
Institute of Broadband Communication (Univ.-Prof. Dipl.-Ing. Dr.techn. Gernot Kubin)

Faculty of Electrical and Information Engineering

Graz University of Technology

Theory, Implementation and Evaluation

of the Digital Phase Vocoder

in the Context of Audio Effects

Bachelor Thesis, Telematics

Author
Johannes Grünwald

Advisor
Dipl.-Ing. Dr.techn. Werner Magnes

Graz, July 2010.

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used

other than the declared sources / resources and that I have explicitly marked

all material which has been quoted either literally or by content from the used

sources.

Graz, July 8, 2010

Johannes Grünwald

ABSTRACT

The fast technological progress of recent decades has brought a wide range

of new possibilities to the field of electronic music. Besides analog filters, the

theory of digital signal processing motivated the development of special-purpose

processors in order to execute such sample-based algorithms on time-discrete

signals. One representative of a time-discrete signal processing concept is the

digital phase vocoder, which permits to observe and manipulate digital signals

in both time- and frequency domain simultaneously.

In this Bachelor Thesis, a comprehensive analysis of the digital phase vocoder

in musical context was carried out. At first, the necessary theory was delineated

in order to gain a basic understanding of underlying concepts. Secondly, some

popular audio effects utilizing the digital phase vocoder were described, such as

time stretching (modification of the temporal evolution of a signal but keeping

its pitch the same) and pitch shifting (modification of the signal’s pitch but

preserving its temporal evolution). Several issues arise from the conventional

implementation of these two effects, so they are discussed more in detail than

the others.

An exemplary phase vocoder was realized using the mathematical develop-

ment environment MathWorks MATLAB® which facilitated the implementa-

tion and evaluation perfectly well.

ZUSAMMENFASSUNG

Der technologische Fortschritt der letzten Jahrzehnte ermöglichte insbesondere im
Bereich der elektronischen Musik die Erschließung grundlegender neuer Gestaltungs-
möglichkeiten. Zusätzlich zu etablierten analogen Filterschaltungen konnte nun – mo-
tiviert durch die theoretischen Grundlagen der digitalen Signalverarbeitung – auf speziell
angefertigen Prozessoren die zeitdiskrete, digitale Verarbeitung von Signalen realisiert
werden. Ein populärer Repräsentant solcher digitaler Verarbeitungskonzepte ist der
Digital Phase Vocoder. Dieser ermöglicht die simultane Betrachtung und Modifikation
von digitalen Signalen im Zeit- und Frequenzbereich.

In dieser Bakkalaureatsarbeit wurde dieser Besonderheit des Phase Vocoders Rech-
nung getragen und eine eingehende Analyse in musikalischem Kontext durchgeführt.
Zunächst erfolgte die Darlegung der theoretischen Grundlagen, um der Leserin und dem
Leser ein Grundverständnis für die Arbeitsweise des Phase Vocoders zu vermitteln. An-
schließend wurden einige ausgewählte Audioeffekte präsentiert. Dabei lag besonderer
Fokus auf den größten Herausforderungen, dem time stretching (Veränderung der
Dauer des Signals bei gleichbleibender Tonhöhe) sowie dem pitch shifting (Veränderung
der Tonhöhe eines Signals bei gleichbleibender Dauer), inklusive einer Analyse der
zahlreichen Probleme, die gängige Verfahren mit sich bringen.

Die Realisierung eines beispielhaften Phase Vocoders wurde in der mathematischen
Entwicklungsumgebung MathWorks MATLAB® durchgeführt, was einer zielführenden
Umsetzung zuträglich war und flexible, umfassende Evaluierungsmöglichkeiten offerier-
te.

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

Contents

1 Introduction 6

1.1 History of the Digital Phase Vocoder . 6

1.2 The Digital Phase Vocoder and Music . 6

1.3 Motivation and Objectives for this Thesis 6

1.4 Structure of this Thesis . 6

2 Theory of the Phase Vocoder 7

2.1 Overview . 7

2.1.1 Time-Frequency Processing . 7

2.1.2 Phase Vocoder Models . 8

2.2 Mathematical Description . 9

2.2.1 Analysis Stage . 9

2.2.2 Processing Stage . 10

2.2.3 Synthesis Stage . 11

3 Audio Effects with the Digital Phase Vocoder 13

3.1 Time Stretching . 13

3.1.1 Underlying Model . 13

3.1.2 Drawbacks, Issues and Solutions 17

3.2 Pitch Transposition . 23

3.2.1 Standard Approach: Time Stretching and Resampling 24

3.2.2 Alternative Approach: Selective Peak Shifting 24

3.3 The Channel Vocoder . 26

3.3.1 Mutation between Sounds . 27

3.3.2 Dispersion . 27

3.3.3 Robotization . 28

3.3.4 Whisperization . 28

3.3.5 Denoising . 28

3.4 Conclusion and Discussion . 28

4 MATLAB® Implementation 30

4.1 Design . 31

4.2 Time Stretching and Pitch Shifting . 31

4.3 Channel Vocoder Effects . 31

4.4 Additional Utilities . 31

5 Evaluation and Conclusion 32

5.1 Determination of Optimal Settings . 32

5.1.1 Default settings . 32

5.1.2 Time Stretching / Pitch Shifting via Resampling 32

5.1.3 Selective Pitch Shifting . 34

5.1.4 Mutation between Sounds . 34

5.1.5 Dispersion . 35

5.1.6 Robotization . 35

5.1.7 Whisperization . 36

5.2 Conclusion . 36

Institute of Broadband Communication 4

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

A Appendix: MATLAB® Source Code 37

A.1 The Basic Framework . 37

A.1.1 Main Script . 37

A.1.2 Phase Vocoder Basic Script . 40

A.2 Time Stretching . 45

A.2.1 Basic Phase Propagation . 45

A.2.2 Loose Phase-Locking . 46

A.2.3 Rigid Phase-Locking: Identity Phase-Locking 47

A.2.4 Rigid Phase-Locking: Scaled Phase-Locking 48

A.2.5 Passthrough . 50

A.3 Pitch Shifting . 51

A.3.1 Selective Peak Shifting . 51

A.4 The Channel Vocoder . 54

A.4.1 Mutation between Sounds . 54

A.4.2 Dispersion . 55

A.4.3 Robotization . 56

A.4.4 Whisperization . 57

A.5 Additional Functions . 58

A.5.1 Detection of Regions of Influence getRegions() 58

A.5.2 Lagrange FIR Interpolation Filter of Order 3 60

A.5.3 Modified Gaussian Window . 60

A.5.4 Modified Hanning Window . 61

A.5.5 Principal Domain Wrapping . 61

A.5.6 Quadratic Interpolation . 62

Institute of Broadband Communication 5

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

1 Introduction

1.1 History of the Digital Phase Vocoder

When the phase vocoder1 was first described in 1966 by Flanagan and Golden, it was

intended to compress speech signals for communication purposes rather than to perform

audio effects. Actually, the word vocoder is a contraction of the words voice coder. In the

20 years that followed, a huge amount of research was done on the phase vocoder in order

to get a better understanding of the underlying technique and to facilitate the advantages

it comes with2. It was Mark Dolson in 1986 who wrote a tutorial of the phase vocoder

[Dol86] with its application in musical context in mind. From this time up to now, the phase

vocoder has been developed and improved excessively for certain musical applications and

is now widely used in the field of electronic music.

1.2 The Digital Phase Vocoder and Music

The phase vocoder utilizes the parallel modification of spectral and temporal components

of a signal. Put in other words, this means that operations in the frequency domain can be

carried out online, i.e. the input signal is processed as it arrives at the effect device. This

way of real-time spectral modification is indeed a powerful tool and can, applied to audio

signals, result in impressive audio effects. Several typical phase vocoder audio effects are

elucidated in this thesis from a theoretical and practical point of view.

1.3 Motivation and Objectives for this Thesis

Audio effect devices are hot spots where music and art meets signal theory and mathemat-

ics. Being highly interested in both the artistical and technical approach, it was a logical

consequence to choose a subject in this domain for my Bachelor Thesis.

The aim of this work is to give a comprehensive overview of the phase vocoder. This ap-

proach addresses theoretical and practical aspects, so MathWorks MATLAB® was chosen

as an implementation and evaluation framework for the realization of an examplary phase

vocoder.

Potential future work of this thesis might be the realtime implementation of the phase

vocoder on a digital signal processor (DSP) or the investigation of new audio effects using

the provided implementation as a basis.

1.4 Structure of this Thesis

This thesis comprizes two main parts that cover the theoretical and practical view on the

phase vocoder, being divided into the general theory behind of the phase vocoder and

the theory of audio effects as well as the implementation of the phase vocoder and the

evaluation of its performance.

This thesis is mainly based on [Zoe02], if not otherwise stated. In such cases, the according

literature is cited.

1In this Thesis, the terms digital phase vocoder and phase vocoder are used interchangeably.
2The interested reader may be referred to [BA70] [GR67] [CF87] [Bag78] [Loo97] [Gol80] [Fel82].

Institute of Broadband Communication 6

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

2 Theory of the Phase Vocoder

In this chapter, the phase vocoder is investigated from a theoretical point of view. In

Section 2.1, a short overview is given, sketching the the basic idea of time-frequency

processing and where the phase vocoder fits into this pattern. Additionally, the two main

models, the filter bank summation model and the block by block analysis / synthesis model

of the phase vocoder are delineated.

A formal mathematical description of the phase vocoder is deduced in Section 2.2, com-

prising the fundamental components – the analysis stage, magnitude and phase processing

stage and synthesis stage.

2.1 Overview

2.1.1 Time-Frequency Processing

frequency

time

m
ag

ni
tu
de

frequency

time

m
a
g
n
it
u
d
e

Figure 1: An exemplary waterfall plot of an acoustic signal in its time-frequency representation.

The basic idea of the phase vocoder is to edit a signal both in time and frequency. In

order to achieve this, the signal is modeled as a sum of complex exponentials with time-

varying amplitude and frequency. These attributes (commonly referred to as magnitude

and phase) can then be processed over time in any desired way. This way of alternating the

characteristics of a signal in time and frequency (modifications in both domains not nec-

essarily being dependent on each other) is termed time-frequency processing, as visualized

in Fig. 1.

Institute of Broadband Communication 7

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

2.1.2 Phase Vocoder Models

Without being familiar to further details, the phase vocoder and its mode of operation

can be interpreted in two ways, the filter bank summation model and the block-by-bock

analysis/synthesis model [Dol86]. These two approaches are shortly explained below.

Filter Bank Summation Model. One quite obvious possibility of modeling the phase

vocoder is to employ a bank of identical bandpass filters which are centered around equally

spaced frequencies. The output of each bandpass filter is then a magnitude and frequency

representation of the expected complex exponential within that band. After manipulating

these values as desired, one oscillator per band is driven with the results, contributing to

the final time-domain signal, which is gained as a sum of all oscillator signals.

Summing up, there are three major constraints that have to be imposed on the filter bank

summation model in order to accomplish decent results:

1. The frequency response characteristics of all bandpass filters must be identical except

of their center frequencies.

2. These center frequencies must be equally spaced across the entire spectrum, ranging

from 0 Hz to fs/2 where fs is the sampling frequency.

3. The combined frequency responses of all bandpass filters must be constant over the

whole spectrum.

Block by Block Analysis / Synthesis Model. A similar approach to describing the phase

vocoder is to represent the signal via succeeding Discrete Fourier Transform (DFT) frames

of length N. These frames are first multiplied by an appropriate window (such as Hamming,

Hanning, Kaiser, Blackman etc.) and then Fourier-transformed into the frequency domain.

At this stage, any prudent modifcation of the spectrum can be made, before transforming

it back to the time domain with the Inverse Discrete Fourier Transform (IDFT), where the

delayed and optionally windowed parts are overlap-added together, yielding the final result.

Thus, for a given sample value n, each value (frequency bin) of the DFT-representative

X[k, n] corresponds to the output magnitude and phase of a bandpass filter with center fre-

quency kfs/N of the model above (fs again denoting the sample frequency). The difference

in this approach is though, that the filter bank summation model emphasizes the temporal

evolution of the bandpass channels on their own, whereas the block by block analysis model

rather concentrates on the whole spectrum at a given time. Nevertheless, both models are

mathematically equivalent and the reason why both are pointed out in this thesis is that

for different applications one model suits better to understand underlying ideas.

The reader may note that if the frequency of a complex exponential and the according bin

of the DFT don’t match exactly, the phase value will evolve over time, referring to the real

frequency (also called instantaneous frequency) of the captured exponential. This fact must

be taken into account if exact frequency estimation is a demand. One standard procedure

that determines the instantaneous frequency is phase unwrapping which is elucidated in

chapter 3.1.

Concerning the constraints that are enforced upon the filter bank summation model, it

is clear that the block by block model complies with condition 1 since there are no real

bandpass filters implemented. Furthermore, condition 2 is fulfilled by the inherent property

of the DFT that it corresponds to the Discrete-Time Fourier Transform (DTFT), which is

Institute of Broadband Communication 8

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

sampled at equidistant points [OS09a]. Requirement 3 is obsolete as well due to the fact

that the DFT and IDFT are exactly inverse to each other, hence an identity operation in

the frequency domain yields an output signal exactly identical to the input signal.

One issue arises from employing this model. As it is known, spectral components that

don’t exactly correspond to a frequency bin of the DFT, spread their energy across several

adjoining bins. This effect is called smearing or leakage [Lyo96] and can be greatly reduced

by windowing the input frames appropriately [OS09b].

Conclusion. The two models described above offer different possibilities how the phase

vocoder can be interpreted. The latter of both provides a somewhat more practical point of

view since the DFT and IDFT can be efficiently implemented by the Fast Fourier Transform

(FFT) and Inverse Fast Fourier Transform (IFFT), respectively. In the context of digital

signal processing this is very considerable since FFT algorithms reduce the complexity

from O(n2) to O(n log n). This is one of the reasons why a lot of research was done on

implementing the phase vocoder via the FFT [Por76] [AR77].

2.2 Mathematical Description

In this subsection, the phase vocoder will be presented from its mathematical point of

view. To relate theoretical and practical aspects as close as possible, the definition bases

on a both a discrete time and discrete frequency domain3. This way differs from most

approaches in the literature but seems suitable in this context.

The starting point of defining the phase vocoder are the DFT and IDFT, both defined as

X[k] =

N−1∑
n=0

x [n]e−2π
k
N n DFT Analysis Equation, (1)

x [n] =
1

N

N−1∑
k=0

X[k]e2π
k
N n DFT Synthesis Equation. (2)

This transform is the main part of putting the input signal into the frequency domain

and the modified spectrum back into the time domain again. The corresponding stages

are called analysis stage and synthesis stage, surrounding the processing stage where the

spectral alterations are carried out. These three main steps are described below [Cro80]

[LD99a]. The reader may be referred to Fig. 2 on page 12 as an unliteral representation

of the explanations below.

2.2.1 Analysis Stage

At the analysis stage, successive DFT frames are taken from the input signal x [n] at the

positions nua = uRa, where Ra is termed input hop size or analysis hop size and u being

integer-valued. Given the length of the DFT as N, the input hop size is most likely (if not

necessary at all) a submultiple of it. Common values are N/2, N/4 and N/8, depending on

the analysis window and the required performance [DGBA00]. These values let the frames

overlap by 50 %, 75 % and 87.5 %, respectively.

3Note: Arguments in this thesis are covered with braces if they are continuous (e.g. f (t)) and with

brackets if they are discrete (e.g. x [n]).

Institute of Broadband Communication 9

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

Each of these input frames is then multiplied by an arbitrary analysis window ha[n]. It

is clear, that in order to achieve a perfect reconstruction of the signal, the analysis and

synthesis windows must produce a constant sum over time if they are overlap-added by

themselves. Furthermore, it is good practice to choose windows like Hamming, Hanning

etc., since they provide the property that the sum of these windows, separated by a hop

size of N/g, is constant for powers of them up to g − 1 [Puc95].

The equation

X[nua , k] =

N−1∑
n=0

x̃u[n]e−2π
k
N n (3)

with xu[n] = ha[n]x [n − nua]

yields a frequency representation of the windowed input frame u at position nua . X[nua , k] is

now both depending on time (via nua) and frequency (via k). Successive Fourier Transforms

of a signal are also called Short-Time Fourier Transforms (STFTs). Eq. (3) provides the

basic mathematical framework for the time-frequency representation of a given input signal

x [n] in frames of length N at consecutive positions nua .

Referring to the term x̃u[n] in Eq. (3), one important remark in terms of implementation of

the phase vocoder should be explicitly pointed out: Since the analysis window is necessarily

symmetric around N/2, this operation will incorporate a linear phase contribution of eπk

to the spectral representation4. This becomes obvious after inspecting [OS09c, table 8.2:

property 13, property 5] where it is stated that a series of even symmetry results in a

real-valued DFT and a circular shift in the time domain imposes a phase shift on the

Fourier Transform. To avoid this impractical phase jumps across the frequency bins, the

windowed input frame xu[n] is again circularly shifted by N/2 samples (denoted as x̃u[n])

to compensate this phase shift. In formal terms, this circular shift of a sequence x [n] is

defined as

x̃ [n] = x [((n − N/2))N], ˜̃x [n] = x [n] (4)

where ((·))N denotes the modulo operation and N is the length of the sequence and must be

even. This modification is common practice and has no effect on the output signal as long

as the output signal frames are circularly shifted by N/2 samples again before performing

the overlap-add procedure.

2.2.2 Processing Stage

In virtually all cases, the result from the DFT has to be converted into polar coordinates in

order to permit the desired modifications in an appropriate way as magnitudes and phases:

r [nua , k] =
∣∣X[nua , k]

∣∣ ,
ϕ[nua , k] = ∠X[nua , k] .

The processing stage involves individual algorithms and has basically nothing in common

with the structural definition of the phase vocoder. Therefore, at this stage, those opera-

4This phase contribution of eπk is not immediately visible if the Fourier-Transform of ha[n], Ha[k], is

inspected solely; it will be perceived as a ±1 alternation since the Fourier Transform of an even symmetric

signal is entirely real. But the phase jumps will turn out to be inconvenient when the spectrum becomes

complex-valued.

Institute of Broadband Communication 10

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

tions are simply denoted as the transition

X[nua , k] 7−→ X ′[nua , k]

and it is referred to the particular descriptions in section 3 for concrete examples.

2.2.3 Synthesis Stage

If the phase vocoder is utilized to perform effects that involve the inequality Ra 6= Rs
(where Rs is termed output hop size or synthesis hop size), it is advisable to perform some

phase adjustments, as it is explained in Section 3.1 more comprehensively. These phase

updates cause for their parts the transition

X ′[nua , k] 7−→ Y [nus , k] .

Finished with the optional phase update, synthesizing the STFT frames back to the time

domain is performed analogically to the analysis stage. One difference is that the analysis

hop size nua and synthesis hop size nus are potentially unequal since Rs may differ from Ra.

The same applies for the synthesis window hs [n] which can differ from the analysis window

as long as the windowing constraints, as explained above, are met.

The output signal y [n] is then an overlap-added sum of delayed time-domain frames [Cro80].

y [n] =

∞∑
u=0

hs [n − nus]yu[n − nus] (5)

with ỹu[n] =
1

N

N−1∑
k=0

Y [nus , k]e2π
k
N n

Here, the tilde again denotes that yu[n] is ỹu[n], circularly shifted by N/2 samples (cf. Eq. (4)).

Institute of Broadband Communication 11

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

...

...

...

...

......
x [n]

n

xu−1[n]

xu[n]

xu+1[n]

Ra
N

nu−1a
nua nu+1a

x̃u−1[n]

x̃u[n]

x̃u+1[n]

...

...

...

...

...

...

...

...

DFT

time-frequency processing

phase update (optional)

IDFT

......
n

X[nua , k]

X[nu−1a , k]

X[nu+1a , k]

Y [nus , k]

phase

mag

phase

mag

X ′[nu+1a , k]

X ′[nua , k]

X ′[nu−1a , k]

yu−1[n]

yu[n]

yu+1[n]

ỹu−1[n]

ỹu+1[n]

ỹu[n]

Rs

y [n]

nu+1snu−1s nus

A
N
A
LY

S
IS

S
T
A
G
E

S
Y
N
T
H
E
S
IS

S
T
A
G
E

P
R
O
C
E
S
S
IN
G
S
T
A
G
E

· · · ha[n]

· · · hs [n]

Figure 2: A sketch delineation of the different phase vocoder stages.

Institute of Broadband Communication 12

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

3 Audio Effects with the Digital Phase Vocoder

In this section, some of the most common audio effects that can be realized with the phase

vocoder are presented. Strictly speaking, most of them refer to the channel vocoder which

differs from the phase vocoder in not focusing on the phase evolution over time but merely

operating on the vocoder channels (i.e. frequency bins). This is the reason why the term

vocoder itself is often used to neglect a further specification whether the phase or channel

vocoder is meant.

The most challenging effects, however, are those implemented by the phase vocoder: time

stretching (discussed in section 3.1) and pitch transposition5 (discussed in section 3.2)

are explicitly dealing with the phase propagation over time. A lot of issues are introduced

by manipulating temporal phase information; a discussion of uprising problems is provided

in section 3.1.2.

Famous and very well known channel vocoder effects are for example the mutation between

sounds where commonly a synthesizer sound is modulated by a voice thus locking the voice

to the harmonies of the synthesizer. Audio effects gained with the channel vocoder are

described in section 3.3.

Since the channel vocoder itself is merely a skeletal structure of the phase vocoder and

all effects discussed can be implemented by the phase vocoder, the latter was chosen as a

suitable term for this thesis.

3.1 Time Stretching

Research on the art of time stretching a signal has been of interest for a long time. When a

signal is stretched in time, changes of the temporal evolution are made, whereas the pitch

of the signal must not be altered. It is clear that this effect cannot be applied in real time,

but it provides an important step towards pitch shifting, as discussed in section 3.2.

3.1.1 Underlying Model

In this section, the basic idea of how time stretching can be accomplished is deduced

[LD99a]. Firstly, the sum of sinusoids model (cf. 2.1.2) is assumed, where the input signal

is decomposed into a certain number of complex exponentials6 at instant n

x [n] =

I[n]∑
kr=1

A[n, kr]e
ϕa[n,kr] n ≥ 0

ϕa[n, kr] = ϕa[0, kr] +

n∑
m=1

ωa[m, kr] (6)

where the amount of sinusoids is time-variant and denoted by I[n], and each signal is

associated with an index kr . The terms ϕa[n, kr] and ωa[n, kr] refer to the instantaneous

phase and instantaneous frequency to be determined by this algorithm. It is important

5The terms pitch transposition and pitch shifting are commutable in this thesis as well as the terms time

scaling and time stretching.
6In this thesis, the terms complex exponential and sinusoid both refer to a complex-valued exponential

sequence and are contemplated as equivalent.

Institute of Broadband Communication 13

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

to notice that the magnitude and the frequency of the sinusoid can vary over time, being

consistent with real-world assumptions where a spectral component of an arbitrary signal

may not remain constant over time.

This sum of sinusoids shall now be expanded in matters of temporal development. A

straight forward approach is to varying the synthesis hop size Rs (cf. section 2.2.3), while

keeping Ra constant (cf. section 2.2.1), yielding a time stretching factor α

α =
Rs
Ra

. (7)

The perfectly stretched synthesized signal is now (with ϕs [n, kr] being the synthesis phase)

y [n] =

I[n]∑
kr=1

A[n, kr]e
ϕs [n,kr] n ≥ 0 . (8)

It is remarked that the magnitude values, despite of the phase values, have not to be

changed. However, the phase term ϕs [n
u
s , kr] at a synthesis instant nus can be derived by

taking the analysis phase ϕa[nua , kr] at the corresponding analysis instant and regarding

that the synthesized signal lasts α times as long as the input signal, but with preserved

frequencies. Since the relationship between phase and frequency and thus time is linear,

the phase advances by the factor α too. This phase propagation between n = 0 and n = nus
must be added to the initial synthesis phase ϕs [0, kr].

ϕs [n
u
s , kr] = ϕs [0, kr] + αϕa[nua , kr]

= ϕs [0, kr] + α

nua∑
m=1

ωa[m, kr]

= ϕs [0, kr] + α

nua∑
m=1

(
ϕa[m, kr]− ϕa[m − 1, kr]

)
= ϕs [0, kr] + α

(
ϕa[nua , kr]− ϕa[0, kr]

)
(9)

In section 3.1.2, it will be shown that for integer values of α, the choice of ϕs [0, kr] is

crucial to the quality of the output signal. Furthermore, it is noted that Eq. (9) is a strictly

analytical statement and does not deal with phase wrapping into the principal domain

around ±π which is implicitly introduced by the DFT/FFT.

As it might have been noticed, the synthesis phase is given in roughly quantized steps of

Rs , so one may claim the phase values between these steps for a full representation. But

as the synthesis is carried out in steps of size Rs , it is not necessary to define those values

explicitly. It is an inherent property of the STFT that the phase values between synthesis

steps are linearly interpolated, amounting the real frequency of the sinusoid belonging to

the respective bin.

Phase Unwrapping and Instantaneous Frequency. It is now required to determine the

instantaneous frequencies of the observed sinusoids to model the output signal. It should

be observed that Eq. (9) looks as if this was an easy step; unfortunately it is not.

Since the phase values determined in Eq. (5) are implicitly wrapped around ±π, the correct

phase difference can not be estimated by simply subtracting two successive phase values;

an additional step must be incorporated – phase unwrapping.

Institute of Broadband Communication 14

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

nu−1a

n

ϕ[n, k]

π

−π

−2π

2π

0

nua

ϕa[n
u−1
a , k]

∆ϕa[n
u
a , k] ϕa[n

u
a , k]Ω[k] ωa[n

u
a , k]

Ra

i

i i

i i i

∆ϕa[n
u
a , k]

Ω[k]

∆ωa[n
u
a , k]

ωa[n
u
a , k]

1
iv

iv

v

i . . . ϕa[n
u
a , k]− RaΩ[k]

i i . . . ϕa[n
u
a , k]− RaΩ[k]− ϕa[n

u−1
a , k]

i i i . . . ∆ϕ[nua , k] = argp

(
ϕa[n

u
a , k]− RaΩ[k]− ϕa[n

u−1
a , k]

)

ωa[n
u
a , k] = Ω[k] + ∆ωa[n

u
a , k]

with ∆ωa[n
u
a , k] = ∆ϕ[n

u
a , k]/Ra

v . . . graphical verification:

iv . . . instantaneous frequency decomposition:

ϕa[n
u
a , k] = argp

(
ϕa[n

u−1
a , k] + RaΩ[k] + ∆ϕa[n

u
a , k]

)
= argp

(
ϕa[n

u−1
a , k] + Raωa[n

u
a , k]

)
Figure 3: The phase unwrapping procedure.

With Fig. 3 as a graphical sketch in mind, the phase unwrapping algorithm for estimating

the instantaneous frequency can be deduced. After the analysis stage and processing

stage, for two successive STFTs at instants nu−1
a and nua two different phases values

ϕa[nu−1
a , k] = ∠X ′[nu−1

a , k] and ϕa[nua , k] = ∠X ′[nua , k] are passed to the synthesis stage7.

As mentioned earlier, this phase difference contributes to the real frequency of the sinusoid

7It should be remarked that now the channels k of the phase vocoder are considered – no longer the real

sinusoids kr of the signal. This is justified because the real sinusoids are modeled by a linear combination

of the vocoder channels, as the Fourier Transform proposes.

Institute of Broadband Communication 15

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

in channel k of the phase vocoder.

The real phase propagation Raωa[nua , k] of a sinusoid in channel k of the N-point DFT

between the instants nua − nu−1
a = Ra is now divided into two parts, namely the nominal

phase propagation RaΩ[k] = Ra2πk/N and the additional phase propagation ∆ϕa[nua , k]:

Raωa[nua , k] = RaΩ[k] + ∆ϕa[nua , k] (10)

or, in frequency notation

ωa[nua , k] = Ω[k] + ∆ωa[nua , k] . (11)

As stated earlier, ωa[nua , k] is termed instantaneous frequency and has to be determined.

In order to accomplish that, the additional phase difference ∆ϕa[nua , k] between the two

instants nu−1
a and nua is computed:

∆ϕa[nua , k] = argp

(
ϕa[nua , k]− RaΩ[k]− ϕa[nu−1

a , k]
)
. (12)

Here, the phase at instant nua , ϕa[nua , k], is rolled back Ra samples at the nominal frequency

Ω[k] of the vocoder channel k (cf. step i in Fig. 3). After this, the original phase at instant

nu−1
a , ϕa[nu−1

a , k], is subtracted (cf. step ii in Fig. 3). The result must be taken into the

principal domain within ±π to get a valid result, indicated by the operator argp(·)

argp(ϑ) = ϑ−
⌊
ϑ

π

⌋
π bxc = { x̌

∣∣ x̌ ∈ Z, x − 1 < x̌ ≤ x } . (13)

The necessity of “backwrapping” to the principal domain can be observed in Fig. 3,

step iii. As the nominal phase propagation Ω[k] does only cancel (i.e. the phase prop-

agation amounts to an integer multiple of 2π) in channels with the property

k
2π

N
Ra = 2πm m ∈ Z

k = m
N

Ra
, (14)

the phase values between successive STFT frames most likely vary per se, eliminiating the

possibility of a straight forward instantaneous frequency determination. Only for values

Ra = N (which is nonsense for the phase vocoder), all nominal phase propagation values

are equal to integer multiples of 2π, which is perspicuous in knowledge of the fact that the

bins of the DFT are located at frequencies of k2π/N.

Finally, the additional frequency contribution ∆ωa[nua , k] is computed as (cf. step iv in

Fig. 3)

∆ωa[nua , k] =
∆ϕa[nua , k]

Ra
. (15)

Now, the instantaneous frequency can be calculated according to Eq. (11). This is essential

for estimating the phase update of the output signal, especially for varying synthesis hop

sizes. A graphical proof of the presented algorithm can be found in step v in Fig. 3.

Institute of Broadband Communication 16

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

Phase Propagation Formula. Recalling that time stretching means altering the duration

of a signal without changing its pitch, the output phase is updated in each synthesis step

according to Eq. (9):

ϕs [n
u
s , k] = ϕs [n

u−1
s , k] + Rsωa[nua , k],

∠Y [nus , k] = ∠Y [nu−1
s , k] + Rsωa[nua , k] . (16)

However, the magnitude values are simply passed through:∣∣Y [nus , k]
∣∣ =

∣∣X ′[nua , k]
∣∣ (17)

3.1.2 Drawbacks, Issues and Solutions

There are several drawbacks of the standard time stretching algorithm which have to be

taken into account properly in order to maintain a result of decent quality. A lot of research

has been done on the main issues – the horizontal and vertical phase coherence – which

are discussed below [LD99a] [Puc95] [LD97].

Horizontal Phase Coherence

This term denotes the requirement that the phase values of successively synthesized output

frames must be consistent with each other, i.e. Eq. (16) must be fulfilled.

If the conditions arising from Eq. (16) are not met, the output signal is impaired, ranging

from audible artifacts named phasiness and reverberation to complete distortion. Fortu-

nately, horizontal phase coherence can be easily maintained since the requirements are

fulfilled per se if the preceding algorithm is applied.

Vertical Phase Coherence

This issue is much more sophisticated and still a matter of research. In contrast to hori-

zontal phase coherence, where the phase values of successive STFT frames are regarded,

vertical phase coherence addresses the phase consistency across the frequency bins. Special

difficulties arise, when fractional stretching factors and nonstationary input signals are

processed. For example, if the frequency components change over time, they switch the

channel they are associated with, leading to even more artifacts due to so-called phase

jumps.

In this section, at first the theoretical background will be elucidated. Afterwards, the

resulting problems are sketched and possible solutions are presented. Unfortunately, no

unmitigated solution does exist to get rid of vertical phase consistency problems – arti-

facts such as phasiness, reverberation or modulation will always arise, even though modern

algorithms suppress them very well.

Theoretical Background. Based on Eq. (16), the accumulated output phase can be

written as

∠Y [nus , k] = ∠Y [0, k] +

u∑
ν=1

Rsωa[nνa , k] (18)

Institute of Broadband Communication 17

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

and then, after using Eq. (11) and Eq. (15) to express the instantaneous frequency

in terms of Ω[k] and ∆ϕa[nνa , k], it can be rewritten as

∠Y [nus , k] = ∠Y [0, k] +

u∑
ν=1

(
RsΩ[k] +

Rs
Ra

∆ϕa[nνa , k]

)
. (19)

Eq. (12) is now inserted, which yields

∠Y [nus , k] = ∠Y [0, k] +

u∑
ν=1

(
RsΩ[k] +

Rs
Ra

argp

(
∠X ′[nua , k]−

RaΩ[k]− ∠X ′[nu−1
a , k]

))
∠Y [nus , k] = ∠Y [0, k] +

u∑
ν=1

(
RsΩ[k] +

Rs
Ra

(
∠X ′[nνa , k]−

RaΩ[k]− ∠X ′[nν−1
a , k] + 2m[nνa , k]π

))
(20)

and simplifies to

∠Y [nus , k] = ∠Y [0, k] + α
(
∠X ′[nua , k]− ∠X ′[0, k]

)
+ α

u∑
ν=1

2m[nνa , k]π (21)

where α is consistent to Eq. (7). The function argp(·) is resolved by incorporating

an additional term
∑u
ν=1 2m[nνa , k]π that adopts its business. The values of m are

integer since the phase value and its pendant in the principal domain ±π are always

distinct from each other by integer multiples of 2π.

With Eq. (21), the phase propagation algorithm is put into a form where the direct

relationship between input and output phases is stated only in terms of STFT values.

One interesting fact is that formally there is no error propagation possible by the

STFT values themselves, since they need not to be accumulated. On the other

hand, error propagation can occur when one of the unwrapping factors was wrongly

determined.

For α being an integer, the term α
∑u
ν=1 2m[nνa , k]π vanishes. This is equivalent to

the statement that the computationally expensive phase unwrapping procedure can

be dropped. Thus, integer stretching factors simplify the investigation of coherence

problems a lot. Unfortunately, integer values are not the general case.

A special remark regards the similarity between Eq. (21) and Eq. (9). In the latter

one, the phase unwrapping property is intrinsic. Now it is also formally clear why it

was not allowed to simply utilize Eq. (9) in order to calculate the phase propagation.

Concluding this observations, the following influences on vertical phase coherence

can be drawn from Eq. (21):

- The initialization phase ∠Y [0, k]. Some possibilities to set it up properly are

discussed subsequently.

- Errors in the accumulated phase unwrapping factors
∑u
ν=1 2m[nνa , k]π. The

reason why this term contributes especially to the potential loss of vertical

phase coherence, is that phase unwrapping errors can originate from mutual

influences of adjacent channels. As it is known, sinusoidal components of a

Institute of Broadband Communication 18

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

signal most likely spread their energy over several channels. Even with proper

windowing of the input signal, one sinusoid commonly influences more than one

channel. Especially in complicated signals like speech and audio, it is very likely

that such interferences between channels occur.

Another issue that contributes to phase unwrapping errors is that it can not

be expected for a sinusoidal component to keep its frequency constant over

time. As time progresses, it will certainly be associated with different channels,

engendering another difficulty of estimating the true instantaneous frequency.

One straight forward thought to keep this incidence small is to choose the

analysis hop size Ra sufficiently short, decreasing the amount of channels the

sinusoid can change from one STFT instance to another.

Solutions and Improvements. In this paragraph, several approaches to deal with the

problems mentioned previously are delineated.

Choice of Initial Phase (Integer Stretching Factors only). As it was already

discussed, in Eq. (21), the term α
∑u
ν=1 2m[nνa , k]π cancels for integer values

of α:

∠Y [nus , k] = ∠Y [0, k] + α
(
∠X ′[nua , k]− ∠X ′[0, k]

)
. (22)

This expression can be rewritten as

∠Y [nus , k] = α∠X ′[nua , k] + ∠Y [0, k]− α∠X ′[0, k]︸ ︷︷ ︸
θ[k]

(23)

and results in

∠Y [nus , k] = α∠X ′[nua , k] + θ[k]

θ[k] = ∠Y [0, k]− α∠X ′[0, k] . (24)

The introduced variable θ[k] is not dependent on time. This facilitates the

interpretation of what occurs if a sinusoid migrates from channel k0 at nu0
a to

channel k0 + 1 at nn0+1
a – which is very likely. It is clear that this sinusoid will

experience a phase jump of θ[k0 + 1]− θ[k0] since the term θ[k] represents the

constant phase offset of channel k (cf. Eq. (24)).

Based on this interpretation, for integer stretching factors the vertical phase

coherence can be maintained by arrogating

θ[k] = ∠Y [0, k]− α∠X ′[0, k]
!

= C C . . . constant (25)

and defining the initial setup rule for the output phase

∠Y [0, k] = Cα∠X ′[0, k] . (26)

Quality improvements from −10 dB to −25 dB can be reached by employing this

condition [LD99a]8. However, for noninteger stretching factors, the situation is

much more complicated.

8A measurement of the consistency of the output signal y [n], with its respective N-point STFT synthesis

Institute of Broadband Communication 19

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

Loose Phase-Locking. This approach exploits the phase relationships of adjacent

channels. In respect to the assumption of an underlying sinusoid and supposing

that adjacent channels are out of phase9 by ∆kπ due to even symmetry around

N/2 of the windowing function (cf. 2.2.1) [Puc95], the following phase update

formula is proposed:

∠Y [nus , k] = ∠(−X ′[nua , k − 1] +X ′[nua , k]−X ′[nua , k + 1]) . (27)

The very straight forward interpretation of this rule is: If the componentX ′[nua , k]

prevails in terms of magnitude, the value ∠(−X ′[nua , k−1]+X ′[nua , k]−X ′[nua , k+

1]) approximately amounts to its phase again. This means that if X ′[nua , k] and

Y [nus , k] are succeeding peaks in channel k , their phase value will be passed

through. On the other hand, if Y [nus , k] is adjacent to a peak, it will receive the

phase of the peak with an offset of π. It is referred to Fig. 4 on page 21 for a

graphical sketch delineation to get a better understanding of the concept and

how it works.

The algorithm of loose phase-locking is very considerable in terms of compu-

tational complexity. First, it is not necessary to circularly shift the windowing

function because it is desired for the channels to have an offset of π. Secondly,

only a few additional calculations per STFT channel are necessary.

Loose phase-locking can be easily implemented and shows a good performance

on synthetic tests. Unfortunately, its application on speech or music signals

doesn’t yield a dramatic improvement of the phasiness [LD99a].

Rigid Phase-Locking: Identity Phase-Locking. This model introduces an im-

provement above the former one by identifying the peaks of the underlying

sinusoids. A rather simple but effective and sufficiently performant peak detec-

tion would be to identify a sample as a peak if its two neighbors on each side

are smaller. In the next step, the spectrum is divided into regions of influence

of each peak. These regions can either be separated by the nearest neighbor

principle (frequency bin belongs to nearest peak) or by samples of minimum

value.

The idea of this phase-locking scheme was proposed independently in [Fer99]

and [QDH95]: Its aim is to preserve the phase relation to the peak within its

region of influence. The formula is given as

∠Y [nus , k]− ∠Y [nus , kp] = ∠X ′[nua , k]− ∠X ′[nua , kp]

∠Y [nus , k] = ∠Y [nus , kp] + ∠X ′[nua , k]− ∠X ′[nua , kp] (28)

frames Y [nus , k] was introduced in [LD99a], based on [GL84]:

DM =

PU−P−1
u=P

PN−1
k=0

“˛̨
Z[nus , k]

˛̨
−
˛̨
Y [nus , k]

˛̨”2

PU−P−1
u=P

PN−1
k=0

˛̨
Y [nus , k]

˛̨2 .

Z[nus , k] are STFT frames, taken from the time-domain output signal again. An offset P is given,

limiting the amount of total STFT frames U due to the fact that errors can be introduced at the

beginning and the end of the signal, regardless of its internal consistency.

This way of consistency measurement addresses the fact that the synthesis stage can produce a complex-

valued rather than a real-valued signal y [n]. Projecting this signal onto the real axis (which is necessarily

performed since audio signals are real-valued) is one reason why artifacts are introduced. Unfortunately,

no measurement exists yet that directly addresses the phasiness of a signal.
9The circular shift proposed in 2.2.1 is not applied here, as mentioned later.

Institute of Broadband Communication 20

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

X ′[nua , k − 1]

∣∣X ′[nua , k − 1]
∣∣

∣∣X ′[nua , k]∣∣

∣∣X ′[nua , k + 1]
∣∣

X ′[nua , k + 2]

X ′[nua , k + 1]

X ′[nua , k]

X ′[nua , k − 2]
∠X ′[nua , k − 1]

∠X ′[nua , k]

∠X ′[nua , k + 1]

∠Y [nus , k − 1]

∠Y [nus , k]

∠Y [nus , k + 1]

∣∣Y [nus , k − 1]
∣∣ = ∣∣X ′[nua , k − 1]

∣∣

∣∣Y [nus , k]∣∣ = ∣∣X ′[nua , k]∣∣

∣∣Y [nus , k + 1]
∣∣ = ∣∣X ′[nua , k + 1]

∣∣

Y [nus , k + 1]

Y [nus , k]

Y [nus , k − 1]

Y [nus , k]
X ′[nua , k]

X ′[nua , k − 1]

X ′[nua , k + 1]

Y [nus , k + 1]Y [nus , k − 1]

Re

Im
Im

Im

Re

Re

Y [nus , k − 2] Y [nus , k + 2]

Figure 4: Figurative explanation of the loose phase-locking procedure. The complex vectors
are informally plotted onto the frequency bins, being graphically added in step two. The

phase of the resulting vector is then imposed as a final phase on the output vectors. The
reader may perceive the approximate ±π-offset of channels adjacent to Y [nus , k].

where the resulting angle ∠Y [nus , k] of channel k , associated with peak kp by

its region of influence, consists of the phase of the peak ∠Y [nus , kp] – which

is left to be determined – and the phase difference from the input domain

∠X ′[nua , k]− ∠X ′[nua , kp].

Only one trigonometric and phase unwrapping calculation per peak channel is

necessary. The rest of the phase propagation can be computed by a complex

multiplication which results directly from Eq. (28):

Y [nus , k] = Y [nus , kp] · e(∠X ′[nua ,k]−∠X ′[nua ,kp]) (29)

Institute of Broadband Communication 21

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

where the phase of the peak Y [nus , kp] still needs to be computed by phase

unwrapping. Further explanations and examples of this algorithm can be found

in [LD97] [LD99a]. In Fig. 5, the process of identity phase-locking is graphically

sketched.

k

k

k

k

kp

kp

kp

kp

kp

kp

∣∣X ′[nua , k]∣∣

∣∣Y [nus , k]∣∣

∠Y [nus , k]

∠X ′[nua , k]

∠X ′[nua , kp]

∠Y [nus , kp]

nua −→ nus

Phase Propagation

REGION OF INFLUENCE

Y [nus , k] = Y [nus , kp] · e
(
∠X ′[nua ,k]−∠X ′[nua ,kp]

)
∀k ∈ Region of Influence

Figure 5: Schematic picture of identity phase-locking. After detecting the region of
influence (shaded with gray), the phase of the peak bin at position pk is normally propagated

(upper box). All the other channels can then be related to the peak’s phase due to the
assumption that the phase relations across the region of influence are preserved over time.

Institute of Broadband Communication 22

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

Rigid Phase-Locking: Scaled Phase-Locking. This algorithm was proposed in

[LD97] and is more spanningly described in [LD99a]. It takes into account that

sinusoids can switch the channels they are associated with, which leads to the

necessity of updating the phase propagation formula (Eq. (16)) to

∠Y [nus , k] = ∠Y [nu−1
s , k − ∆k] + Rsωa[nua , k] . (30)

Eq. (30) models a transition of a sinusoid by ∆k channels between the instants

nu−1
s and nus . The maintenance of the phase relations within a region of interest

can be written as a generalization of Eq. (28):

∠Y [nus , k] = ∠Y [nus , kp] + β
(
∠X ′[nua , k − ∆k]− ∠X ′[nua , kp − ∆k]

)
(31)

Since there is little theoretical background, a formal algorithm to derive the best

value for β does not exist. One basic problem is that it is not yet analytically

possible to give a measurement of the phasiness.

However, informal listening tests have shown that β ≈ 2/3+α/3 produces good

results, far better than identity phase-locking [LD99a].

Furthermore, it should be mentioned that the need of a peak-following algorithm

arises from this approach.

Reconstruction from Magnitude. Phase values of a signal spectrum can be

recovered from its magnitude values, but with high computationally costs since

it is an iterative procedure [GL84]. Nevertheless, a promising real time approach

was proposed in [ZBW07], but this is beyond the scope of this thesis.

3.2 Pitch Transposition

When a signal is pitch transposed, its frequencies are multiplied by a constant factor α.

This preserves the harmonies and the pitch transposed signal is perceived by the human

ear as being consistent with the original signal. In respect of the original frequency ω, the

individual shift amounts to

∆ω(ω) = ω(α− 1) . (32)

In contrast to pitch shifting, frequency shifting imposes a constant frequency transposition

∆ω = const. to all frequencies. Here, the harmonies are destroyed and the signal is noticed

to be distorted.

When a signal is pitch or frequency shifted, its temporal evolution is forced to remain the

same. This is the reason why direct resampling does not achieve the aimed effect10, but

with incorporating time stretching, it can do so. Indeed, the standard technique to pitch

shift a signal by a factor α is to first time stretch it by α and then resample it by α.

Both operations can be interchanged, leading to different computational complexity: if

α < 1, the pitch of the signal should be lowered, thus it is advisable to first time stretch

it and then resample it in order to save memory. Reversely, if the pitch of a signal should

be raised (α > 1), the signal may first be resampled and afterwards be stretched. This

input-sensitivity of an algorithm is generally considered as a disadvantage.

In the subsequent sections, some approaches addressing pitch transposition are deduced.

10A simply resampled signal is either faster and higher pitched or slower and lower pitched.

Institute of Broadband Communication 23

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

3.2.1 Standard Approach: Time Stretching and Resampling

As mentioned previously, the common approach towards pitch transposition is to first time

scale the signal and then resample it by an arbitrary transposition factor α. Recalling that

from Eq. (7) it follows that α must be expressable in terms of a fraction with integer

numerator and denominator, resampling can be achieved by first upsampling by factor Ra
and then downsampling by factor Rs .

The process of resampling is described perfectly well in literature and the reader may be

referred to [OS09d] [Lyo96].

3.2.2 Alternative Approach: Selective Peak Shifting

In this section, an alternative technique to pitch shift a signal is presented [LD99b]. At

first, the theoretical deduction will take place, followed by a complete description of the

algorithm itself. It should be noted that this algorithm does not involve any variations of

input versus output hop size and is therefore entirely carried out in the processing stage.

Theoretical Background. To get a basic understanding of how this algorithm works, a

complex exponential

x [n] = e(ω0n+ϕ0) (33)

with frequency ω0 and phase offset ϕ0 is assumed as an input signal. Furthermore, the

input frame xu[n] of the STFT at instant nua – which is basically a shifted and windowed

version of x [n], ha[n]x [n + nua] – is given as

xu[n] = ha[n]e(ω0(n+nua)+ϕ0)

= ha[n]eω0ne(ω0n
u
a+ϕ0) (34)

which yields the STFT11 (cf. frequency shifting theorem [OS09e])

X(eω)[nua] = Ha(e(ω−ω0))e(ω0n
u
a+ϕ0) (35)

with Ha(eω) being the frequency response of ha[n].

It should be observed that the term e(ω0n
u
a+ϕ0) is passed through the STFT as a constant

because it is not dependent on n.

As a next step, the frequency shift by ∆ω(ω0) = ∆ω0 can be performed on the sinusoid,

resulting in a substitution of ω0 → ω0 + ∆ω0:

Y (eω)[nus] = Ha(e(ω−(ω0+∆ω0)))e((ω0+∆ω0)nua+ϕ0)

= Ha(e(ω−ω0−∆ω0))e(ω0n
u
a+ϕ0)e∆ω0n

u
a

= X(e(ω−∆ω0))[nua]e∆ω0n
u
a (36)

where Eq. (35) was inserted in the last step12. The synthesized parts of the STFT frames,

yu[n], can be represented in time domain as the input frame xu[n] modulated with e∆ω0n,

which is consistent with the expression X(e(ω−∆ω0))[nua] in Eq. (36).

11Actually, at this stage the DTFT must be considered since continuous pitch shifts of ∆ω are performed.
12It is remarked, that in this context no additional phase update (as in the preceding sections) is considered

and therefore the term Y(·) is used instead of X’(·). Additionally, the terminology of distinguishing

between nua and nus is kept – although these terms are equal – to be consistent with preceding sections.

Formally, Y [· , k] is always associated with instant nus as X[· , k] and X ′[· , k] are always associated with

nua , regardless if Ra and Rs are equivalent or not.

Institute of Broadband Communication 24

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

Next, the STFT frame Y (eω)[nus] is transformed back into the time domain, which results

directly from Eq. (36):

yu[n] = xu[n]e∆ω0ne∆ω0n
u
a

= ha[n]eω0ne(ω0n
u
a+ϕ0)e∆ω0ne∆ω0n

u
a

= ha[n]e((ω0+∆ω0)n+ϕ0)e(ω0+∆ω0)nua (37)

where Eq. (34) was used to resolve xu[n].

Finally, the whole output signal y [n] is gained by windowing with a synthesis window hs [n]

and overlap-adding the frames yu[n]:

y [n] =
∑
u

hs [n − nus]yu[n − nus]

y [n] =
∑
u

hs [n − nus]ha[n − nus]e((ω0+∆ω0)(n−nus)+ϕ0)e(ω0+∆ω0)nua

y [n] =
∑
u

hs [n − nus]ha[n − nus]e((ω0+∆ω0)n+ϕ0)e−(ω0+∆ω0)nus e(ω0+∆ω0)nua

y [n] =
∑
u

hs [n − nus]ha[n − nus]e((ω0+∆ω0)n+ϕ0) . (38)

Here, yu[n−nus] was expressed by Eq. (37) and the last two terms were cancelled, recalling

that nua ≡ nus .

If the windowing constraints∑
u

hs [n − nus]ha[n − nus] = 1 ∀n (39)

are met, it becomes clear that the output sinusoid is a perfect frequency shift13 of the

input:

y [n] = e((ω0+∆ω0)n+ϕ0) . (40)

Description of the Algorithm. In this paragraph, the necessary steps are shortly sketched

to show the operations that have to be performed in order to achieve a pitch shift in respect

to the concepts presented above.

The algorithm consists of:

1. Peak detection.

As mentioned already, an examplary peak detection could be to identify one sample

as a peak if its value is bigger than those of its four neighbors.

2. Region of influence estimation.

The regions of influence can be separated either by the samples in the middle of two

peaks or the samples with the lowest value between two peaks.

3. Frequency estimation.

The algorithm was presented in the continuous sprectrum, but it has to be imple-

mented using the DFT/FFT, which results in a discrete spectrum. Therefore, the

real frequencies of the underlying sinusoids have to be estimated.

13For single sinusoids, the terms frequency shift and pitch shift are equal. Nevertheless, this proof holds

for all signals since every signal can be expressed as a superposition of sinusoids.

Institute of Broadband Communication 25

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

One possibility to determine the exact frequency of a sinusoid is to use a Gauss

window. If the spectrum is given in decibel (dB), quadratic interpolation can be

used. This observation originates from the fact that the Fourier Transform of a

Gauss window is a Gauss window again.

More sophisticated techniques for frequency estimation can be found in [PB98].

4. Calculating the frequency shift.

If a uniform pitch shifting should be performed, then

∆ω(ω) = ω(α− 1) (41)

has to be set, where α is the pitch shifting factor.

It is obviously clear, that the frequency shifts of different region of interest need not

necessarily correspond to the same shifting factor α.

5. Peak shifting.

In the general case (noninteger shifts), interpolation techniques must be applied.

Fractional time delay algorithms can be used, which have been widely investigated

[KJ09] [VL93] [LVKL96]. The simplest technique is linear interpolation.

Overlapping the STFT frames by 75 % (hop size N/4) reduces the artifacts to the

borders of perceptibility (-51 dBA) whereas overlapping by 50 % (hop size N/2)

seems not to be considerable [LD99b]. However, integer shifts are especially simple

to handle, so 50 % overlap is sufficient here.

6. Phase adjusting.

From Eq. (36) it follows that the phase update must involve

∠Y (eω)[nus] = ∠X(e(ω−∆ωpk))[nua] + ∆ωpkn
u
a (42)

for each peak and its region of influence. The term ∆ωpk denotes the frequency shift

which is applied to peak pk .

Eq. (42) points out clearly that no trigonometric calculations for the phase update

must be performed.

Another special remark addresses integer shifts (by n bins):

∆ωpkn
u
a = 2π

n

N
· uRa n ∈ N, N ∈ N . . .DFT size

= 2π
n

N
· uN
m

u ∈ Z, m ∈ N

= 2π
nu

m
. (43)

For 50 % overlap (m = 2), the phase update simplifies to integer multiples of π,

thus making this process trivial.

3.3 The Channel Vocoder

In this section, the channel vocoder itself is investigated more in detail. As it has been

pointed out before, the phase vocoder and the channel vocoder differ in the fact that the

phase vocoder concentrates more on the phase evolution over time – introducing effects

like time stretching and pitch shifting – whereas the channel vocoder focuses more on

modifications across the channels.

Institute of Broadband Communication 26

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

Some of the uncountable possibilities of introducing audio effects via the channel vocoder

are described shortly below, such as the mutation between sounds, dispersion, robotization,

whisperization and denoising.

3.3.1 Mutation between Sounds

The basic principle of mutating sounds via the phase vocoder is to combine two or more

input sounds, each contributing a specific part to the amplitude and the phase of the output

signal.

This effect, driven with voice and synthesizer, is very popular in electronic music. High-

quality and cheap effect devices are available on the market.

Being X1[nua , k] and X2[nua , k] the input spectra, the output X ′[nua , k] can be combined by

these common choices:

Amplitude:

-
∣∣X ′[nua , k]

∣∣ =
∣∣X1[nua , k]

∣∣ · ∣∣X2[nua , k]
∣∣

With this setting, the operation on the magnitudes corresponds to a logical AND,

thus only letting components pass through with non-zero amplitude values of both

sounds.

- |X ′[nua , k]| = |X1[nua , k]|+ |X2[nua , k]|
This setup refers to a logical OR and lets components pass through if one of both

channels is non-zero.

- |X ′[nua , k]| = |X{1,2}[nua , k]|
This setting assigns the magnitude of either input signal 1 or 2 to the output signal.

Phase:

- ∠X ′[nua , k] = ∠X{1,2}[nua , k]

Since the phase values contain the temporal structure of a sound, the result will be

a signal that earns the characteristics of one of both sounds.

- ∠X ′[nua , k] = ∠X1[nua , k] + ∠X2[nua , k]

This setting lets the mean phase rotate with double speed.

3.3.2 Dispersion

The origin of this effect lies in an issue of telecommunicational nature – that some frequency

bands arrive delayed when a signal is transmitted. This property can be imitated via group

delay, which is defined as

grd
[
X(eω)

]
= − d

dω

{
∠X(eω)

}
(44)

and describes the delay in respect of the frequency [OS09f].

If linear group delay should be introduced, a quadratic phase term must be imposed on

the signal, which is a simple addition in frequency domain. In time domain, this refers to

the convolution of the input signal with a chirp signal (sinusoid with constant amplitude

and linearly increasing frequency). Therefore, time aliasing effects have to be considered

in frequency domain, being crucial to the choice of the window size.

Institute of Broadband Communication 27

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

3.3.3 Robotization

This effect results from setting the phase of each STFT to zero. Depending on the STFT

size, this adds a robotic flavour to the sound.

3.3.4 Whisperization

This effect is achieved by setting either the phase or the magnitude of the STFT to a

random value, which leads especially for small STFT sizes to a whispering effect.

3.3.5 Denoising

Denoising is achieved by applying a nonlinear transfer function to the amplitude spectrum,

keeping amplitudes with sufficient high values as they are, while lowering small amplitudes.

This can be interpreted as a bank of noise gates, each related to one frequency bin. A

basic transfer function may be

f (x) =
x2

x + c
(45)

where c has to be arbitrarily chosen.

One popular noise reduction process is to first calibrate the filter with “silence”, where the

spectral components of the noise are extracted and the noise gates are properly configured.

Further information is available in literature [Cap94] [Vas06].

3.4 Conclusion and Discussion

Regarding the phase vocoder and in particular the presented algorithms for time stretching

and pitch shifting, it seems to be needful to draw some conclusions in order to provide a

better overview.

The basic algorithm of phase propagation was proposed in Section 3.1 as the standard

procedure of time stretching utilizing the phase vocoder. Unfortunately, in this basic con-

figuration, it works only well for constant-frequency sinusoids, but not for signals like music

and speech.

Furthermore, the described algorithm of phase unwrapping needs a four-quadrant arc tan-

gent function to transform the Cartesian coordinates into polar coordinates which is a com-

putational disadvantage. There exists an approach which utilizes another Fourier Transform

instead of trigonometric calculations and phase unwrapping, as proposed in [Puc95].

The drawbacks of potential loss of horizontal and vertical phase coherence were discussed

in Section 3.1.2 and some solutions were presented. The simplest approach towards an

improvement of this issue was the derivation of a rule for choosing the initial synthesis

phase. Unfortunately, this rule shows only moderate betterments and only on integer

scaling factors. Nevertheless, since the choice of the initial phase is free, it may not be

bad to set it according to Eq. (26). For standard analysis windows (Hamming, Hanning

etc.), the analysis frames must overlap by at least 75 % in order to yield good results for

constant-frequency sinusoids [LD99a].

Institute of Broadband Communication 28

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

Another set of possible solutions to the vertical phase coherence problem were presented,

such as loose phase-locking and rigid phase-locking, comprizing identity and scaled phase-

locking. These approaches utilize intrinsic relationships across the frequency bins around

spectral peaks.

Phase-locking in its simplest version, loose phase-locking, relates all adjacent channels

in general (after the original phase propagation was applied). The advantage is that the

circular shift in the analysis and synthesis stage can be dropped since it is appreciated to

handle channels with an offset of ±π in respect to each other (cf. Eq. (27)). Another

positive side of loose phase-locking is its simplicity – and synchronously its drawback,

unfortunately. It shows only moderate improvements on speech or music signals over the

standard phase propagation algorithm. At least, it performs well on synthetic signals, such

as pure sinusoids with steady or varying frequency [LD99a].

Identity phase-locking on the other side, expands this approach by involving a peak de-

tection stage to apply the phase-locking scheme explicitly on peaks and their surroundings.

The advantages of this approach are as follows [LD99a]:

- The performance on a synthetical chirp signal was improved from −6.5 dB without

phase-locking to −37 dB, which is quite impressive.

- It is possible to set the analysis hop size to N/2, which halves the computational

costs comparing to usual hop sizes of N/4.

- The regular phase propagation needs to be performed only for peaks. The phase

values of other samples within the associated regions of influence can be updated by

a single complex multiplication (cf. Eq. (29)).

The last phase-locking scheme, scaled phase-locking, extends identity phase-locking in

a way that peaks are not only detected, but also followed as time advances. The phase

update formula then changes according to Eq. (30). This approach of peak following over

time incorporates even more computational costs, but theoretically yields better results.

This could be confirmed by informal listening tests, as shown in Section 5.

A time stretched signal, resampled by the same factor yields a pitch shifted signal of the

original. Besides this standard technique an alternative approach, selective peak shifting,

was proposed. As it was already sparsely pointed out, this method offers several advantages

towards the standard approach:

- In contrast to the standard pitch shifting technique, the performance of this approach

in matters of execution time is not dependent on the shifting factor α.

- Different peaks can be shifted to different locations. This is not possible with the

standard technique either.

- No trigonometric calculations need to be performed during the phase update.

- The algorithm is simpler, but nonetheless it incorporates the identity phase-locking

scheme, which is considered to yield results of higher quality than algorithms that

don’t take phase-locking into account.

Besides these improvements over the standard technique, no clear theoretical disadvantages

can be found. One requirement, however, is the recognizability of peaks in the spectrum

and a clear region of influence. If, for instance, the STFT size is too small, the frequency

modulated windows (cf. Eq. (36)) can partially merge, thus impairing magnitude and phase

information.

Institute of Broadband Communication 29

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

4 MATLAB® Implementation

In this section, the structure of the MATLAB® implementation, which was developed

during this thesis, is provided. Some details are picked out, and the full source code can

be found in Appendix A.

overlap-add

IFFT

FFT

decomposition & windowing

circular shift

circular shift

Passthrough

Dispersion Whisperization

Robotization

Pitchshift

Mutation

Passthrough

Identity PL

Loose PL

Scaled PL

Basic

PU HANDLE

FX HANDLE

DAFX.m

PVOC.m

A
N
A
LY

S
IS

S
T
A
G
E

S
Y
N
T
H
E
S
IS

S
T
A
G
E

P
R
O
C
E
S
S
IN
G
S
T
A
G
E

Figure 6: Schematic representation of the implementation in MATLAB® .

Institute of Broadband Communication 30

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

4.1 Design

To get an overview about the structure of this implementation, a short flow diagram is

plotted in Fig. 6. As it is visible, the main script, wrapped around all the other components,

is termed DAFX and located in the file DAFX.m. The full content of this script is listed in

Appendix A.1.1. After configuring the phase vocoder (i.e. setting the effect and phase

update function handles and defining the parameters), the phase vocoder function PVOC()

is called, which is listed in Appendix A.1.2.

The configuration towards a particular effect is realized via submission of function handles

to the phase vocoder script. This way facilitates a modular and extendable design.

4.2 Time Stretching and Pitch Shifting

Time stretching consists of different phase update algorithms, of which the implementation

source codes are provided in Appendix A.2.

The functions that achieve the pitch shifting effect are listed in Appendix A.3. For the

standard pitch transposition technique, the necessity of resampling was implemented in

the function PVOC(), as given in Appendix A.1.2. Furthermore, the source code of the

alternative approach of selective peak shifting is provided in Appendix A.3.1. The reader

may note that this function is not carried out as a phase update procedure but as an audio

effect on its own.

4.3 Channel Vocoder Effects

Finally, the implementation of channel vocoder effects is presented in Appendix A.4. It

is remarked that the effect of Denoising was left out since a proper setup with decent

results would have turned into a quite complex implementation, and as this thesis focuses

rather on phase vocoder effects, this seemed to be beyond the scope of this thesis. How-

ever, programming the other channel vocoder effects appeared to be simple, as shown in

Appendix A.4.1, A.4.2, A.4.3 and A.4.4.

4.4 Additional Utilities

In Appendix A.5, additional functions that were written during the realization of the phase

vocoder are listed. In order to decimate redundant parts of the code, some parts of the

algorithms had to be outsourced. This involved, most importantly, the detection of regions

of influence, provided by the procedure getRegions() (file getRegions.m). The code of

this function is listed in Appendix A.5.1.

The other functions are only of small size, but nevertheless important; so the source code

of them is shown in Appendix A.5.2, A.5.3, A.5.4 A.5.5 and A.5.6.

One final note regards the fractional delay filter coefficients, gained via lagrangeFIR3()

(see A.5.2). It was chosen to implement an interpolation filter of third order, for which the

coefficients were set according to [LVKL96].

Institute of Broadband Communication 31

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

5 Evaluation and Conclusion

After implementing the phase vocoder, it may be of interest to ascertain its performance

and draw conclusions from that – all of which is done in the current section.

Since a comprehensive, analytical investigation – besides the fact that no completely reliable

quality measurement method exists – would be far beyond the scope of this thesis, the

evaluation tests were informal and subjective and should only provide a basic feeling of

“sweet spots” regarding different effect settings.

In most cases, audio effect devices are driven by music or speech signals, which can reveal

quite different characteristics. Therefore, the tests were performed with both signal types,

sometimes resulting in different optimal configuration settings.

5.1 Determination of Optimal Settings

In this section, the configuration parameters that achieved the best evaluation results are

provided. A rather tabular than textual presentation may give a structural overview of the

values.

5.1.1 Default settings

If it is not differently stated in the tables below, the default phase vocoder configuration

values are set according to Table 1.

Parameter Name Default Value

blending factor (ALPHA) 1.0

window size (W SIZE) 210

window type (W TYPE) @hanningz

window extension (W EXTENSION) 1

overlap (OVERLAP) 0.750

ratio (RATIO) 1.000

pitch shift flag (PITCHSHIFT) true

effect function handle (FX HANDLE) @FX PASSTHRU

phase update function handle (PU HANDLE) @PU PASSTHRU

Table 1: Default values of the phase vocoder.

5.1.2 Time Stretching / Pitch Shifting via Resampling

Several test stretching factors α were applied, residing between 0.5 ≤ α ≤ 2.0. Then,

with inspection of the influences of different parameters, the listening tests on speech and

music signals were performed. If for equal values the same quality was observerd, the one

with better behaviour in terms of computational complexity was chosen.

Institute of Broadband Communication 32

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

Basic Phase Propagation

To apply this phase update algorithm, the function handle PU HANDLE must be set to

@PU PASSTHRU. In Table 2 the results are listed.

It was perceived that the basic phase propagation algorithm – as expected – does not show

sufficient performance on voice signals, not to mention on music signals. Nevertheless,

with values of α ≈ 1.00 ± 0.05 the result was at least acceptable. In combination with a

blending factor (field ALPHA) of about 0.5 and pitch shifting activated (field PITCHSHIFT =

true), a decent chorus effect can even be modeled (a window size of W SIZE = 210 being

necessary).

Parameter Name Speech Signals Music Signals

window size (W SIZE) 210 212

overlap (OVERLAP) 0.750 0.750

Table 2: Optimum values for time stretching / pitch shifting via basic phase propagation.

Loose Phase-Locking

This phase update algorithm can be involved by setting PU HANDLE = @PU LOOSEPL. The

evaluation results are presented in Table 3.

The observations revealed that this algorithm performs best on ambient music signals,

but not so well on speech signals. Since loose phase-locking is the only algorithm that

applies a general phase relation between all channels – regardless of peaks in the spectrum

–, this might be the reason why in this particular case it overtops the rigid phase locking

algorithms, which need clear and well defined peaks to work well.

Parameter Name Speech Signals Music Signals

window size (W SIZE) 210 212

overlap (OVERLAP) 0.750 0.750

Table 3: Optimum values for time stretching / pitch shifting algorithm when loose phase-locking
is applied.

Identity Phase-Locking

Parameter Name Speech Signals Music Signals

window size (W SIZE) 210 212

overlap (OVERLAP) 0.750 0.875

Table 4: Optimum values for time stretching / pitch shifting algorithm when identity
phase-locking is applied.

Institute of Broadband Communication 33

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

In order to activate this algorithm, the parameter PU HANDLE = @PU IDENTITYPL must be

set. The results are given in Table 4.

This algorithm shows bad performance on complex music signals where no clear peaks can

be detected. Far better performance was achieved on speech signals.

Scaled Phase-Locking

The scaled phase-locking algorithm can be applied to the phase vocoder synthesis stage by

setting the function handle PU HANDLE to @PU SCALEDPL. Table 5 shows the results.

A clear improvement compared to identity phase-locking could not be perceived, but a

small improvement of the signal clarity was observed. Similar to identity phase-locking,

the performance on sophisticated music signals was absolutely poor, but despite of this,

excellent on speech signals.

Parameter Name Speech Signals Music Signals

window size (W SIZE) 210 212

overlap (OVERLAP) 0.750 0.750

Table 5: Optimum values for time stretching / pitch shifting algorithm when scaled phase-locking
is applied.

5.1.3 Selective Pitch Shifting

Selective pitch shifting is activated by setting FX HANDLE = @FX PITCHSHIFT and all other

parameters to their standards, except those of Table 6.

Unfortunately, this algorithm completely failed on music signals. On speech signals, there

were clearly perceivable artifacts introduced.

Parameter Name Speech Signals Music Signals

window size (W SIZE) 212 -

overlap (OVERLAP) 0.875 -

Table 6: Optimum values for selective pitch shifting.

5.1.4 Mutation between Sounds

This effect can be achieved by applying the values listed Table 7 to the configuration

parameters and setting the effect function handle to FX HANDLE = @FX MORPH.

Here, one popular example – amongst countless others – is picked out. A speech signal is

mutated with an ambient signal with strong harmonies but little temporal change, such as

the sound of a synthesizer or similar. The result is a quite impressive audio effect in which

the voice assimilates the spectral characteristics whereas remaining to be understandable.

A remarkable fact is that even if the magnitude is taken from the voice signal, the spectral

characteristics of the underlying ambient signal are intensively perceivable. On the other

Institute of Broadband Communication 34

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

hand, even if the phase values of the ambient signal are passed through, the voice signal

loses nothing of its perspicuity.

Parameter Name Best Value

input file 1 (INPUT FILE1) ambient signal

input file 2 (INPUT FILE2) voice signal

blending factor (ALPHA) 0.9

magnitude combination (MORPHTYPE R) ’R2’

phase combination (MORPHTYPE P) ’P1’

window size (W SIZE) 29

overlap (OVERLAP) 0.750

Table 7: Optimum values for selective pitch shifting.

5.1.5 Dispersion

For this effect, the handle FX HANDLE must be set to @FX DISPERSION. If the values from

Table 8 are inserted, the dispersion effect can be produced.

As a subjective interpretation of the resulting sound characteristics, a kind of reverberation

on speech signals was heard. The typical effect of dispersion – incorporating different delay

for different frequency bands – was best experienced on percussive signals.

Parameter Name Best Value

window size (W SIZE) 211

window extension (W EXTENSION) 2

overlap (OVERLAP) 0.750

dispersion factor (DISPFACTOR) 2.000

Table 8: Optimum values for the dispersion effect.

5.1.6 Robotization

The application of the robotization effect is done by setting the effect function handle

FX HANDLE to @FX ROBOT. In Table 9, the best configuration values are listed.

Parameter Name Best Value

input file 1 (INPUT FILE1) voice signal

window size (W SIZE) 212

overlap (OVERLAP) 0.875

Table 9: Optimum values for the robotization effect.

Institute of Broadband Communication 35

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

Since in this effect, the phase values are set to zero for all STFT frames, the resulting

output signal spectrum is in a way locked to a frequency similar to the reciprocal of the

window size. Hence, for small window sizes, this frequency increases, whereas for bigger

window sizes it decreases.

5.1.7 Whisperization

If the field FX HANDLE is set to @FX WHISPER and the values from Table 10 are applied, the

whispering effect can be produced, performing best on speech signals.

Parameter Name Best Value

input file 1 (INPUT FILE1) voice signal

window size (W SIZE) 29

overlap (OVERLAP) 0.750

whispering component (WHISP COMP) ’PHASE’

Table 10: Optimum values for the robotization effect.

5.2 Conclusion

As it might have been expected, music signals turned out to be much more complicated

to handle than ordinary speech signals. Of course, no comprehense test library was of

disposal, so only a limited bandwith of characteristical sounds could be tested. Somehow,

the bad performance on music signals (especially phase vocoder effects) was disappointing

due to the fact that promising algorithms were implemented.

One special remark addresses the failure of selective peak shifting on audio signals and the

average performance of identity and scaled phase-locking on music signals. As all three

of them utilize a peak detection stage, this peak detection algorithm may be improved or

adapted in future work.

The algorithm of reconstructing the phase values from magnitude mentioned in Sec-

tion 3.1.2 could bring some advantages of the output quality of time stretched or pitch

shifted audio signals as well.

Institute of Broadband Communication 36

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

A Appendix: MATLAB® Source Code

In this appendix, the full source code of the MATLAB® implementation is provided.

A.1 The Basic Framework

A.1.1 Main Script

DAFX.m

1 % ---

2 % DAFX MAIN SCRIPT

3 % The phase vocoder is configured and executed , assumed to be integra -

4 % ted into the framework properly.

5 % ---

6 % Bachelor Thesis Telematics Graz University of Technology

7 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

8 % June2010

9 % ---

10

11

12 % ---

13 % CLEANING UP

14 % ---

15

16 clear all;

17 close all;

18 clc;

19

20

21 % ---

22 % DEFINITION OF INPUT FILES

23 % ---

24

25 input˙dir = ’sound/’;

26 input˙files = –[input˙dir , ’sample1.wav’], ...

27 [input˙dir , ’sample2.wav’], ...

28 [input˙dir , ’sample3.wav’]˝;

29

30 SAMPLE1 = 1;

31 SAMPLE2 = 2;

32 SAMPLE3 = 3;

33

34

35 % ---

36 % CONFIGURATION: OBLIGATORY VALUES

37 % ---

38

39 % Input file 1

40 pv˙in.INPUT˙FILE1 = input˙files–SAMPLE1 ˝;

41

42 % Blending: 0 (dry) ¡= alpha ¡= 1 (wet)

43 pv˙in.ALPHA = 1.0;

44

45 % Window size

46 pv˙in.W˙SIZE = 2ˆ10;

47

48 % Window type function handle. Currently supported: @hanningz , @gaussz

49 pv˙in.W˙TYPE = @hanningz;

Institute of Broadband Communication 37

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

50

51 % Zero -padding extension factor. Value 1 means no change of window size ,

52 % value 2 means zero padding of W˙SIZE samples etc.

53 pv˙in.W˙EXTENSION = 1;

54

55 % Window overlap: 0.000 (no overlap) ¡ 1.000 (total overlap).

56 % Input hop size: Automatically calculated by W˙SIZE and W˙OVERLAP.

57 OVERLAP = 0.75;

58 pv˙in.HOP˙IN = pv˙in.W˙SIZE *(1- OVERLAP); % No adjustments needed!

59

60 % Stretch factor and resulting output hop size

61 ratio = 1.000;

62 pv˙in.HOP˙OUT = round(pv˙in.HOP˙IN*ratio); % No adjustments needed!

63

64 % Indicator if resampling should be performed in order to achieve pitch

65 % shifting (only relevant if HOP˙IN ˜= HOP˙OUT)

66 pv˙in.PITCHSHIFT = true;

67

68 % Effects function handle. Currently supported effects are:

69 % FX˙PASSTHRU Passthrough

70 % FX˙DISPERSION Dispersion

71 % FX˙ROBOT Robotization

72 % FX˙MORPH Mutation between sounds

73 % FX˙WHISPER Whisperization

74 pv˙in.FX˙HANDLE = @FX˙PASSTHRU;

75

76 % Phase update algorithm. Currently supported algorithms are:

77 % PU˙PASSTHROUGH No phase update is performed

78 % PU˙BASIC Basic phase propagation is applied

79 % PU˙LOOSEPL Loose phase -locking is applied

80 % PU˙IDENTITYPL Rigid phase -locking: Identity

81 % phase -locking is applied

82 % PU˙SCALEDPL Rigid phase -locking: Scaled phase -

83 % locking is applied

84 pv˙in.PU˙HANDLE = @PU˙PASSTHRU;

85

86

87 % ---

88 % CONFIGURATION: OPTIONAL VALUES

89 % Depending on phase vocoder effect and phase update algorithm

90 % ---

91

92 % Optional time limit in seconds for faster processing

93 %pv˙in.LIMIT = 5;

94

95 % Pitch shifting factor (only for FX˙PITCHSHIFT)

96 %pv˙in.PSFACTOR = 1.000;

97

98 % Phase scaling factor beta (only for PU˙SCALEDPL), ratio ¡= beta ¡= 1

99 % Note that as the hop sizes are quantized values , the correct ratio is

100 % recomputed by relating the hop sizes and not taking the (potentially

101 % wrong) value directly from ¡ratio ¿.

102 %pv˙in.SPL˙BETA = 2/3 + (pv˙in.HOP˙OUT/pv˙in.HOP˙IN)/3;

103

104 % Input file 2 (only for FX˙MORPH)

105 %pv˙in.INPUT˙FILE2 = input˙files–SAMPLE2 ˝;

106

107 % Magnitude combination (only for FX˙MORPH)

108 %pv˙in.MORPHTYPE˙R = ’R1 ’;

109 %pv˙in.MORPHTYPE˙R = ’R2 ’;

110 %pv˙in.MORPHTYPE˙R = ’R1*R2 ’;

Institute of Broadband Communication 38

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

111 %pv˙in.MORPHTYPE˙R = ’R1+R2 ’;

112

113 % Phase combination (only for FX˙MORPH)

114 %pv˙in.MORPHTYPE˙P = ’P1 ’;

115 %pv˙in.MORPHTYPE˙P = ’P2 ’;

116 %pv˙in.MORPHTYPE˙P = ’P1+P2 ’;

117

118 % Dispersion factor (only for FX˙DISPERSION)

119 %pv˙in.DISPFACTOR = 1;

120

121 % Component that should be randomized (only for FX˙WHISPER)

122 %pv˙in.WHISP˙COMP = ’MAG ’;

123 %pv˙in.WHISP˙COMP = ’PHASE ’;

124

125

126 % ---

127 % DAFX EXECUTION

128 % ---

129

130 % Execute phase vocoder

131 pv˙out = PVOC(pv˙in);

132

133 % Normalize and play output

134 pv˙out.y = pv˙out.y ./ max(abs(pv˙out.y));

135 sound(pv˙out.y, pv˙out.fs);

136

137 % Define output file string

138 opt = [];

139 if (strcmp(func2str(pv˙in.FX˙HANDLE), ’FX˙PITCHSHIFT ’))

140 opt = [’˙factor ’, num2str(pv˙in.PSFACTOR)];

141 end

142 if (strcmp(func2str(pv˙in.FX˙HANDLE), ’FX˙MORPH ’))

143 opt = [’˙mode’, pv˙in.MORPHTYPE˙R , pv˙in.MORPHTYPE˙P];

144 end

145 if (strcmp(func2str(pv˙in.PU˙HANDLE), ’PU˙SCALEDPL ’))

146 opt = [opt , ’˙beta’, num2str(pv˙in.SPL˙BETA)];

147 end

148

149 % Write file to disk

150 wavwrite(pv˙out.y, pv˙out.fs, ...

151 [pv˙in.INPUT˙FILE1 (1: length(input˙dir)), ’output/’, ...

152 pv˙in.INPUT˙FILE1(length(input˙dir)+1:end -4), ...

153 ’˙ratio ’, num2str(pv˙in.HOP˙IN/pv˙in.HOP˙OUT), ...

154 ’˙alpha ’, num2str(pv˙in.ALPHA), ...

155 ’˙wsize ’, num2str(pv˙in.W˙SIZE), ...

156 ’˙wext’, num2str(pv˙in.W˙EXTENSION), ...

157 ’˙overlap ’, num2str(OVERLAP), ...

158 ’˙lock’, func2str(pv˙in.PU˙HANDLE), ...

159 ’˙fx’, func2str(pv˙in.FX˙HANDLE), ...

160 opt , ...

161 ’.wav’]);

162

163 % Plot time -domain signal (optional)

164 %plot(pv˙out.y, ’k’);

165 %xlabel(’Time (Discrete Samples)’)

166 %ylabel(’Amplitude ’);

167 %axis tight;

Institute of Broadband Communication 39

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

A.1.2 Phase Vocoder Basic Script

PVOC.m

1 function pv˙out = PVOC(pv˙in)

2 % SYNTAX

3 % pv˙out = PVOC(pv˙in)

4 %

5 % DESCRIPTION

6 % Performs a digital audio effect within the phase vocoder. The

7 % device is fully configured by parameters stored in the input

8 % struct ¡pv˙in ¿.

9 %

10 % PARAMETERS

11 % pv˙in Container of configuration

12 % data; necessary fields are

13 % listed below.

14 %

15 % The input struct ¡pv˙in ¿ MUST contain the following fields:

16 %

17 % pv˙in.INPUT˙FILE1 Path to input file 1

18 % pv˙in.ALPHA Effect blending:

19 % 0 (dry) ¡= ALPHA ¡= 1 (wet)

20 % pv˙in.W˙SIZE Phase vocoder window size

21 % pv˙in.W˙TYPE Window type function handle.

22 % Currently supported by this

23 % framework: @hanningz , @gaussz

24 % pv˙in.W˙EXTENSION Zero -padding extension factor.

25 % Value 1 means no change of

26 % window size , value 2 means zero

27 % padding of W˙SIZE samples etc.

28 % pv˙in.HOP˙IN Input hop size

29 % pv˙in.HOP˙OUT Output hop size

30 % pv˙in.PITCHSHIFT Boolean indicator if resampling

31 % should be performed in order to

32 % achieve pitch shifting (only

33 % relevant if HOP˙IN ˜= HOP˙OUT)

34 % pv˙in.FX˙HANDLE Effects function handle. Cur -

35 % rently supported effects are:

36 % FX˙PASSTHRU Passthrough

37 % FX˙DISPERSION .. Dispersion

38 % FX˙ROBOT Robotization

39 % FX˙MORPH Mutation

40 % FX˙WHISPER Whisperization

41 % pv˙in.SC˙HANDLE Phase update algorithm. Sup -

42 % ported algorithms are:

43 % PU˙PASSTHROUGH . No phase up -

44 % date is performed

45 % PU˙BASIC Basic phase

46 % propagation is applied

47 % PU˙LOOSEPL Loose phase -

48 % locking is applied

49 % PU˙IDENTITYPL .. Rigid phase -

50 % locking: Identity phase -

51 % locking is applied

52 % PU˙SCALEDPL Rigid phase -

53 % locking: Scaled phase -

54 % locking is applied

55 %

56 % The input struct ¡pv˙in ¿ MAY contain the following fields (depen -

57 % ding on phase vocoder effect and phase update algorithm):

Institute of Broadband Communication 40

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

58 %

59 % pv˙in.LIMIT Optional time limit for faster

60 % processing

61 % pv˙in.INPUT˙FILE2 Input file 2 (only for effect

62 % FX˙MORPH)

63 %

64 % Additional fields may be required too in respect of a chosen audio

65 % effect. It is referred to the actual implementation of this effect

66 % to see which parameters are necessary; the values here presented

67 % are only for the phase vocoder in its basic configuration.

68 %

69 % RETURN VALUES

70 % The struct ¡pv˙out ¿ contains the following output values of the

71 % phase vocoder:

72 %

73 % pv˙out.y Time -domain output signal

74 % pv˙out.fs Sample rate of audio file for

75 % optional playback

76 %

77 % ---

78 % Bachelor Thesis Telematics Graz University of Technology

79 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

80 % June 2010

81 % ---

82

83

84 % ---

85 % Read input

86 try

87 % Required values

88 INPUT˙FILE1 = pv˙in.INPUT˙FILE1;

89 ALPHA = pv˙in.ALPHA;

90 W˙SIZE = pv˙in.W˙SIZE;

91 W˙TYPE = pv˙in.W˙TYPE;

92 W˙EXTENSION = pv˙in.W˙EXTENSION;

93 HOP˙IN = pv˙in.HOP˙IN;

94 HOP˙OUT = pv˙in.HOP˙OUT;

95 PITCHSHIFT = pv˙in.PITCHSHIFT;

96 FX˙HANDLE = pv˙in.FX˙HANDLE;

97 PU˙HANDLE = pv˙in.PU˙HANDLE;

98

99 % Optional values

100 if isfield(pv˙in , ’LIMIT ’)

101 LIMIT = pv˙in.LIMIT;

102 else

103 LIMIT = inf;

104 end

105 if strcmp(func2str(FX˙HANDLE), ’FX˙MORPH ’)

106 INPUT˙FILE2 = pv˙in.INPUT˙FILE2;

107 end

108 % Note: The other values need not to be extracted since they

109 % are used within other functions.

110 catch ME

111 error ([’Input could not be read properly (’, ME.message , ’)’]);

112 end

113

114 % ---

115 % Load input data and extend it properly

116

117 [x1 , fs1] = wavread(INPUT˙FILE1);

118 x1 = [x1(:, 1); ...

Institute of Broadband Communication 41

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

119 zeros(HOP˙IN - mod(length(x1), HOP˙IN), 1)] ...

120 ./ max(abs(x1(:, 1)));

121 X1˙LENGTH = length(x1);

122

123 if exist(’INPUT˙FILE2 ’, ’var’)

124 [x2, fs2] = wavread(INPUT˙FILE2);

125 x2 = [x2(:, 1); ...

126 zeros(HOP˙IN - mod(length(x2), HOP˙IN), 1)] ...

127 ./ max(abs(x2(:, 1)));

128 X2˙LENGTH = length(x2);

129 else

130 X2˙LENGTH = inf;

131 end

132

133 % ---

134 % Initializations

135

136 % Compute time stretch ratio as a fraction of the hop sizes.

137 % Additionally , set up the factor ¡pratio ¿ which indicates that

138 % for pitch shifting , the temporal evolution will remain the same

139 % after all. This factor is used when computing the length of se -

140 % quences.

141 pv˙in.ratio = HOP˙OUT/HOP˙IN;

142 if (pv˙in.PITCHSHIFT)

143 pratio = 1;

144 tratio = pv˙in.ratio;

145 else

146 tratio = 1;

147 pratio = pv˙in.ratio;

148 end

149

150 % Define input start indices and number of input blocks

151 sample˙end = min(min(X1˙LENGTH , X2˙LENGTH), ...

152 LIMIT*fs1/pratio)-W˙SIZE;

153 in˙start = 0: HOP˙IN:sample˙end -1;

154 IN˙BLOCKS = length(in˙start);

155

156 % Define window

157 W = W˙TYPE(W˙SIZE); % Compute window

158 W = W(:); % Ensure column vector

159 W = [W; zeros(W˙SIZE *(W˙EXTENSION -1), 1)]; % Extend it properly

160 W = repmat(W, 1, IN˙BLOCKS); % Repeat for all blocks

161 W˙SIZE = size(W, 1);

162 W˙n = 1: W˙SIZE;

163 [x, y] = meshgrid(in˙start , W˙n);

164

165 % Define input slice matrix of size [W˙SIZE x IN˙BLOCKS]

166 %

167 % Note that based on this definition , the data passed to through the

168 % phase vocoder has the following structure (examplary input hop size

169 % of 16):

170 %

171 % STFT frame # ---¿

172 % ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙

173 % n/k —00 16 32 . . .

174 % —01 17 33 . . .

175 % — —02 18 34 . . .

176 % — —03 19 35 . . .

177 % — —04 20 36 . . .

178 % v —..

179 % —..

Institute of Broadband Communication 42

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

180 % —..

181 % —

182 %

183 in˙slice = x+y;

184 clear x;

185 clear y;

186

187 % Generate empty output signal of proper length

188 pv˙out.y = zeros(W˙SIZE + ceil(min(min(X1˙LENGTH , ...

189 X2˙LENGTH)*pratio*max(tratio ,1), ...

190 LIMIT*fs1*max(tratio ,1))), 1);

191 % Nominal frequency

192 k = (0:W˙SIZE -1) ’;

193 pv˙in.omega = k*2*pi/W˙SIZE;

194

195 % Start temporal performance measurement of chosen algorithm

196 tic;

197

198 % ---

199 % ANALYSIS STAGE

200 % Load windowed frames , circularly shift them and transform them into

201 % the frequency domain.

202 % ---

203

204 % Load input frames and window them

205 x1˙block = x1(in˙slice).*W;

206

207 % Perform circular phase shift via the command ¡fftshift ¿ except

208 % for loose phase locking as phase update algorithm

209 if ˜strcmp(func2str(PU˙HANDLE), ’PU˙LOOSEPL ’)

210 x1˙block = fftshift(x1˙block , 1);

211 end

212

213 % Execute FFT

214 fft˙in.fft1 = fft(x1˙block);

215

216 % If a second input file is necessary , load and transform it

217 % analogously to the sequence above

218 if exist(’INPUT˙FILE2 ’, ’var’)

219 x2˙block = x2(in˙slice).*W;

220 if ˜strcmp(func2str(PU˙HANDLE), ’PU˙LOOSEPL ’)

221 x2˙block = fftshift(x2˙block , 1);

222 end

223 fft˙in.fft2 = fft(x2˙block);

224 end

225

226 % Save memory; in˙slice is quite a big matrix , so free it

227 clear in˙slice;

228

229 % ---

230 % PROCESSING STAGE

231 % Perform audio effect defined by FX˙HANDLE.

232 % ---

233

234 % Perform channel vocoder algorithm

235 [fft˙out] = FX˙HANDLE(pv˙in , fft˙in);

236

237 % ---

238 % SYNTHESIS STAGE

239 % Apply optional phase update algorithm and transform frames back into

240 % the time domain and overlapp -add them to yield the final result.

Institute of Broadband Communication 43

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

241 % ---

242

243 % Apply scaling algorithm

244 [y˙fft] = PU˙HANDLE(pv˙in , fft˙out);

245

246 % Perform IFFT

247 y˙block = real(ifft(y˙fft));

248

249 % Circularly shift the blocks if necessary (cf. analysis stage)

250 if ˜strcmp(func2str(PU˙HANDLE), ’PU˙LOOSEPL ’)

251 y˙block = fftshift(y˙block , 1);

252 x1˙block = fftshift(x1˙block , 1); % If pv˙in.ALPHA ¡ 1, x1˙block

253 % contributes to the output

254 % signal as well; thus it has to

255 % be shifted back.

256 end

257

258 % Window output frames

259 y˙block = y˙block .*W;

260

261 % Define indices of output blocks

262 sample˙end = min(min(X1˙LENGTH*pv˙in.ratio , ...

263 X2˙LENGTH), LIMIT*fs1*tratio)-W˙SIZE;

264 out˙start = 1: HOP˙OUT:sample˙end;

265 OUT˙BLOCKS = min(length(out˙start), IN˙BLOCKS);

266

267 % Blend y˙block (by ALPHA) to the output signal pv˙out.y

268 for i=1: OUT˙BLOCKS

269 out˙slice = (out˙start(i):out˙start(i)+W˙SIZE -1).’;

270 pv˙out.y(out˙slice) = pv˙out.y(out˙slice) + y˙block(:,i)*ALPHA;

271 end

272

273 % ---

274 % RESAMPLING (optional)

275 % If time scaling should be converted into pitch shifting , the output

276 % signal needs to be interpolated (at the moment linearly)

277 % ---

278 if (pv˙in.ratio ˜= 1 && PITCHSHIFT)

279

280 % Length of the interpolated signal

281 l = min(length(pv˙out.y)/pv˙in.ratio , ...

282 length(pv˙out.y));

283

284 % Compute indices of neighbors of the interpolated samples

285 n = 0:l-1;

286 yfloor = floor(pv˙in.ratio*n);

287 yceil = yfloor +1;

288

289 % Compute interpolation factor , which is the distance of the current

290 % point to its lower (left) neighbor

291 g = n*pv˙in.ratio -yfloor;

292

293 % Increment indices , since MATLAB starts indexing at value 1

294 yfloor = yfloor +1;

295 yceil = yceil +1;

296

297 % Assemble interpolated signal

298 pv˙out.y = pv˙out.y(yfloor).*(1-g).’ + pv˙out.y(yceil).*g.’;

299

300 end

301

Institute of Broadband Communication 44

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

302 % ---

303 % ADDING DRY COMPONENTS

304 % After optional resampling , the original signal can be added in res -

305 % pect to ALPHA.

306 % ---

307 for i=1: OUT˙BLOCKS*min(pv˙in.ratio , 1)

308 out˙slice = (in˙start(i):in˙start(i)+W˙SIZE -1).’ + 1;

309 pv˙out.y(out˙slice) = pv˙out.y(out˙slice) + x1˙block(:, i)*(1-ALPHA);

310 end

311

312 % Evaluate temporal performance of chosen algorithm

313 toc

314

315 % Write sample rate to output

316 pv˙out.fs = fs1;

317

318 end

A.2 Time Stretching

A.2.1 Basic Phase Propagation

PU BASIC.m

1 function fft˙out = PU˙BASIC(pv˙in , fft˙in)

2 % SYNTAX

3 % fft˙out = PU˙BASIC(pv˙in , fft˙in)

4 %

5 % DESCRIPTION

6 % Applies the basic phase propagation algorithm to time -frequency

7 % representation of a signal.

8 %

9 % PARAMETERS

10 % pv˙in Container of configuration

11 % data; can be empty but needs to

12 % be listed as the function hand -

13 % les need to be interchangeably.

14 % fft˙in [FL x F#] Time -frequency representation

15 % of input signal , given in F#

16 % STFT frames of length FL

17 %

18 % RETURN VALUES

19 % fft˙out [FL x F#] Processed STFT -frames; matrix

20 % with same dimensions as input

21 % parameter ¡fft˙in ¿.

22 %

23 % ---

24 % Bachelor Thesis Telematics Graz University of Technology

25 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

26 % June 2010

27 % ---

28

29 % Transform STFT frames to polar coordinates

30 r = abs(fft˙in);

31 phi˙a = angle(fft˙in);

32

33 % Set initial phase properly

34 phi˙s = zeros(size(fft˙in));

35 phi˙s (:,1) = pv˙in.ratio*phi˙a (:,1);

36

37 % Perform phase propagation for all STFT frames

Institute of Broadband Communication 45

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

38 for i=2: size(r, 2)

39 delta˙phi˙a = princarg(phi˙a(:,i) ...

40 - pv˙in.HOP˙IN*pv˙in.omega ...

41 - phi˙a(:,i-1));

42 delta˙omega˙a = delta˙phi˙a / pv˙in.HOP˙IN;

43 omega˙a = pv˙in.omega + delta˙omega˙a;

44 phi˙s(:,i) = phi˙s(:,i-1) + pv˙in.HOP˙OUT*omega˙a;

45 end

46

47 % Transform result to Cartesian coordinates

48 fft˙out = r.*exp(1i*phi˙s);

49

50 end

A.2.2 Loose Phase-Locking

PU LOOSEPL.m

1 function fft˙out = PU˙LOOSEPL(pv˙in , fft˙in)

2 % SYNTAX

3 % fft˙out = PU˙LOOSEPL(pv˙in , fft˙in)

4 %

5 % DESCRIPTION

6 % Applies the basic loose phase -locking algorithm to time -frequency

7 % representation of a signal.

8 %

9 % PARAMETERS

10 % pv˙in Container of configuration

11 % data; can be empty but needs to

12 % be listed as the function hand -

13 % les need to be interchangeably.

14 % fft˙in [FL x F#] Time -frequency representation

15 % of input signal , given in F#

16 % STFT frames of length FL

17 %

18 % RETURN VALUES

19 % fft˙out [FL x F#] Processed STFT -frames; matrix

20 % with same dimensions as input

21 % parameter ¡fft˙in ¿.

22 %

23 % ---

24 % Bachelor Thesis Telematics Graz University of Technology

25 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

26 % June 2010

27 % ---

28

29 % Perform basic phase propagation

30 fft˙tmp = PU˙BASIC(pv˙in , fft˙in);

31

32

33 % Apply loose phase -locking

34 num˙ffts = size(fft˙tmp , 2);

35 phi˙s = angle(- [zeros(1, num˙ffts); fft˙tmp (1:end -1,:)] ...

36 + fft˙tmp ...

37 - [fft˙tmp (2:end ,:); zeros(1, num˙ffts)]);

38

39 fft˙out = abs(fft˙tmp).*exp(1i*phi˙s);

40

41 end

Institute of Broadband Communication 46

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

A.2.3 Rigid Phase-Locking: Identity Phase-Locking

PU IDENTITYPL.m

1 function fft˙out = PU˙IDENTITYPL(pv˙in , fft˙in)

2 % SYNTAX

3 % fft˙out = PU˙IDENTITYPL(pv˙in , fft˙in)

4 %

5 % DESCRIPTION

6 % Applies the identity phase -locking algorithm to time -frequency

7 % representation of a signal.

8 %

9 % PARAMETERS

10 % pv˙in Container of configuration

11 % data; can be empty but needs to

12 % be listed as the function hand -

13 % les need to be interchangeably.

14 % fft˙in [FL x F#] Time -frequency representation

15 % of input signal , given in F#

16 % STFT frames of length FL

17 %

18 % RETURN VALUES

19 % fft˙out [FL x F#] Processed STFT -frames; matrix

20 % with same dimensions as input

21 % parameter ¡fft˙in ¿.

22 %

23 % ---

24 % Bachelor Thesis Telematics Graz University of Technology

25 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

26 % June 2010

27 % ---

28

29 % Decimate FFT values to relevant parts (i.e. FFT -samples from N/2..N-1

30 % are redundant as they are the complex conjugate of the (reversed)

31 % samples N/2..1; assuming indexing from 0..N-1), hence keeping values

32 % from 1..N/2+1 (cf. MATLAB addression scheme)

33 fft = fft˙in (1:(end /2+1) ,:);

34

35 % Transform STFTs into polar coordinates

36 r = abs(fft);

37 phi˙a = angle(fft);

38

39 % Initialize output phase properly

40 phi˙s = zeros(size(fft));

41 phi˙s (:,1) = pv˙in.ratio*phi˙a (:,1);

42

43 % Detect regions of influence (log domain)

44 [regions˙cell pks˙cell pks˙idx˙cell] = getRegions(log(r));

45

46 % Iterate all STFT frames

47 for j=2: size(r, 2)

48

49 % Extract peaks of current STFT

50 pks˙idx = pks˙idx˙cell–j˝;

51

52 % Iterate all regions of influences

53 for i=1: length(pks˙idx)

54

55 % Extract current region from cell container

56 k = regions˙cell–j˝–i˝;

57

Institute of Broadband Communication 47

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

58 % Get current peak index

59 k˙p = pks˙idx(i);

60

61 % Compute regular phase propagation for the peak

62 delta˙phi˙a˙pk = princarg(phi˙a(k˙p ,j) ...

63 - pv˙in.HOP˙IN*pv˙in.omega(k˙p) ...

64 - phi˙a(k˙p ,j-1));

65 delta˙omega˙a˙pk = delta˙phi˙a˙pk / pv˙in.HOP˙IN;

66 omega˙a˙pk = pv˙in.omega(k˙p) + delta˙omega˙a˙pk;

67 phi˙s˙pk = phi˙s(k˙p ,j-1) + pv˙in.HOP˙OUT*omega˙a˙pk;

68

69 % Receive theta as this phase difference

70 theta = phi˙s˙pk - phi˙a(k˙p ,j);

71

72 % Rotate region of influence by theta

73 theta˙vec = repmat(theta , length(k), 1);

74 Z = exp(1i*theta˙vec);

75 fft(k,j) = fft(k,j).*Z;

76

77 % Save phi˙s for next round

78 phi˙s(k,j) = princarg(angle(fft(k,j)));

79

80 end

81 end

82

83 % Complete the spectrum

84 fft˙out = [fft (1:(end -1) ,:);

85 conj(fft(end:-1:2,:))];

86

87 end

A.2.4 Rigid Phase-Locking: Scaled Phase-Locking

PU SCALEDPL.m

1 function fft˙out = PU˙SCALEDPL(pv˙in , fft˙in)

2 % SYNTAX

3 % fft˙out = PU˙SCALEDPL(pv˙in , fft˙in)

4 %

5 % DESCRIPTION

6 % Applies the scaled phasel -locking algorithm on a time -frequency

7 % representation of a signal.

8 %

9 % PARAMETERS

10 % pv˙in Container of configuration

11 % data; necessary fields are

12 % listed below.

13 % pv˙in.SPL˙BETA Phase scaling factor

14 % fft˙in [FL x F#] Time -frequency representation

15 % of input signal , given in F#

16 % STFT frames of length FL

17 %

18 % RETURN VALUES

19 % fft˙out [FL x F#] Processed STFT -frames; matrix

20 % with same dimensions as input

21 % parameter ¡fft˙in ¿.

22 %

23 % ---

24 % Bachelor Thesis Telematics Graz University of Technology

25 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

26 % June 2010

Institute of Broadband Communication 48

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

27 % ---

28

29 % Read input

30 try

31 SPL˙BETA = pv˙in.SPL˙BETA;

32 catch ME

33 error ([’Input could not be read properly (’, ME.message , ’)’]);

34 end

35

36 % Decimate FFT values to relevant parts (i.e. FFT -samples from N/2..N-1

37 % are redundant as they are the complex conjugate of the (reversed)

38 % samples N/2..1; assuming indexing from 0..N-1), hence keeping values

39 % from 1..N/2+1 (cf. MATLAB addression scheme)

40 fft = fft˙in (1:(end /2+1) ,:);

41

42 % Transform to polar coordinates

43 r = abs(fft);

44 phi˙a = angle(fft);

45

46 % Initialize output phase

47 phi˙s = zeros(size(fft));

48 phi˙s (:,1) = pv˙in.ratio*phi˙a (:,1);

49

50 % Detect regions of influence (log domain)

51 [regions˙cell pks˙cell pks˙idx˙cell] = getRegions(log(r));

52

53 % Empty initializiation of former peaks/indices

54 pks˙idx0 = 0;

55 pks˙val0 = 0;

56

57 % Iterate all STFT frames

58 for j=2: size(r, 2)

59

60 % Extract peaks and indices of current frame

61 pks˙val = pks˙cell–j˝’;

62 pks˙idx = pks˙idx˙cell–j˝’;

63

64 % Iterate all regions of influences

65 for i=1: length(pks˙idx)

66

67 % Extract region of influence k and associated peak k˙p

68 k = regions˙cell–j˝–i˝;

69 k˙p = pks˙idx(i);

70

71 % Get corresponding peak from preceding STFT.

72 % Note: Peak magnitudes are not considered yet , yielding still

73 % decent results. An improvement , however , would be to take

74 % them into account.

75 kd = abs(repmat(k˙p ,length(pks˙idx0) ,1)-pks˙idx0); % Index distance

76 [m k0] = min(kd); % Min. distance

77 k˙f = pks˙idx0(k0); % Actual index

78

79 % If peak is not in region of influence , assume the same index as

80 % predecessor

81 if isempty(intersect(k˙f , k))

82 k˙f = k˙p;

83 end

84

85 % Compute regular phase propagation for the peak

86 delta˙phi˙a˙pk = princarg(phi˙a(k˙p ,j) ...

87 - pv˙in.HOP˙IN*pv˙in.omega(k˙p) ...

Institute of Broadband Communication 49

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

88 - phi˙a(k˙f ,j-1));

89 delta˙omega˙a˙pk = delta˙phi˙a˙pk / pv˙in.HOP˙IN;

90 omega˙a˙pk = pv˙in.omega(k˙p) + delta˙omega˙a˙pk;

91 phi˙s˙pk = phi˙s(k˙f ,j-1) + pv˙in.HOP˙OUT*omega˙a˙pk;

92 phi˙s(k,j) = repmat(phi˙s˙pk , length(k), 1) + ...

93 SPL˙BETA * ...

94 (phi˙a(k,j) - repmat(phi˙a(k˙p ,j),length(k) ,1));

95

96 end

97

98 % Save peak indices and values (not yet used) for next round

99 pks˙idx0 = pks˙idx;

100 pks˙val0 = pks˙val;

101

102 end

103

104 % Transform STFTs back to Cartesian coordinates

105 fft = r.*exp(1i*phi˙s);

106

107 % Complete the spectrum

108 fft˙out = [fft (1:(end -1) ,:);

109 conj(fft(end:-1:2,:))];

110

111 end

A.2.5 Passthrough

PU PASSTHRU.m

1 function fft˙out = PU˙PASSTHRU(pv˙in , fft˙in)

2 % SYNTAX

3 % fft˙out = PU˙PASSTHRU(pv˙in , fft˙in)

4 %

5 % DESCRIPTION

6 % This function does not modifiy the input signal but passes it

7 % directly through to the output.

8 %

9 % PARAMETERS

10 % pv˙in Container of configuration

11 % data; can be empty but needs to

12 % be listed as the function hand -

13 % les need to be interchangeably.

14 % fft˙in [FL x F#] Time -frequency representation

15 % of input signal , given in F#

16 % STFT frames of length FL

17 %

18 % RETURN VALUES

19 % fft˙out [FL x F#] Passed -through STFT -frames;

20 % matrix with same dimensions as

21 % input parameter ¡fft˙in ¿.

22 %

23 % ---

24 % Bachelor Thesis Telematics Graz University of Technology

25 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

26 % June 2010

27 % ---

28

29 fft˙out = fft˙in;

30

31 end

Institute of Broadband Communication 50

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

A.3 Pitch Shifting

A.3.1 Selective Peak Shifting

FX PITCHSHIFT.m

1 function fft˙out = FX˙PITCHSHIFT(pv˙in , fft˙in)

2 % SYNTAX

3 % fft˙out = fft˙out = FX˙PITCHSHIFT(pv˙in , fft˙in)

4 %

5 % DESCRIPTION

6 % Applies a pitch shift algorithm on a time -frequency representation

7 % of a signal by decomposing the signal into so -called ”regions of

8 % influences” and separately moving them in the spectrum.

9 %

10 % PARAMETERS

11 % pv˙in Container of configuration

12 % data; necessary fields are

13 % listed below.

14 % pv˙in.PSFACTOR Pitch shifting factor.

15 % fft˙in [FL x F#] Time -frequency representation

16 % of input signal , given in F#

17 % STFT frames of length FL

18 %

19 % RETURN VALUES

20 % fft˙out [FL x F#] Processed STFT -frames; matrix

21 % with same dimensions as input

22 % parameter ¡fft˙in ¿.

23 %

24 % ---

25 % Bachelor Thesis Telematics Graz University of Technology

26 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

27 % June 2010

28 % ---

29

30 % Read input

31 try

32 PSFACTOR = pv˙in.PSFACTOR;

33 catch ME

34 error ([’Input could not be read properly (’, ME.message , ’)’]);

35 end

36

37 % Remove redundant parts of the spectrum (i.e. FFT -samples from

38 % N/2...N-1 being the complex conjugate of the (reversed) samples

39 % N/2..1; assuming indexing from 0..N-1), hence keeping values from

40 % 1..N/2+1 (cf. MATLAB addression scheme)

41 fft = fft˙in.fft1;

42 fft = fft (1:(end /2+1) ,:);

43 fft˙size = size(fft , 1);

44

45 % Generate empty output FFT

46 fft˙out = zeros(size(fft));

47

48 % Transform into polar coordinates

49 r = abs(fft);

50

51 % --

52 % 01 PEAK DETECTION

53 % 02 REGION OF INFLUENCE ESTIMATION

54 % --

55

Institute of Broadband Communication 51

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

56 [regions˙cell pks˙cell pks˙idx˙cell] = getRegions(log(r));

57

58 % Iterate all STFT frames

59 for j=1: size(r, 2)

60

61 % Get peak indices and values

62 pks˙idx = pks˙idx˙cell–j˝;

63 pks = r(pks˙idx ,j);

64

65 col = hsv(length(pks))*0.4;

66

67 % Iterate all detected regions

68 for i=1: length(regions˙cell–j˝)

69

70 % Assign current region index sequence and get the associated peak

71 region = regions˙cell–j˝–i˝;

72 pk˙idx = pks˙idx(i);

73

74 % --

75 % 03 FREQUENCY ESTIMATION

76 % Quadratic interpolation in log domain to estimate true fre -

77 % quency (which is the exact determination if the signal was

78 % windowed by a gauss function.

79 % --

80

81 % Define peak neighborhood

82 pk˙surr˙idx = [pk˙idx -1 pk˙idx pk˙idx +1];

83

84 % Be sure that the peak ’s neighborhood is inside the spectrum

85 while (pk˙surr˙idx (1) ¡ 1)

86 pk˙surr˙idx = pk˙surr˙idx + 1;

87 end

88 while (pk˙surr˙idx (3) ¿ fft˙size)

89 pk˙surr˙idx = pk˙surr˙idx - 1;

90 end

91

92 % Get values from neighborhood samples

93 pk˙surr˙val = r(pk˙surr˙idx ,j) ’;

94

95 % Perform quadratic interpolation

96 tmp = [pk˙surr˙idx; ...

97 pk˙surr˙val];

98 [a b c m˙x m˙y] = parfit(tmp(:,1), tmp(:,2), tmp(:,3));

99

100 % If determined maximum lies outside the spectrum , move it back

101 % in (this should never have relevant consequences but is necessary

102 % to guarantee faultless execution)

103 if (m˙x ¡ 1)

104 m˙x = 1;

105 m˙y = r(m˙x , j);

106 end

107 if (m˙y ¿ fft˙size)

108 m˙x = fft˙size;

109 m˙y = r(m˙x , j);

110 end

111

112 % Compute w˙0 and the necessary shift in respect of bins and

113 % frequency

114 w˙0 = (m˙x -1)*2*pi/fft˙size; % MATLAB indices start at 1

115

116 % --

Institute of Broadband Communication 52

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

117 % 04 COMPUTATION OF FREQUENCY SHIFT

118 % --

119

120 delta˙w = w˙0*(PSFACTOR - 1);

121 delta˙bins = delta˙w /(2*pi)*fft˙size;

122

123 % --

124 % 05 PERFORMING FREQUENCY SHIFT

125 % The necessary peak shift is performed in two steps; namely

126 % an integer and fractional shift.

127 % --

128

129 % Decompose deta˙bins into integer and fractional part

130 delta˙bins˙int = floor(delta˙bins);

131 delta˙bins˙frac = delta˙bins - delta˙bins˙int; % Note that the

132 % fractional part

133 % is always posi -

134 % tive (i.e. refer -

135 % ring to a shift

136 % to the right),

137 % even for negative

138 % values of delta˙w

139

140 % 05.1 INTEGER SHIFT

141

142 % Define samples to be shifted

143 region˙intshift = region;

144 region˙intshift(region˙intshift + delta˙bins˙int ¿ size(r, 1)) ...

145 = [];

146 region˙intshift(region˙intshift + delta˙bins˙int ¡ 1) = [];

147

148 % Perform integer shift

149 fft˙region = zeros(size(r,1), 1);

150 fft˙region(region˙intshift + delta˙bins˙int) = ...

151 fft(region˙intshift , j);

152

153 % 05.2 FRACTIONAL SHIFT

154

155 % Compute Lagrange interpolation FIR filter , order 3.

156 h = lagrangeFIR3(delta˙bins˙frac);

157

158 % Perform fractional shift via convolution

159 fft˙region = conv(fft˙region , h);

160 fft˙region = fft˙region (1: size(r, 1));

161

162 % --

163 % 06 PHASE ADJUSTMENT

164 % --

165

166 % Compute theta and apply it to the whole region

167 theta = princarg(delta˙w *(j - 1)*pv˙in.HOP˙IN);

168 fft˙region = fft˙region .*exp(1i*theta);

169

170 % Accumulate result

171 fft˙out(:,j) = fft˙out(:,j) + fft˙region;

172

173 end

174

175 end

176

177 % Complete the spectrum

Institute of Broadband Communication 53

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

178 fft˙out = [fft˙out (1:(end -1) ,:);

179 conj(fft˙out(end:-1:2,:))];

180

181 end

A.4 The Channel Vocoder

A.4.1 Mutation between Sounds

FX MORPH.m

1 function fft˙out = FX˙MORPH(pv˙in , fft˙in)

2 % SYNTAX

3 % fft˙out = FX˙MORPH(pv˙in , fft˙in)

4 %

5 % DESCRIPTION

6 % Applies the effect of mutation of two sounds on a time -frequency

7 % representation of a signal , also referred to as ”morphing ”.

8 %

9 % PARAMETERS

10 % pv˙in Container of configuration

11 % data; necessary fields are

12 % listed below.

13 % pv˙in.MORPHTYPE˙R Magnitude combination. Current -

14 % ly supported values are:

15 % ’R1 ’ Magnitude of input

16 % signal 1 is passed through

17 % ’R2 ’ Magnitude of input

18 % signal 2 is passed through

19 % ’R1*R2 ’ .. Magnitudes are mul -

20 % tiplied , referring to a lo -

21 % AND operation

22 % ’R1+R2 ’ .. Magnitudes are added

23 % together , referring to a lo -

24 % gical OR operation

25 % pv˙in.MORPHTYPE˙P Phase combination. Currently

26 % supported values are:

27 % ’P1 ’ Phase values of in -

28 % put signal 1 are passed

29 % through

30 % ’P2 ’ Phase values of in -

31 % put signal 2 are passed

32 % through

33 % ’P1+P2 ’ .. Phase values of both

34 % input signals are added

35 % fft˙in [FL x F#] Time -frequency representation

36 % of input signal , given in F#

37 % STFT frames of length FL

38 %

39 % RETURN VALUES

40 % fft˙out [FL x F#] Processed STFT -frames; matrix

41 % with same dimensions as input

42 % parameter ¡fft˙in ¿.

43 %

44 % ---

45 % Bachelor Thesis Telematics Graz University of Technology

46 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

47 % June 2010

48 % ---

49

50 % Read input

Institute of Broadband Communication 54

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

51 try

52 MORPHTYPE˙R = pv˙in.MORPHTYPE˙R;

53 MORPHTYPE˙P = pv˙in.MORPHTYPE˙P;

54 catch ME

55 error ([’Input could not be read properly (’, ME.message , ’)’]);

56 end

57

58 % Transform input signals to polar coordinates

59 r1 = abs(fft˙in.fft1);

60 phi1 = angle(fft˙in.fft1);

61 r2 = abs(fft˙in.fft2);

62 phi2 = angle(fft˙in.fft2);

63

64 % Apply morphing effect , depending on configuration

65 switch MORPHTYPE˙R

66

67 case ’R1’

68 r = r1;

69 case ’R2’

70 r = r2;

71 case ’R1*R2’

72 r = r1.*r2;

73 case ’R1+R2’

74 r = r1+r2;

75 otherwise

76 error([’FX˙MORPH was not properly configured ’, ...

77 ’(pv˙in.MORPHTYPE˙R = ’, MORPHTYPE˙R , ’, which was ’, ...

78 ’not recognized).’]);

79

80 end

81

82 switch MORPHTYPE˙P

83

84 case ’P1’

85 phi = phi1;

86 case ’P2’

87 phi = phi2;

88 case ’P1+P2’

89 phi = phi1+phi2;

90 otherwise

91 error([’FX˙MORPH was not properly configured ’, ...

92 ’(pv˙in.MORPHTYPE˙P = ’, MORPHTYPE˙P , ’, which was ’, ...

93 ’not recognized).’]);

94

95 end

96

97 % Transform output back to Cartesian coordinates

98 fft˙out = r.*exp(1i*phi);

99

100 end

A.4.2 Dispersion

FX DISPERSION.m

1 function fft˙out = FX˙DISPERSION(pv˙in , fft˙in)

2 % SYNTAX

3 % fft˙out = FX˙DISPERSION(pv˙in , fft˙in)

4 %

5 % DESCRIPTION

6 % Applies the dispersion effect on a time -frequency representation

Institute of Broadband Communication 55

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

7 % of a signal , simulating different delay for separate frequency

8 % bands.

9 %

10 % PARAMETERS

11 % pv˙in Container of configuration

12 % data; necessary fields are

13 % listed below.

14 % pv˙in.DISPFACTOR Dispersion factor , which is

15 % multiplied with the quadratic

16 % phase offset

17 % fft˙in [FL x F#] Time -frequency representation

18 % of input signal , given in F#

19 % STFT frames of length FL

20 %

21 % RETURN VALUES

22 % fft˙out [FL x F#] Processed STFT -frames; matrix

23 % with same dimensions as input

24 % parameter ¡fft˙in ¿.

25 %

26 % ---

27 % Bachelor Thesis Telematics Graz University of Technology

28 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

29 % June 2010

30 % ---

31

32 % Read dispersion factor

33 try

34 a = pv˙in.DISPFACTOR;

35 catch ME

36 error ([’Input could not be read properly (’, ME.message , ’)’]);

37 end

38

39 % Transform to polar coordinates

40 r = abs(fft˙in.fft1);

41 phi = angle(fft˙in.fft1);

42

43 % Set up quadratic phase term

44 qph = (0:(size(r, 1) -1)) ’.ˆ2;

45

46 % Apply quadratic phase term

47 phi = phi + a*repmat(qph , 1, size(r,2));

48

49 % Transform back to Cartesian coordinates

50 fft˙out = r.*exp(1i*phi);

51

52 end

A.4.3 Robotization

FX ROBOT.m

1 function fft˙out = FX˙ROBOT(pv˙in , fft˙in)

2 % SYNTAX

3 % fft˙out = FX˙ROBOT(pv˙in , fft˙in)

4 %

5 % DESCRIPTION

6 % Applies the robotization effect on a time -frequency representation

7 % of a signal by setting phase values to zero.

8 %

9 % PARAMETERS

10 % pv˙in Container of configuration

Institute of Broadband Communication 56

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

11 % data; can be empty but needs to

12 % be listed as the function hand -

13 % les need to be interchangeably.

14 % fft˙in [FL x F#] Time -frequency representation

15 % of input signal , given in F#

16 % STFT frames of length FL

17 %

18 % RETURN VALUES

19 % fft˙out [FL x F#] Processed STFT -frames; matrix

20 % with same dimensions as input

21 % parameter ¡fft˙in ¿.

22 %

23 % ---

24 % Bachelor Thesis Telematics Graz University of Technology

25 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

26 % June 2010

27 % ---

28

29 % Transform FFT to polar coordinates

30 r = abs(fft˙in.fft1);

31 phi = angle(fft˙in.fft1);

32

33 % Set the phase to zero

34 phi = 0*phi; % This operation preserves the dimension of phi

35

36 % Transform output signal back to Cartesian coordinates

37 fft˙out = r.*exp(1i*phi);

38

39 end

A.4.4 Whisperization

FX WHISPER.m

1 function fft˙out = FX˙WHISPER(pv˙in , fft˙in)

2 % SYNTAX

3 % fft˙out = FX˙WHISPER(pv˙in , fft˙in)

4 %

5 % DESCRIPTION

6 % Applies the whisperization effect on a time -frequency representa -

7 % tion of a signal by setting either the magnitude or phase values

8 % randomly.

9 %

10 % PARAMETERS

11 % pv˙in Container of configuration

12 % data; necessary fields are

13 % listed below.

14 % pv˙in.WHISP˙COMP Component that should be rando -

15 % mized. Currently supported

16 % values are:

17 % ’MAG ’ Magnitude is rando -

18 % mized

19 % ’PHASE ’ .. Phase is randomized

20 % fft˙in [FL x F#] Time -frequency representation

21 % of input signal , given in F#

22 % STFT frames of length FL

23 %

24 % RETURN VALUES

25 % fft˙out [FL x F#] Processed STFT -frames; matrix

26 % with same dimensions as input

27 % parameter ¡fft˙in ¿.

Institute of Broadband Communication 57

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

28 %

29 % ---

30 % Bachelor Thesis Telematics Graz University of Technology

31 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

32 % June 2010

33 % ---

34

35 % Read input

36 try

37 WHISP˙COMP = pv˙in.WHISP˙COMP;

38 catch ME

39 error ([’Input could not be read properly (’, ME.message , ’)’]);

40 end

41

42 % Set magnitude values randomly

43 if strcmp(WHISP˙COMP , ’MAG’)

44 r = rand(size(fft˙in.fft1));

45 phi = angle(fft˙in.fft1);

46 % Set phase values randomly

47 elseif strcmp(WHISP˙COMP , ’PHASE ’)

48 r = abs(fft˙in.fft1);

49 phi = (rand(size(r)) -0.5)*2*pi;

50 else

51 error ([’FX˙WHISPER was not properly configured ’, ...

52 ’(pv˙in.WHISP˙COMP = ’, WHISP˙COMP , ’, which was ’, ...

53 ’not recognized).’]);

54 end

55

56 % Transform result back to Cartesian coordinates

57 fft˙out = r.*exp(1i*phi);

58

59 end

A.5 Additional Functions

A.5.1 Detection of Regions of Influence getRegions()

getRegions.m

1 function [regions pks pks˙idx] = getRegions(mag)

2 % SYNTAX

3 % [regions pks pks˙idx] = getRegions(mag)

4 %

5 % DESCRIPTION

6 % Detects regions of influence of magnitude spectra spectrum , retur -

7 % ning indices in cell arrays. The regions are divided by minima be -

8 % tween the peaks.

9 %

10 % PARAMETERS

11 % fft˙in [FL x F#] Input spectra , given in F#

12 % STFT frames of length FL

13 %

14 % RETURN VALUES

15 % regions –F#˝–R#˝ Indices of detected regions ,

16 % where the R# detected regions

17 % per frame are given in F# cells

18 % pks˙val –F#˝–R#˝ Values of detected peaks ,

19 % where the R# detected peaks

20 % per frame are given in F# cells

21 % pks˙idx –F#˝–R#˝ Indices of detected peaks ,

22 % where the R# detected peaks

Institute of Broadband Communication 58

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

23 % per frame are given in F# cells

24 %

25 % ---

26 % Bachelor Thesis Telematics Graz University of Technology

27 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

28 % June 2010

29 % ---

30

31 % Threshold for the execution of ¡findpeaks ¿

32 MINPK = 1;

33

34 % Iterate all STFT frames

35 for j=1: size(mag ,2)

36

37 % Initialize empty region and empty peak list

38 regions–j˝ = –˝;

39 pks–j˝ = [];

40 pks˙idx–j˝ = [];

41

42 % Extract current spectrum

43 curr˙mag = mag(:,j);

44

45 % If threshold is reached , perform MATLABs ¡findpeak ¿ algorithm.

46 % Note that there is a threshold set , neglecting peaks with too

47 % little magnitude.

48 if (max(curr˙mag) ¿ MINPK)

49 [pks–j˝, pks˙idx–j˝] = findpeaks(curr˙mag , ’minpeakheight ’, MINPK);

50 end

51 % If threshold is not reached , assume whole frame as one region

52 % and continue

53 if isempty(pks–j˝)

54 [pks–j˝ pks˙idx–j˝] = max(curr˙mag);

55 regions–j˝–end +1˝ = 1:size(mag ,1);

56 continue;

57 end

58

59 % This is just a verification that all samples are attached to a

60 % region of influence

61 border˙check = ones(length(curr˙mag) ,1);

62

63 % Begin at the leftmost sample

64 border˙left = 1;

65

66 % Iterate all detected peaks

67 for i=1: length(pks˙idx–j˝)

68

69 % Detect minimum between peaks and assign it to border˙right

70 if (i˜= length(pks˙idx–j˝))

71 left = pks˙idx–j˝(i);

72 right = pks˙idx–j˝(i+1);

73 slice = left:right;

74 [m,idx] = min(curr˙mag(slice));

75 idx = idx+left -1;

76 else

77 idx = size(mag ,1) +1; % Correction by 1 to get

78 % borders right (s.b.)

79 end

80 border˙right = idx;

81

82 % Define and assign region

83 region = border˙left:border˙right -1;

Institute of Broadband Communication 59

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

84 regions–j˝–end +1˝ = region;

85

86 % Assign region as attached

87 border˙check(region) = border˙check(region) - 1;

88

89 % Current right border is next left border

90 border˙left = border˙right;

91

92 end

93

94 % Verify that all samples have been assigned to regions

95 if sum(abs(border˙check)) ˜= 0

96 error(’getRegions (): Not all samples were assigned to regions!’);

97 end

98

99 end

100

101 end

A.5.2 Lagrange FIR Interpolation Filter of Order 3

LagrangeFIR3.m

1 function h = lagrangeFIR3(delay)

2 % SYNTAX

3 % h = lagrangeFIR3(delay)

4 %

5 % DESCRIPTION

6 % Creates impulse response (FIR coefficients) of a Lagrange cubic

7 % interpolator of order 3.

8 %

9 % PARAMETERS

10 % delay Fractional delay value

11 %

12 % RETURN VALUES

13 % h [4 x 1] Filter coefficients

14 %

15 % ---

16 % Bachelor Thesis Telematics Graz University of Technology

17 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

18 % June 2010

19 % ---

20

21 h = zeros (4,1);

22 D = delay;

23

24 h(1) = -(D-1)*(D-2)*(D-3)/6;

25 h(2) = D*(D-2)*(D-3)/2;

26 h(3) = -D*(D-1)*(D-3)/2;

27 h(4) = D*(D-1)*(D-2)/6;

28

29 end

A.5.3 Modified Gaussian Window

gaussz.m

1 function w = gaussz(n)

2 % SYNTAX

3 % w = gaussz(n)

4 %

Institute of Broadband Communication 60

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

5 % DESCRIPTION

6 % This function returns a Gauss window with corrected periodicity n.

7 %

8 % PARAMETERS

9 % n Window size

10 %

11 % RETURN VALUES

12 % w [n x 1] Gauss window

13 %

14 % ---

15 % Bachelor Thesis Telematics Graz University of Technology

16 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

17 % June 2010

18 % ---

19

20 w = [0; gausswin(n-1)];

21

22 end

A.5.4 Modified Hanning Window

hanningz.m

1 function w = hanningz(n)

2 % SYNTAX

3 % w = hanningz(n)

4 %

5 % DESCRIPTION

6 % Returns a Hanning window with corrected periodicity n.

7 %

8 % PARAMETERS

9 % n Window size

10 %

11 % RETURN VALUES

12 % w [n x 1] Hanning window

13 %

14 % ---

15 % Bachelor Thesis Telematics Graz University of Technology

16 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

17 % June 2010

18 % ---

19

20 w = [0; hanning(n-1)];

21

22 end

A.5.5 Principal Domain Wrapping

princarg.m

1 function arg˙out = princarg(arg˙in)

2 % SYNTAX

3 % arg˙out = princarg(arg˙in)

4 %

5 % DESCRIPTION

6 % Maps the submitted angle ¡arg˙in ¿ into the principal +/-pi -domain.

7 %

8 % PARAMETERS

9 % arg˙in Input argument

10 %

11 % RETURN VALUES

Institute of Broadband Communication 61

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

12 % arg˙out Output argument

13 %

14 % ---

15 % Bachelor Thesis Telematics Graz University of Technology

16 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

17 % June 2010

18 % ---

19

20 arg˙out = mod(arg˙in + pi , 2*pi) - pi;

21

22 end

A.5.6 Quadratic Interpolation

parfit.m

1 function [a b c m˙x m˙y] = parfit(p1, p2, p3)

2 % SYNTAX

3 % [a b c m˙x m˙y] = parfit(p1 , p2 , p3)

4 %

5 % DESCRIPTION

6 % Fits a parabola of the form y = axˆ2 + bx + c into the submitted

7 % points ¡p1 ¿, ¡p2 ¿ and ¡p3 ¿. The coefficients ¡a¿, ¡b¿ and ¡c¿

8 % are returned as well as the x- and y-value of the minimum/maximum.

9 %

10 % PARAMETERS

11 % p1 , p2 , p3 [2 x 1] Input points

12 %

13 % RETURN VALUES

14 % a, b, c Coefficients of parabolic

15 % equation y = axˆ2 + bx + c

16 % m˙x , m˙y x- and y-value of the minimum/

17 % maximum

18 %

19 % ---

20 % Bachelor Thesis Telematics Graz University of Technology

21 % Johannes Gruenwald johannes.gruenwald@student.tugraz.at

22 % June 2010

23 % ---

24

25 x = [p1(1); p2(1); p3(1)];

26 y = [p1(2); p2(2); p3(2)];

27 X = repmat(x,1,3).ˆ repmat (2:-1:0 ,3,1);

28

29 C = Xˆ(-1) * y;

30 a = C(1);

31 b = C(2);

32 c = C(3);

33

34 m˙x = -b/(2*a);

35 m˙y = C’*m˙x .ˆ(2: -1:0) ’;

36

37 end

Institute of Broadband Communication 62

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

References

[AR77] J.B. Allen and L.R. Rabiner. A unified approach to short-time fourier analysis

and synthesis. Proceedings of the IEEE, 65(11):1558 – 1564, nov. 1977.

[BA70] T. Bially and W. Anderson. A digital channel vocoder. Communication Tech-

nology, IEEE Transactions on, 18(4):435 –442, august 1970.

[Bag78] D. Baggi. Implementation of a channel vocoder synthesizer using a fast, time-

multiplexed digital filter. In Acoustics, Speech, and Signal Processing, IEEE

International Conference on ICASSP ’78., volume 3, pages 167 – 170, apr

1978.

[Cap94] O. Cappe. Elimination of the musical noise phenomenon with the ephraim and

malah noise suppressor. Speech and Audio Processing, IEEE Transactions on,

2(2):345 –349, apr 1994.

[CF87] A. Crossman and F. Fallside. Multipulse-excited channel vocoder. In Acoustics,

Speech, and Signal Processing, IEEE International Conference on ICASSP ’87.,

volume 12, pages 1926 – 1929, apr 1987.

[Cro80] R. Crochiere. A weighted overlap-add method of short-time fourier analy-

sis/synthesis. Acoustics, Speech and Signal Processing, IEEE Transactions on,

28(1):99 – 102, feb 1980.

[DGBA00] A. De Götzen, N. Bernardini, and D. Arfib. Traditional (?) implementations of

a phase vocoder: the tricks of the trade. In COST-G6 Conference on Digital

Audio Effects (DAFx-00), volume 3, pages 37–44, december 2000.

[Dol86] Mark Dolson. The phase vocoder: a tutorial. Computer Music Journal,

10(4):14–27, 1986.

[Fel82] J. Feldman. A compact digital channel vocoder using commercial devices. In

Acoustics, Speech, and Signal Processing, IEEE International Conference on

ICASSP ’82., volume 7, pages 1960 – 1963, may 1982.

[Fer99] A.J.S. Ferreira. An odd-dft based approach to time-scale expansion of audio

signals. Speech and Audio Processing, IEEE Transactions on, 7(4):441 –453,

jul 1999.

[GL84] D. Griffin and Jae Lim. Signal estimation from modified short-time fourier

transform. Acoustics, Speech and Signal Processing, IEEE Transactions on,

32(2):236 – 243, apr 1984.

[Gol80] B. Gold. Formant representation of parameters for a channel vocoder. In

Acoustics, Speech, and Signal Processing, IEEE International Conference on

ICASSP ’80., volume 5, pages 128 – 130, apr 1980.

[GR67] B. Gold and C. Rader. The channel vocoder. Audio and Electroacoustics, IEEE

Transactions on, 15(4):148 – 161, dec 1967.

[KJ09] Hon Keung Kwan and A. Jiang. Fir, allpass, and iir variable fractional delay

digital filter design. Circuits and Systems I: Regular Papers, IEEE Transactions

on, 56(9):2064 –2074, sept. 2009.

[LD97] J. Laroche and M. Dolson. Phase-vocoder: about this phasiness business. In

Applications of Signal Processing to Audio and Acoustics, 1997. 1997 IEEE

ASSP Workshop on, page 4 pp., 19-22, 1997.

Institute of Broadband Communication 63

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

[LD99a] J. Laroche and M. Dolson. Improved phase vocoder time-scale modification of

audio. Speech and Audio Processing, IEEE Transactions on, 7(3):323 –332,

may 1999.

[LD99b] J. Laroche and M. Dolson. New phase-vocoder techniques for pitch-shifting,

harmonizing and other exotic effects. In Applications of Signal Processing to

Audio and Acoustics, 1999 IEEE Workshop on, pages 91 –94, 1999.

[Loo97] T.S. Loos. Implementation of a real-time hy-2 channel vocoder algorithm. In

MILCOM 97 Proceedings, volume 1, pages 525 –529 vol.1, 2-5 1997.

[LVKL96] T.I. Laakso, V. Valimaki, M. Karjalainen, and U.K. Laine. Splitting the unit

delay [fir/all pass filters design]. Signal Processing Magazine, IEEE, 13(1):30

–60, jan 1996.

[Lyo96] Richard G. Lyons. Understanding Digital Signal Processing. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1996.

[OS09a] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing,

pages 648–741. Prentice Hall Press, Upper Saddle River, NJ, USA, 2009.

[OS09b] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing,

pages 822–835. Prentice Hall Press, Upper Saddle River, NJ, USA, 2009.

[OS09c] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing,

page 685. Prentice Hall Press, Upper Saddle River, NJ, USA, 2009.

[OS09d] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing,

pages 219–221. Prentice Hall Press, Upper Saddle River, NJ, USA, 2009.

[OS09e] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing,

page 87. Prentice Hall Press, Upper Saddle River, NJ, USA, 2009.

[OS09f] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing,

page 305. Prentice Hall Press, Upper Saddle River, NJ, USA, 2009.

[PB98] M.S. Puckette and J.C. Brown. Accuracy of frequency estimates using the

phase vocoder. Speech and Audio Processing, IEEE Transactions on, 6(2):166

–176, mar 1998.

[Por76] M. Portnoff. Implementation of the digital phase vocoder using the fast fourier

transform. Acoustics, Speech and Signal Processing, IEEE Transactions on,

24(3):243 – 248, jun 1976.

[Puc95] M. Puckette. Phase-locked vocoder. In Applications of Signal Processing to

Audio and Acoustics, 1995., IEEE ASSP Workshop on, pages 222 –225, 15-18

1995.

[QDH95] T.F. Quatieri, R.B. Dunn, and T.E. Hanna. A subband approach to time-scale

expansion of complex acoustic signals. Speech and Audio Processing, IEEE

Transactions on, 3(6):515 –519, nov 1995.

[Vas06] Saeed V. Vaseghi. Advanced Digital Signal Processing and Noise Reduction.

John Wiley & Sons, 2006.

[VL93] V. Valimaki and T.I. Laakso. Fractional delay digital filters. In Circuits and

Systems, 1993., ISCAS ’93, 1993 IEEE International Symposium on, pages

355 –359 vol.1, 3-6 1993.

[ZBW07] Xinglei Zhu, G. Beauregard, and L. Wyse. Real-time signal estimation from

modified short-time fourier transform magnitude spectra. Audio, Speech, and

Language Processing, IEEE Transactions on, 15(5):1645 –1653, july 2007.

Institute of Broadband Communication 64

Bachelor Thesis Theory, Implementation and Evaluation of the Digital Phase Vocoder

[Zoe02] Udo Zoelzer, editor. DAFX: Digital Audio Effects. John Wiley & Sons, Inc.,

New York, NY, USA, 2002.

Nomenclature

DFT Discrete Fourier Transform

DSP Digital Signal Processor

DTFT Discrete-Time Fourier Transform

FFT Fast Fourier Transform

IDFT Inverse Discrete Fourier Transform

IDTFT Inverse Discrete-Time Fourier Transform

IFFT Inverse Fast Fourier Transform

STFT Short-Time Fourier Transform

Institute of Broadband Communication 65

