.1.2 Cycles count and execution time.

Table 6.3 and 6.4 reports the Xtensa’s cycles count and the corresponding
execution time for the best versions of implementations i, ii, iii, iv, and
v. These numbers provide the Xtensa’s capabilities to run both a frame of
100ms and a whole file when applying the frame mechanism see in 3. The
input resolution is 8bits and the sampling frequency is 8kHz.

ei b dma cyclesframe tframe (ms) cyclesfile tfile (ms)
i - 7 2,138,951 7.1 124,950,739 417
ii 4 7 447,503 1.5 40,751,422 136
ii 4 3 423,605 1.4 44,353,896 148
iv 40 7 296,061 1.0 30,955,049 103
iv 40 3 294,757 1.0 35,085,588 117

Table 6.3: Cycles count for algorithms that use wrs and a 8bits input
resolution.

CHAPTER 6. PERFORMANCE ANALYSES. 55

ei b dma cyclesframe tframe (ms) cyclesfile tfile (ms)
i - 7 2,138,951 7.1 124,950,739 417
v 6 3 593,050 1.9 - -
v 4(1) 3 600,038 2.0 54,284,649 181
vi 4 3 562,839 1.9 52,386,719 175

Table 6.4: Cycles count for the algorithms that use iram and a 8bits input
resolution.

N.B.: as seen in section 4.3, the meaning of the value of b for linear
decomposition slightly differs from the others decompositions. It is therefore
normal to have a greater value here; it does not mean necessarily that more
multiplications are performed per ei.

Note also that table 6.4 does not give the results for the b = 6 and b = 8
cases. Indeed problems occur during the compilation of the b = 8 case with
bit-file generation (cf. section 6.1.5). When b = 6 the simulator’s watchdog
can not handle the computation of the whole file and no tests were made
with the remote mode. Table 6.5 reports the 16bits resolution case, only the
linear version (iv) was tested because it was the most efficient for the 8bits
case. It is compared with the reference-solution i.

ei b dma cyclesframe tframe (ms) cyclesfile tfile (ms)
i - 7 6,372,732 21.2 344,308,116 1148
iv 20 7 1,129,227 3.8 88,019,443 293
iv 20 3 1,126,868 3.7 95,584,729 319

Table 6.5: Cycles count for algorithm iv with a 16bits input resolution.

6.1.3 Real time considerations.

In order to match the system’s expectations, the following references were
given: a frame size of 100ms and frame shift of 20ms would enable to detect
correctly the maximum of the cross correlation of the signals (cf. section
2.3). The real-time condition is then to achieve a cross correlation between
two frames of 100ms in less than 20ms. Otherwise, either frame size or frame
shift has to be adjusted in compliance with performance results and global
application matters (i.e., which size and shift are needed as a minimal way
to detect the phenomena correctly).

Table 6.6 shows the approximative limitations of configurations i and v
(the most critical ones) for a 8bits input resolution. It gives the maximal
number of input samples that can be processed by each of them in less
than 20ms. And as a result, if it is possible to use them for each of the

CHAPTER 6. PERFORMANCE ANALYSES. 56

given sampling frequencies. In each case, the maximum duration of an
hypothetical frame is given.

ei b Max. frame size 8kHz 16kHz 32kHz 48kHz
i - 1400 175ms 3 88ms 7 44ms 7 29ms 7

v 8 3000 375ms 3 188ms 3 94ms 7 63ms 7

v 6 2000 250ms 3 125ms 3 63ms 7 42ms 7

v 4(1) 1800 225ms 3 113ms 3 56ms 7 38ms 7

v 4(2) 1080 135ms 3 68ms 7 34ms 7 23ms 7

Table 6.6: Limitations of the algorithms in terms of input frame size, con-
sidering the real-time problem.

For a sampling frequency of 8kHz, all configurations are fast enough for
real-time in this case. But when the the amount of samples gets bigger,
some of the configurations can not handle real-time any more. Let us not
forget either that this table is valid in the 8bits resolution case and that the
audio inputs of the board can also handle 16bits resolution.

6.1.4 ISEF’s capacity analysis.

The isef has to be exploited to its maximum as it is the fastest place for
computation on the board. From the number of available mu in the isef,
the number of possible multiplications between samples of a given resolution
can be derived. Then, from the number of needed multiplications for a cc,
the maximum number of input samples is easily derivable.

Let us assume the example of a cc between two frames of size N whose
elements have a 8bits resolution. The square decomposition algorithm as it
is described in figure 4.2 is used. The number of mu in the isef equals 8192;
the largest computable cc is an 8× 8 cc. It means that two mus compute
the result and the carry of the multiplication between two bits.

This reference can be used to predict the number of mu that an imple-
mentation will need. Furthermore, Stretch R© provides reference that gives
the number of au and mu for each possible operation in the isef. Never-
theless, these predictions are not always right; indeed the number of needed
ressources as well as the way isef uses them is variable and most of the time
unpredictable. The coding style has also an influence on isef’s usage.

6.1.5 The routing ressources problem.

As seen earlier in this section, some implementations are not runable on the
board. Even if they fit the isef in terms of mus and aus, the compilation
is not possible on the board because the bit-file can not be created.

It happens often when the implementation uses the isef too much—
more than 85% of the computation units in the tested implementations.

CHAPTER 6. PERFORMANCE ANALYSES. 57

This is due to an excessive use of its routing ressources. Indeed, even if all
the computation units of the isef are not used, there might not be enough
paths available to transfer data between them. Those routes are the so-called
routing ressources.

The main problem is that it is not possible to predict exactly the number
of routing ressources that an implementation will use before trying to com-
pile with bit-file generation. Contrary to the computations units—for which
Stretch R© documents some ways of quantification (cf. previous section)—
the lack of routing ressources is always hard to predict and the developper
should always try to use them as few as possible.

To do so, the best solution would be to limit the flow of data in the
isef (therefore, one should have an vision of how the ei is interpreted in it).
The most straightforward solution is to reduce the implementation depth
into the isef (i.e., in our case, to reduce the value of b). Although the
number of needed multiplications always stays the same for the calculation
of a frame, the smaller is b, the more complicated is the handling and the
smaller becomes performance.

6.2 Performances of beamforming.

6.2.1 The addition operation optimization.

This section gives the result of the reduced-addition operation analysis that
was described in section 5.3. The isef version uses only a small amount of
ressources: only 128 arithmetic bits are needed. Note that 128 corresponds
to the bitwidth of a wr: each arithmetic bit computes an addition between
two bits and outputs a carry.

Furthermore, this isef configuration returns an output in only 5 eu and
is runable with an issue rate of 2. It means that the computation of the
addition operation between two groups of eight 16bits-samples takes 9 cpu-
cycles (I, R, E, W, 5×EU) with the wr whereas it takes about 60 cycles
with the alu. The major problem is that for each group of 8 samples, the
wrs have to be loaded again and the result has to be stored in memory.
These are the most time-consuming operations.

mus/8192 aus/4096 f(MHz) ir Max. cycles
0(0%) 128(3.1%) 234 2 5

The implementation that outputs a result on 32bits needs obviously more
ressources as more computations are made by the isef to process the same
number of input samples. The usage it makes of the isef is given here.

Figure 6.1 gives the evolution of needed cycles when the number of total
additions n increases. On the figure:

CHAPTER 6. PERFORMANCE ANALYSES. 58

mus/8192 aus/4096 f(MHz) ir Max. cycles
0(0%) 160(3.9%) 298 2 3

• squares represent the case with no isef with a result on 16bits.

• rhomboids represent the case with isef with a result on 16bits.

• stars represent the case with no isef with a result on 32bits.

• circles represent the case with isef with a result on 32bits.

Figure 6.1: Number of cycles needed by the addition implementations.

One can easily see that the isef implementations curves have a lower
slope their respective reference without isef. They become lower for values
of n over about 100 (which is likely to be always the case in the application).
It is also visible that the curves for isef implementations are not linear and
that therefore, the square line might go over the circle one (i.e., all the isef
implementation might end up to be more efficient that the others).

6.2.2 Results of the DSB implementation.

For the global computation, table 6.7 gives the calculation times and the
number of cycles for the implementations of the addition operation on a
whole file of 1s. It represents the performances of the delay and sum algo-
rithms on 24 channels, with (.norm) or without the 1

N normalization.
The previous assumption was right: all the isef configurations become

more efficient when n is great enough. Concerning real time, these imple-
mentations compute the dsb algorithm on 24 files of 1s in less than 50ms.
This obviously fast enough to compute this algorithm in realtime.

CHAPTER 6. PERFORMANCE ANALYSES. 59

Output resolution isef cycles t (ms) cyclesnorm tnorm (ms)
16bits 7 11,032,850 36.8 13,749,752 45.8
16bits 3 7,797,643 26.0 10,575,283 35.3
32bits 7 11,697,912 39.0 14,552,414 48.5
32bits 3 10,314,584 34.4 13,166,149 43.9

Table 6.7: Cycles count for addition algorithms.

6.2.3 Audio considerations.

As told before, the aim of beamforming on a single speaker is to enhance its
speech. In order to quantify the improvements of a beamformer in this case,
the snr improvement between one of the inputs xi(t) and the beamformer’s
output is a precious information.

In the two speakers case, the beamformer performs a separation of the
speeches. Here, several signals are mixed and it is hard to quantify the fall
of one speech in particular. Along snr, [10] gives other means of perfor-
mance measurement in blind source separation. In particular, the Source to
Interferences Ratio (sir) gives a good idea of the algorithms performances.

The principle of the performance measures described in [10] is to de-
compose the beamformed output signal s(t) of a source si(t) as the sum
s(t) = si(t) + einterf(t) + enoise(t) + eartif(t) where einterf(t) represents the
sources which accounts for the interferences of the unwanted sources, enoise(t)
is the disturbing noise (but not the sources), and eartif(t) is an “artifact” term
that may correspond to artifacts of the separation algorithm. Then, the sir
is given as (6.1).

SIR = 10 log10
‖si‖2

‖einterf‖2
(6.1)

It means that the exact original signal si or an accepted version of it
(i.e., a good capture of it with no interferences) has to be at disposal.

Qualitatively, the estimate of the undesired speech removal is done by
listening at the output result. Although an improvement can be heard, the
results are not promising. Indeed, the tested algorithm are not performant
in echoic environments. In this case, some reverberations of the undesired
signals arrive to the array in the steered direction: they are therefore consid-
ered as part of the desired signal by the beamformer and can not be removed
efficiently with basic algorithms.

CHAPTER 6. PERFORMANCE ANALYSES. 60

6.3 Conclusions on performances.

6.3.1 Conclusions on the cross correlation performances.

All the implementations that use the isef are faster that the computation
with the alu only (i). It confirms that using the isef is a way of increasing
performances. Furthermore, implementations that do not use the iram (ii,
iii, and iv) are in any case faster than the other ones (v, vi). Use of iram is
a bit complicated and should therefore be used when the application really
needs it only. When one needs to use iram, it is however recommended to
use dma transfers to load the data directly into it: the performances are in
this case much better.

Implementation iv is clearly the fastest. Compared with implementation
i and from a frame point of view, iv decreases the number of cycles about 7.3
times in the 8bits case and about 5.7 times in the 16bits case. The difference
between implementations is often the number of loaded samples per block;
the level of block overlapping (i.e., the number of samples that are needed
from one block to the other) of the decomposition is an important factor.
Furtermore, the way that the algorithm merges the blocks into shall not be
too complicated either: the diagonal and linear decompositions are the best
regarding that.

Looking at the calculation of one frame, the approaches that use DMA
are faster than the other but it is the opposite for a whole file computation.
dma initialization causes partly this difference and therefore, using dma for a
streaming algorithm would be preferable. Finally, isef’s ressources usage is
to consider relatively to algorithm performances. Indeed, the application has
to run not only the cross correlation algorithm but also other computations
that may need the isef as well. The main problem resides in the prediction
of the amount of ressources that an implementation needs.

6.3.2 Conclusions on the beamforming performances.

The analysis of the addition operation on reduced cases showed the advan-
tages of the isef solutions compared to the others. Nevertheless, for real
cases of computations, they are less than 1.5 times faster that the others con-
sidering the number of cpu cycles. It is hard to improve addition efficiently
mainly because the alu computes this operation already fast. Indeed, it is
efficient enough to run in real time.

Therefore, the dsb algorithm shall not have priority for implementation
on the isef. Nevertheless, regarding the low cost of this operation in terms
of ressource consumption, its implementation can only be beneficial if a part
of the isef is still available.

Concerning the implementation of the gsc, there is no possible con-
sideration of speed performances as told in section 5.3. Some advantages
regarding its implementation on the board are however noticeable. First,

CHAPTER 6. PERFORMANCE ANALYSES. 61

let us notice that data transfers to the isef are often costly as its input
width is somewhat narrow. Some processes of the gsc algorithm are highly
related between each other; they share common inputs and results. This
characteristic reduces the isef weak points as input data have to be loaded
only once for different operations.

Moreover, let us not forget that the beamforming and the source local-
ization algorithms have to run together on the same board in real time.
When combining the results of sections 6.1 and 6.2, one can see that it is
doable. Access to the isef stays really limited though and optimization with
this ressource has to be reserved to the most consumming algorithm.

Conclusion.

There are various way to optimize the implementation of an algorithm, each
one at its level. Finding mathematical simplifications in the calculations is
the first possibility. Then, by analyzing the physical meaning of the com-
putation as well as its precision needs, one can adjust the amount and the
quality of both input and output data. Therefore, resolution, sampling fre-
quency, frame length, and frame shift are configurable depending on the
desired speed achievements. Finally, modifications on hardware processing
of the data are in our case the best possible optimizations. Controlling mem-
ory places and calculation units can indeed increase the speed of routines.

However, this way of optimization needs a perfect knowledge of the board
functioning. Hence the first task is to acquaint oneself with the board speci-
fications. The Stretch R© board has some non negligible advantages regarding
fast computation. Its hybrid layout makes it flexible; in fact it is rare to
make cpus and reprogramable hardware interact this way. The high po-
tential of computation of the isef makes the algorithms significantly faster.
But this thesis also showed the drawbacks of the board. In particular, the
isef always caught the attention because of its small capacity and its narrow
inputs. Because of that, the data is transported little by little to it.

Generally, one of the main problems was to adapt the several algorithms
to the board specificities and especially to the isef’s shape. Considering its
relative low capacity of computation, the calculations had to be split into
groups; it led to the so-called “decompositions”. For each one of them, a
merging algorithm had to be found. The amount of data in the decomposi-
tion’s groups (i.e., the data that the isef processes in one ei) was often the
limiting factor of the implementations in terms of performances. Indeed,
the more this amount is low, the less the processing is efficient; it is notably
due to the memory transfers times.

Future works.
Concerning the hardware part, there are still unexplored zone of the board
that could be used to increase performances. First, the time of reconfigu-
ration of the isef is currently really competitive in the market. This small

62

CHAPTER 6. PERFORMANCE ANALYSES. 63

latency was not used in this thesis but it enables fast changes of isef config-
uration that could be useful to solve its problem of capacity. Then, one has
to use the presence of several processors on the same board to its best advan-
tage. Indeed, multithreading is often beneficial for applications with parallel
computations. Therefore, one should study the pa network functioning into
details. Besides optimization of the current algorithms, these features could
enable the use of more complex processes. That would notably be advanta-
geous to counter the effects of echoic environments on beamforming.

Unfortunately, a deep analysis of the execution of the algorithms on the
board and in real conditions has not been carried out. Only a small amount
of tests were made. In oder to run the algorithms on the board, the audio
inputs mechanisms have to explored as well.

Appendix A

Source code.

Notice on source files.
The source files are available upon request at this address:
mailto:boris.clenet@insa-rennes.fr.

Cross correlation.

Regarding source files organization, every implementation of the cross cor-
relation has the same structure. The main function main_*.c is the same
for every implementation, it only differs whether dma is needed or not.
main_no_dma.c and main_dma.c refers to these cases. The main functions
also handle the interface with audio files. They will be reported only one time
each and for the 8bit resolution case. When using iram, main_dma_iram.c
is used.

Then, each implementation needs a cross_*.c and a cross_*.xc file. For
example cross_ii.c refers to algorithm ii. Implementation i is the only one
that does not need a *.xc file because it makes no use of the isef. Further-
more, it does not use the dma version of the main file. The cross_*.c handle
the computation of a frame and the cross_*.xc of a block. Only the case
b = 4(1) is reported for implementation v.

Finally, cross.h is a header file that calls all the needed libraries and
declares the structure for RIFF-WAVE files handling.

Beamforming.

Files main_beam.c refers to the main file that is common to all the imple-
mentations of the dsb. It mainly handles the interface with audio files.

Then, dsb_functs_*.c contains the functions that calculates the delays
and that computes the sum loop. The *.xc files are the isef configurations.
“32” refers to the case that deals with output samples on 32bits and “wr”
when isef is used.

64

mailto:boris.clenet@insa-rennes.fr

Appendix B

Figures.

Figures of chapter 1.

Figure B.1: Picture of the VRC6016 card.

Figure B.2: VRC6016 board layout.

65

APPENDIX B. FIGURES. 66

Figure B.3: VRC6016 board block diagram.

Figure B.4: Architecture of the Xtensa processor.

APPENDIX B. FIGURES. 67

Figure B.5: Pipeline view of the Stretch ide.

Figure B.6: The profiling functionality.

APPENDIX B. FIGURES. 68

Figures of section 4.3

MAIN MEMORY

File 1 File 2 CC result

DATARAM

Frame 1 (x) Frame 2 (y) CC frame (res)

ISEF

WRA WRB
WRAo WRBo

b b

CROSS_ISEF()

WRAo WRBo

WRAi WRBi

2b-1

WRAo WRBo

WRAi WRBi

Pointers

Figure B.7: Data flow in the case of isef use with square decomposition.

MAIN MEMORY

File 1 File 2 CC result

DATARAM

Frame 1 (x) Frame 2 (y) CC frame (res)

ISEF

ER

WRA WRB

WRAo WRBo

b

olda[b] sumhor[b]

b

sumver[b]

CROSSONISEF()

WRAo WRBo

WRAi WRBi

GETFROMER()

WRAi WRBi WRBiWRAi

Normal

block.

Border

block.

WRBoWRAo

Figure B.8: Data flow in the case of isef use with diagonal decomposition.

APPENDIX B. FIGURES. 69

MAIN MEMORY

File 1 File 2 CC result

DATARAM

Frame 1 (x) Frame 2 (y) CC frame (result)

ISEF

ER

INIT.() CROSSONISEF()

WRA WRB

WRAo

WRAi

WRBo

WRBi

b 1

WRAo WRBo

A[] (Elts. of x) B[] (CC result)

GETFROMER 1..5()

WRAo WRBo
WRAi WRBi

Figure B.9: Data flow in the case of isef use with linewise decomposition.

MAIN MEMORY

File 1 File 2 CC result

IRAM

Frame 1 (frame1) Frame 2 (frame2) CC frame (res)

ISEFER

init()

cross_isef() add_cross()

indexes_update

Indexes (rank)

buffer (xcorr1)

CC +

Figure B.10: Data flow in the case of iram use.

APPENDIX B. FIGURES. 70

Figures of section 5.1

Figure B.11: Room organization for the recordings.

The angular positions of the sources are, by increasing order of number
(from 1 to 8), 15, 342, 229, 241, 220, 155, 256, and 74◦.

s

η

θs = 70°

θη = 10°

Figure B.12: Configuration with two sources.

APPENDIX B. FIGURES. 71

T
im
e
.

T
im
e
.

Microphone
number.

Microphone
number.

D
e
la
y.

S
u
m
.

T
im
e
.

1
5
°

7
5
°

1
5
°

7
5
°

Figure B.13: The DSB “alignment” principle.

APPENDIX B. FIGURES. 72

Figures of section 5.3

MAIN MEMORY

DSB result

DATARAM

Frame channel i DSB frame

ISEF

WRA WRB
WRAo WRBo

b

DSB_ISEF()

WRAo WRBo

WRAi WRBi
WRAo WRBo

WRAi WRBi

Pointers

Channels
(inputs)

b

Delays i

Figure B.14: Data flow of the dsb implementation.

MAIN MEMORY

GSC result

DATARAM

Frame channel GSC frame

ISEF

DSB_ISEF()

Channels
(inputs)

ER

BM_ISEF() FILTER()

res_bm weights

prev_frame

RENEW_W()

DSB frame

1

2

1 2

3

1 3

4 5

4
4

2

+

-

Figure B.15: Data flow of the gsc implementation.

.

Bibliography

[1] Matthias Wölfel and John McDonough, Distant Speech Recognition. Wi-
ley, 2009.

[2] Jacob Benesty, Jingdong Chen, and Yiteng Huang, Microphone Array
Signal Processing. Springer, 2008.

[3] Jian Li and Petre Stoica, Robust Adaptive Beamforming. Wiley, 2006.

[4] Kidiyo Kpalma and Véronique Haese-Coat, Traitement Numérique du
Signal. Ellipses, 2003.

[5] Lukas Ottowitz, Acoustic Source Localization with a Circular Micro-
phone Array. Master Thesis, SPSC, TU Graz, March 2008.

[6] Stretch R©, Inc. Documentation and Help.

[7] Bin Huang, Chong Zhu, Wei Fan, Yu-Fu Tao, and Quing-ning Zeng, Mi-
crophone Array Speech enhancement Based on Filter Bank Generalized
Sidelobe Canceler. Education Technology and Computer Science, March
2009.

[8] Fei Huang, Wei-xing Sheng, and Xiao-feng Ma, Robust partially adap-
tive array processing based on generalized sidelobe canceler. Microwave
Conference, December 2008.

[9] Cha Whang, Demba E. Ba, and Zhenyou Zhang, Maximum Likelihood
Sound Source Localization and Beamforming for Directional Microphone
Arrays in Distributed Meetings. Journal of LATEXclass files, January 2007.

[10] Emmanuel Vincent, Rémi Gribonval, Cédric Févotte, Performance
Measurement in Blind Audio Source Separation. IEEE Trans. on audio,
speech, and language processing, July 2006. http://bass-db.gforge.
inria.fr/bss_eval/.

[11] Hai Huyen Dam, Seven Nordholm, Siow Yong Low and Kok Lay Teo,
Steerable far-field Circular Array. Communications Theory Workshop,
February 2006.

73

http://bass-db.gforge.inria.fr/bss_eval/
http://bass-db.gforge.inria.fr/bss_eval/

BIBLIOGRAPHY 74

[12] Nikolaos Mitianoudis and Michael E. Davies, Using Beamforming in
the Audio Source Separation Problem. Signal Processing and Its Appli-
cations, July 2003.

[13] Nikolaos Mitianoudis and Michael E. Davies, Audio Source Separation
of Convolutive Mixtures. IEEE Trans. on Speech and Audio Processing,
September 2003.

[14] Terence Betlehem and Robert C. Williamson, Acoustic Beamforming
Exploiting Directionality of Human Speech Sources. Acoustics, Speech,
and Signal Processing, April 2003.

[15] Jianfeng Chen, Louis Shue, and Senjin Liu, Fixed Blocking Matrix for
Robust Microphone Array Beamforming. Signal Processing and its Ap-
plications, July 2003.

[16] Hiroshi Saruwatari, Shoji Kajita, Kazuya Takeda, and Fumitada
Itakura, Speech Enhancement Using Nonlinear Microphone Array With
Complementary Beamforming. Acoustics, Speech, and Signal Processing,
March 1999.

[17] Osamu Hoshuyama, Akihiko Sugiyama, and Akihiro Hirano, A Robust
Adaptive Beamformer for Microphone Arrays with a Blocking Matrix
Using Constrainted Adaptive Filters. IEEE Trans. on signal processing,
October 1999.

[18] Osamu Hoshuyama and Akihiko Sugiyama, A Robust Generalized Side-
lobe Canceler with a Blocking Matrix Using Leaky Adaptive Filters. IEEE
Trans. on signal processing, October 1997.

[19] Barry D. Van Veen and Kevin M. Buckley, Beamforming: A Versatile
Approach to Spatial Filtering. IEEE ASSP Magazine, April 1988.

[20] Henry Cox, Robert M. Zeskind, and Mark M. Owen, Robust Adaptive
Beamforming. IEEE Trans. on acoustics, speech, and signal processing,
1987.

[21] Lloyd J. Griffiths and Charles W. Jim, An Approach to Linearly Con-
strained Adaptive Beamforming. IEEE Trans. on antennas and propaga-
tion, January 1981.

	Introduction.
	Introduction to the board.
	Overview of the board.
	The Xtensa processor.
	The pipeline structure.
	Issue Rate.

	Use of software.
	Defining and using EIs.
	Handling the wide registers.
	Handling the IRAM.
	The BIOS.

	Development environment.
	Report files.
	Pipeline View.
	Profiling.

	Introduction to the application.
	Application purpose.
	Microphone arrays theory.
	Source localization.
	Beamforming.
	Important notions.
	Spatial aliasing.
	Near and far field assumptions.

	Managing audio inputs.
	Simulating audio inputs.
	The frame mechanism.
	DMA transfers and resolution.

	The cross correlation computation.
	Theory of cross correlation.
	Motivations.
	Mathematical description of the cross correlation.

	Cross correlation implementation in Matlab®.
	Comparison of two audio files in Matlab®.
	The cross correlation operation in Matlab®.

	Cross correlation implementation on the board.
	Simple implementation without the ISEF.
	Using the ISEF and WRs.
	Using the IRAM.

	The beamforming implementation.
	Theory of beamforming.
	Precisions and measurements specifications.
	Delay and sum beamforming.
	Generalized sidelobe cancelling.

	Beamforming implementation in Matlab®.
	The DSB algorithm.
	The GSC algorithm.
	Audio comparisons.

	Beamforming implementation on the board.
	DSB implementation.
	GSC implementation.

	Performance analyses.
	Performances of cross correlation.
	ISEF's ressources usage.
	Cycles count and execution time.
	Real time considerations.
	ISEF's capacity analysis.
	The routing ressources problem.

	Performances of beamforming.
	The addition operation optimization.
	Results of the DSB implementation.
	Audio considerations.

	Conclusions on performances.
	Conclusions on the cross correlation performances.
	Conclusions on the beamforming performances.

	Conclusion.
	Source code.
	Figures.
	Bibliography

