State Space Reduction without Information
Loss

Markus Mayerwieser

February 5, 2014

Bachelor Thesis
Advisor: Dipl. Ing. Bernhard Geiger

Contents

[1__Introduction| 2
2 Entropy of Higher Order Markov Chains| 3
[3 Single Entry State Lumpability] 4
[4 Partitioning) 8
[> Algorithm] 10
6 Example and Results| 14
[Z__Conclusionl 15
[References| 17
Abstract

Based on the theoretical works [Geil2] and [Geil3], a Matlab(©) implementa-
tion for an information preserving state space reduction of Markov chains was
carried out. The reduction takes place by a combination of states to a cluster,
the cluster combinations are represented by partitions. These partitions are
generated and encoded as proposed in [Ich82]. The resulting Markov chain of
2nd order is proven to still have the same entropy rate as the original Markov
chain of 1st order.

1 Introduction

Markov chains represent stochastic processes for many different approaches
in engineering. Due to performance reasons it is relevant to keep the state
space of Markov chains as small as possible. The whole information still
should be provided by the Markov representation, therefore some kind of
lossless compression of the states is needed.

If there are special structures in the Markov chain, we can combine states
to clusters and still keep the whole model information, but the resulting
Markov chain has its order increased from 1st to 2nd order [Geil3].

1st Order Markov Lumpin | 2nd Order Markov
Chain ping Chain

Figure 1: State Space Lumping

In this project, an algorithm was implemented that performs a combina-
tion of states in a given state space and therefore provides a clustering of
it. The clustering is determined with a specific set of rules on the structure
of the transition graph, namely a “Single Entry State” Dstructure. If the
conditions for this structure are met, states can be combined without losing
the information in this states. In other words, we can reduce the state space
in an information preserving manner.

In this thesis, this “Single Entry State” structure and the related struc-
tural rules are explained. We will also have a look at the implementation of
these rules and the generation of the possible partitions. To provide a prove
of this concept, the calculation of the entropy rate of the partitions of the
state space are explained and there will be a concrete example to demonstrate
the functionality of this approach.

n [Geil2] and [Geil3] the Single Entry State structure is called SFS(2). The Single
Entry property of [Geil2] is a related, but different property

2

2 Entropy of Higher Order Markov Chains

The algorithm comes up with all possible “Single Entry State” clusterings as
a result. These results have to be checked to prove the functionality of the
clustering. The easiest way to do this is to check if the entropy rate of the
model has changed due to the clustering. Therefore we need to have a look
at the calculation of the entropy rate of Markov chains, and further on the
entropy rate of higher order Markov chains.

First we give some definitions about the original Markov chain X. P is
the transition matrix and p the stationary probability vector:

P =P(X, = j|Xo =1) (1)
i = P(Xo = 1))

The Markov property tells us: The conditional probability distribution
of a future state is just depended on the present state and is independent
from the state sequence before the present state. For a stationary 2nd order
Markov chain the following holds:

P(Y, = yulYn-1 = Yn-1,... Y1 = 11)

= IP(Yn = ?/n‘Yn—l = UYn—1y) Yo = yn—2) (3)

=P (Y2 = 1|Y1 = 41, Yo = v0) (4)
P(Yy = 42, Y1 = y1, Yo = o)

T P(Mi= 1 Yo =) ©)

where:

P(Y1 =uy,Yo =yo) = Z IP(Xl = x1, Xo :3302 (6)

zo —1(Yo
x1 €9 (yl) Prg,wq Hzo

and:

P(Ya =y, Yi=y,Yo=uw)= > =P(Xy = 22, Xy = 21, Xo = 20)

zo Yo X
z1 €91 (yl L)
T2 Y2

N———

(7)

. =]P(X2 = $2|X1 = ﬂfl,Xo = .CE()) . IP(Xl = .Cljl‘Xo = 1’0) . IP(XO = :1:0) (8)
=]P(X2 = IL‘2|X1 = IL‘l)IP(Xl = [E1|X0 = [Eo)IP(XO = LU()) (9)
= Lz1,22 " PxO,zl * Mg (10)

Now that we have determined the conditional form of the Markov 2nd
order probability, we can write the entropy rate as:

HY)=HY[Y,Yo) = > PMVa=wp,Yi=y,Yo=u) (11)

Y0,Y1,Yy2

log P(Ya = 1|Y1 = y1, Yo = o)

3 Single Entry State Lumpability

To achieve an information preserving state clustering, the state space has to
fulfill the condition to consist of “Single Entry States”. First of all we have
to consider that a state that does not belong to any cluster can still be seen
as a cluster of size 1.

A “Single Entry State” is defined as a cluster of states, that is only reachable
from another cluster via one single state. That means, just one state in the
destination cluster can be the entry state for all member states of the source
cluster. If another cluster checks the “Single Entry States” condition, it is
allowed that this cluster enters the destination cluster via another state. So
the “Single Entry State” condition does not mean that the same entry state
defines the connection to any other cluster, it just means that there is only
one entry state between the two checked clusters. So the entry state does
not have to be unique to all other clusters.

Let us have a look at an example to explain this definition. Figure[2]shows
the given state space where we want to cluster in a ”Single Entry State” way.
Note that this is not the complete transition graph of the Markov chain, but
just a relevant part for the clustering purpose.

Figure 2: State Space Example

The first approach of combining states to a cluster shows a case where
the “Single Entry State” condition is not fulfilled, see figure [3| for the given
situation. If we want to combine states 1 and 2, we have to check all incom-
ing connections from other clusters (which are all clusters of size 1 at this
moment). We can see that state 4 has entry connections to state 1 and also
to state 2. So if we would combine states 1 and 2 to a cluster, there would
be not a single entry state.

Now we want to check if we could combine states 2 and 3, as shown in
figure |4, Here the states 1 and 4 both have an entry connection to state 2,
but the only entry condition to state 3 is the one from state 2. Due to the
fact that we want to see state 2 and 3 as a cluster, the connections inside this
cluster also have to be single entry. As we can see, the cluster can “enter”
itself just over state 2. We can combine states 2 and 3 to cluster (2 3), figure
shows the new representation. From now on we can write the two states
in one symbol, but we still have to keep all the connections to the included
states in mind.

Figure 3: State Space Example, Cluster fail 1

Figure 4: State Space Example, Cluster success 1

The attempt to combine the states 4 and 5 (shown in figure[6) looks fine
at the first glance , but keep one thing in mind: The combination of states
2 and 3 leads to a cluster that includes both states and the connections to
them. State 2 was entered from state 4 and state 3 was entered from state
5. A combination of states 4 and 5 would hurt the “Single Entry State”
condition.

A combination of states 1 and 4 is the next to check, figure [7] shows this
attempt. The only entry into this cluster comes from the (2 3) cluster (better

6

5

—/

\
\
///,/ N
L4 ﬁ
\\L»

~
Y
y
,

\ 2,3

/

NS

Figure 5: State Space Example, State Combination

VR

(1

/
N

Figure 6: State Space Example, Cluster fail 2

to say from the state 3 inside the cluster). This connection remains the only
entry for this cluster connection. Now we have to check if the single entry
condition still holds with the cluster (2 3). The states 1 and 4 where counted
as separate clusters while we checked for the clustering of 2 and 3. Now that
we want to cluster 1 and 4, we cannot count them separately and we have
to reconsider this decision. Since both states 1 and 4 enter the cluster (2 3)
via the internal state 2, the condition still holds (as shown in figure [§)).

For more detailed information about the theoretical background of Markov

chain lumpability, please check and [Geil3].

7

Figure 8: State Space Example, Cluster success 2

4 Partitioning

In order to find out which partitions satisfy the “Single Entry State” condi-
tion, all candidate partitions have to be generated and tested. To do this in
an efficient way, the conclusion of a paper [[ch82] was used.

A partition of a give state space {1,2,3,...,n} is described as a combina-
tion of several clusters of states. The 5 possible partitions of the state space
1, 2, 3 are:

To identify the state clustering inside a partition, some representation is

needed. A complex data structure would be a solution, but is not very effi-
cient in terms of generation, usability in algorithms and storage. Therefore
an encoding of the state combinations is introduced.
States that belong together in terms of a state cluster share an index. The
index of the clusters always starts with 1, the highest number in the partition
represents the number of clusters in the partition. To illustrate this, let us
have a look at the example for the state space with 3 different states:

Partitioning | Encoding
(1)(2)(3) 123
(12)(3) 112
(13)(2) 121
(1)(23) 122
(123) 111

The structure of the partitions brings the idea of using a rooted tree where
partitions are leaves. The partitions are created with an algorithm that uses
this fact and traverses this tree from level to level as shown in figure [9

(1)

r (1;\"} % (1) (2) i
N ,, l . P B ,

Ce2e)) e) wes | (o) :}

Figure 9: Tree Structure of State Space Partitions

For details on the generation algorithm or the representation of partitions,
have a look at the referenced paper [Ich82].

5 Algorithm

The implementation of the used algorithms was fully performed in Matlab(c)
due to reasons of simplicity.

Figure [10| gives an overview of the implementation. As an input,a transi-
tion matrix representation of a state space should be chosen. The algorithm
is programmed general enough to work also with an adjacency matrices, but
for the calculation of the entropy rate we need a transition matrix. If the
input is valid in terms of content and dimensions, the main part is started
where the partitions are generated and tested. The output consists of an
array with the possible partitions.

By zooming into the main calculation block (see figure , we see that
the given transition matrix is used to determine the size of the required tree.
The partitions are generated one by one and checked just after creation. If
a partition meets the “Single Entry State” condition, it gets saved to the
output.

A closer look inside the checking block (see figure shows how the test
is performed. One partition and the whole transition matrix are the inputs
to this block. Each combination of cluster pairs is checked separately. This
means a check for all states that belong to the tested cluster pair. If all pairs
match the condition of “Single Entry State”, the Partitions are okay and
ready to be saved.

10

Transition Matrix

Array of possible
Partitions

Figure 10: Overall view of Algorithm

11

Transition Matrix

\ 4

L

A

y
One Partition
for all Partitions
\ 4
1
Y
Array of possible

Partitions

for all Partitions

Figure 11: Inside the Generate and Check Block

12

One Partition Transition Matrix

for all cluster Pairs

Figure 12: Inside the Single Entry Check Block

13

6 Example and Results

As an example we look at the given state space, as shown in figure [13]

1/3
——1/3
1/3
1/3
1/3
1/3 s 1/3
1/3 1/3
1/3
1/3 1/3
13 1/3
1/3 1/3
1/3

Figure 13: Example State Space

The transition matrix for this state space is:

s 0 0 13 13
30 0 1/3 1/3
s 0 0 1/3 1/3
0 Y3 Ys 0 13
0 Ys Ys 0 1/3
0 0 13 0 13

Toococoo

14

There are 11 possible partitions for this input transition matrix:

Possible Partitions
) /111 2 2 3
2) |1 1 1 2 3 4
3) |1 1 2 3 3 4
4) |1 1 2 3 4 5
5) |1 2 1 3 3 4
6) |1 2 1 3 4 5
7) |1 2 2 3 3 4
8) |1 2 2 3 4 5
9) |1 2 3 4 1 5
10)(1 2 3 4 4 5
11)(1 2 3 4 5 6

Now we choose number 1.) of the results (see figure to take a closer
look at the entropy rate:

If we calculate the entropy rate of the original Markov chain and one of
the possible partitions (let us say we take line 1: (1 112 2 3)), we get an
entropy rate of H(X) = H(Y) = 1.5850. Therefore we see that the resulting
2nd order Markov chains still has the same entropy rate as the input Markov
chain of 1st order.

7 Conclusion

The combination of states in a given State Space can take place without the
loss of information, if the combined states are in the described special “Single
Entry State” structure. A look at the calculation of the entropy rates of the
original Markov chain and the 2nd order Markov chain with modified state
space verifies this expectation.

There are many new approaches for the future that leave room for im-
provement: The generation of the partitions works quite efficiently, but we

15

Figure 14: Resulting Partition (1 of 11)

have to take into account that not all partitions are required. If the combina-
tion of two states is not a possible option for the structure of the given state
space, a combination of these two states and a third one makes no sense (as
explained in [Geil3]). An efficient way of excluding unnecessary state com-
binations would result in a great performance increase for the calculation.
While this project focused on one type of special state space structure for the
rules of lumpability, there are more different types of rule sets. Each of this
rule sets would feature a different approach of partitioning of state spaces
and therefore needs different implementations of the partition generation and
the state combination algorithms.

16

References

[Geil2] GEIGER, BERNHARD C. AND TEMMEL, CHRISTOPH: Lumpings of
Markov chains, entropy rate preservation, and higher-order lumpabil-
ity. Dezember 2012. — accepted in J. Appl. Prob.; preprint available:
arXiv:1212.4375 [cs.IT]

[Geil3] GEIGER, BERNHARD C. AND TEMMEL, CHRISTOPH: Information-
Preserving Markov Aggregation. In: Proc. IEEFE Information Theory
Workshop (ITW). Seville, Spain, September 2013, S. 258-262. —
extended version: arXiv:1304.0920 [cs.IT]

[Ich82] IcHIRO, SEMBA: An Efficient Algorithm for Generating all Par-
tions of the Set {1, 2, ..., n}. Mai 1982. — Journal of Information
Processing, Vol.7, No. 1, 1984

17

	Introduction
	Entropy of Higher Order Markov Chains
	Single Entry State Lumpability
	Partitioning
	Algorithm
	Example and Results
	Conclusion
	References

